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Summary. This paper is a continuation of our previous work [10] on projection
methods. We study first existing “higher order” projection schemes in the semi-
discretized form for the Navier-Stokes equations. One error analysis suggests that
the precision of these schemes is most likely plagued by the inconsistent Neumann
boundary condition satisfied by the pressure approximations. We then propose
a penalty-projection scheme for which we obtain improved error estimates.
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1 Introduction

As in [10], we consider the numerical integration of the time dependent Navier-
Stokes equations in the primitive variable formulation:

(;—':——VAu+(u'V)u+Vp=f, Vix,t) in Q=0Qx[0,T],

(L.1) divu =0, V(x,t) in Q,
u(0 =uy, [p(x,0)dx=0, Vte[0,T],
(2]

subject to the homogeneous boundary condition (for the sake of simplicity):
u(®)lr=0, Vte[0, T]. Q is an open bounded domain in R? (d = 2 or 3) with
a sufficiently smooth boundary I

The coupling between the velocity u and the pressure p by the incompressibility
condition “divu = 0” is one of the main concern in designing efficient time integra-
tion schemes for (1.1). The projection methods, initially proposed by Chorin [2]
and Temam [12], are designed to decouple the velocity and the pressure. Another
way to overcome the difficulties caused by divu = 0 is to use a penalty formulation,
proposed by Temam in [11], in which the pressure is totally eliminated.

* This work is partially supported by NSF grant ' 3:5-8802596.
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In a previous work [10], we analyzed the classical projection scheme as well as
a modified projection scheme. For the classical scheme, we established error
estimates of weakly first order for the velocity and of weakly order % for the
pressure. For the modified scheme, we improved error estimates to strongly first
order for the velocity and weakly first order for the pressure. In this paper, we
intend to investigate several higher order projection and penalty-projection
schemes and to provide precise error estimates for them. We recall that our error
estimates would automatically imply the stability and convergence of the schemes.

Given the author’s knowledge, there exist essentially three types of higher order
projection schemes. Namely, schemes via improved intermediate velocity bound-
ary condition (Kim and Moin [6]), schemes via pressure-correction (Van Kan
[17], Bell et al. [1], Gresho [3]) and schemes via improved pressure boundary
condition (Orszag et al. [7]). We will study below the schemes in [6] and [17] and
indicate an intrinsic relation between them. The schemes via improved pressure
boundary condition will not be addressed in this paper.

The scheme proposed by Kim and Moin [6] in semi-discretized form can be
written as follows:

1 n+1 __ ..n _X An+ n
E(ﬁ L um) 2A(u Ly um

(1.2) =3(f(ta) — - V)u") = 3(f(ta-1) — ("1 -V)u" 1),
ﬁn+1|l‘= ka)n ,

and

1
E(un+1 _ an+1) + V¢n+1 =0 ,

1.3) divu"tl =0,
(

wtlenl,=0.

where k is the time step, t,+; = (n + 1)k and n is the normal vector to I". Note that
the non physical boundary condition for the intermediate velocity #"** is intro-
duced to reduce the tangential boundary error of the final velocity approximation
u"*1, for we can derive from (1.2)—(1.3) that

_ a(¢n+1 _ ¢n)
=k ot ’

n+1,

u Tlr

while the no-slip condition 4"*!| = 0 would lead to y"*'-7| =
Another scheme proposed by Van Kan [17] takes the following form:
%(ﬁtﬁl — un) — %A(ﬁ"+1 + un) + Vd)"
(1.4) =3(f(ta) — W - V)U") = 3(f(ta-1) — @"7*-V)u""1) |

ﬁn+1|r=0 ,
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and

LW @) 4V - g7 =0,
(1.5) divu"tt' =0,

u"tlon|p=0.

We recall that for both schemes, at each time step, we only have to solve a cascade
of Helmholtz equations, while for a conventional coupled scheme, we have to solve
a Stokes equation. Hence, using schemes of projection type might reduce consider-
ably CPU time as well as programming complexity. Because of their efficiency, the
schemes (1.2)—(1.3), (1.4)—(1.5) and their various variations have been widely used in
practice (see among others [1, 6, 8, 17]). It has been also believed that both schemes
would lead to second order approximations, at least for the velocity. However, to
the author’s knowledge, rigorous theoretical justifications for these schemes are not
yet available.
One can easily derive that for both schemes, we have

09" _o¢°

on | " on

(1.6)

b Vn!

r

which is not generally satisfied by the exact pressure. However, it is now a well-
known fact that despite of (1.6), the velocity approximations " and u" still converge
to the exact velocity u(t,) (see for instance [2, 15, 16]). In addition, we showed in
[10] that (1.6) did not affect the precision of first order schemes. However, how it
would affect the precision of higher order schemes is not clear. Our error analyses
reveal that in case

(L7 @%ﬂr=mmn Vie[o, T1,

we do obtain “essentially” (to be specified later) second order error estimates for the
velocity. However, if (1.7) is violated, we are only able to obtain error estimates of
order 3 for the velocity.

We will also consider the following totally implicit semi-discrete penalty scheme:

1 n+1 n X n+1 n
k(u u") 2A(u +u")

- | S
(1.8) + 3Bt +u" u"t + ") — Elev Ut = f(ty4y)
un+1lr — 0 ,

where B(u, v) = (- V)v + 4(div u)v. The extra term $(divu)v in B(u, v), introduced
by Temam [11], is crucial for preserving the dissipativity of the discrete system
when the approximate velocities are not divergence free.

We notice that in the scheme (1.8), the pressure is totally eliminated so that at
each time step we only have to solve a nonlinear elliptic system. The main
disadvantage of penalty schemes is that in order to get adequate accuracy, we have
to use a very small ¢ for which (1.8) would become a very stiff system to solve
numerically, especially when v is also small because of the two different scales v and
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1/¢ in the system (1.8). In fact, we will prove that to get second order accuracy, we
have to choose ¢ = O(k*). In order to relax the stiffness of (1.8), we will propose
a penalty-projection scheme which is second order accurate with ¢ = O(k?). The
price we pay for the improvement is to add a projection step for which we have to
solve an additional scalar Poisson equation.

To simplify our presentation, we will only consider the case T < co. Related uni-
form (in time) stability and convergence analysis for 1 = + oo can be done as in [9].

The paper is organized in the following way. In the next section, we recall some
preliminary results and lay out some assumptions on the data and the solutions of
(1.1) which are required for our error analyses. In Sect. 3, we analyze a pressure
correction scheme similar to (1.4)—(1.5). In Sect. 4, we show briefly how the results
of Sect. 3 also apply to Kim and Moin’s scheme (1.2)-(1.3). Then in Sect. S, we
provide an error estimates for the penalty scheme (1.8). Finally, in Sect. 6, we
propose a penalty-projection scheme which leads to improved error estimates.

2 Preliminaries

We recall below some of the notations and inequalities which will be used
frequently in this paper.
Let us denote

e H={ueL*Q)*divu=0,u-n| =0},
o V={veH}(Q)" divo = 0},
e Py: the orthogonal projector in L?(Q) onto H.

We define the Stokes operator
Au= — PyAu, YueD(A)=VH*Q)*.

The Stokes operator 4 is an unbounded positive self-adjoint closed operator in
H with domain D(A) and its inverse A~ ! is compact in H.
Let | -], || - | denote respectively the norms in L2(Q) and H§(R), i.e.

lul? = { |u(x)|*dx and lull® = { |Vu(x)|*dx .
(2] 2
The norm in H*(Q) (Vs) will be simply denoted by || - ||,. We will use respectively
(+,+) to denote the inner product in L?(2) and < -, - ) to denote the duality between

H™5(Q) and H§(RQ), Vs > 0.
We define the trilinear form b(-,-,-) by

b(u, v, w) = [ (u-V)v-wdx .

Q

It is an easy matter to verify that
2.1 b(u,v,w) = — b(u, w,v), YueH,v,we H}(Q)*.
In particular, we have
(22) bu,v,v) =0, YueH, veH{(Q)".
We define b(-,-,-) by
b(u, v, w) = (B(u, v), w, VuveH'(Q),, weH§(Q)".
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One can readily check that
23) b(u,v,0)=0, YueH (Q)!, veH}(Q)".
(24) b, v, w) = 3(b(u, v, w) — b(u, w,v)), Yu,veH (Q), weHI(Q)".

The following inequalities will be used repeatedly in the sequel.
If d £ 4, then (see for instance [13])

5(“3 U’ W) 1 d
. < .
25 {b(u,v,w)_c”un lollwl, Vu v weH @)

clulllof w2

clulflvll2lwl

(2.6) |b(u, v, w)| < Vu o, we H'(Q).

clullllvlzlwl’
cllullzlivllIwl
We recall (see [10]) that

IA™ ully < cillulls-2, for s=1,2;

2.7 J¢y, ¢, >0, such that VueH: -
@7 v {02“”"2—1 <(4 1u,u)§cf||u||2_1.

Hence, we can use (4~ 'u, u)* as an equivalent norm of H™!(Q)? for ue H.
We will use the terminology in [10] to classify the precision of a scheme.

Definition. Let X be a Banach space equipped with norm ||+ ||x and f: [0, T] - X
is continuous. Let {t¥}*=1* be a family of discretization of [0, T'] such that

0=t < <tP<t¥, < <tfh=T;and
max |t¥, —t¥P| <6, -0 (ask—0).
0SnsSTh-1

Then, we say f, is a weakly order o approximation of f in X if there exists
a constant ¢ independent of k such that

T/k
kY A — fE)IE < ck*
=0

and we say f, is a strongly order a approximation of f in X if there exists
a constant ¢ independent of k and n such that

I fe(t®) = fE@) 1} < ck®®, VO<n<Tlk.

Now we lay out some assumptions, which will be used throughout the rest of
the paper, on the data and the solutions of (1.1).
We assume u, and f satisfy

(A1) uoe H*(Q)nV, feL>0, T;L*(2)")nL*0,T; H'(Q)%).

in the three dimensional case, we assume additionally there exists a global strong
solution, i.e.
(A2) sup flu(@)| =M, .

te[0,T]
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Under the assumptions (A1)-(A2), we can prove (see for instance [4])

(2.8) sup {[lu(@®) 2 +uw' @) +|Vpl} = M, .
te(0,T]

Notice that (2.8) is automatically satisfied when d = 2.
To simplify our presentation, we assume the solution {u, p} of (1.1) satisfies the
following additional regularity condition:

T
(A3) j{'lutltllz—l +”un||2+|Pn|2}§M3-
0

Remark 1. The verification of (A3) involves some compatibility conditions on the
data which are generally not satisfied (see for instance [4, 14]). We assume (A3)
merely for simplifying the presentation. In fact, with the assumptions (A1)—(A2), we
can prove (see for instance [4])

T
Itz{[|u,,,|[2_1 + ““n”z + |pn|2} =M,.
0

Hence, all the results presented later can be accordingly modified by taking into
account the “smoothing” property at ¢ = 0 (see also [5] and Remark 3 in [10]).

Hereafter, we will use ¢ to denote a generic positive constant which depends only
on , v, T and constants from various Sobolev inequalities. We will use M as
a generic positive constant which may additionally depend on uy, f and the
solution u through the constant M;, i = 1,2, 3.

3 A pressure correction scheme

As in [10], to avoid technicalities for handling different spatial discretizations, we
will study directly schemes in semi-discretized form for which a totally implicit
version must be used to ensure the stability. Although schemes in semi-implicit
form as (1.2)—(1.3) and (1.4)—(1.5) are often implemented in practice, especially when
a fast Helmholtz solver is available.

In this section, we study the following version of the pressure correction
scheme:

1 ~
i(ﬁ"“ —u") = VAE"TE 4+ B@"E a" ) + V" = f(tasy)

(3.1)
ﬁn+*|l"=0 )
and 1
%(urﬁl _ ﬁ'”'l) + aV(q&"“ _ ¢n) =0 ,
(3.2) divu"tt =0,
un+1 ‘”|r =0 ,

where 4"** = 4@"*! + u") and o can be any constant >3.
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Equation (3.1) is a nonlinear equation for #"*! very similar to the stationary

Navier-Stokes equation. The existence of at least one solution @#"*! satisfying (3.1)
can be carried out exactly as the existence for stationary Navier-Stokes equation by
using Galerkin procedure (see Theorem 2.1.2 in [13]), while «"*! in (4.2) is
uniquely defined by the relation u"*! = Py4ii"*!. This argument is also valid for
schemes appearing later, so it will not be repeated.

Remark 2. Apart from the implicit treatment of the nonlinear term, the scheme is
still different to (1.4)—(1.5) in the following aspects:

e ii"*! does not satisfy the homogeneous boundary condition but #"** does.
e A flexible constant o > % is used instead of the constant 4 before the pressure
correction term.

Let t, = kn and t,.4 = (n + })k. For any function w(z) and any series {a"} and
{a"}, we denote

W(tn+§) = %(W(tn+1) w(t,)) ,
a"tt =_%_(an+1 +a", Gt = _%(~n+l +a").
We denote also
"t = u(tyeq) —utl, = u(t,.,) — a"t, "t = p(teey) — "1

The above notations will be used throughout the paper.
To fix the idea, we will impose hereafter j,, ¢"dx = 0, Yn. We denote in this
section

k
I =" +alT = ¢ BT @b a(g" = ) — AT - ¢7).

Our main results in this section is

Theorem 1. Vo > 4, "% and u"** are weakly order 3 approximations to u(t,+) in
L*(Q)% ¢1** as well as ¢p3** are weakly first order approximation to p(t,+4) in
L%*(Q)". Namely,

T/k—1
(3.3) kY {le" 2 + "2} < MK?
n=0
T/k-1
(34 k Z {16174 — Btar ) +1957F — p(tass)|*} < M.

We will prove Theorem 1 by proving a series of lemmas which will be frequently
used later. We begin with a preliminary lemma for the truncation error defined by

(35) R = L (ultys 1) — ulty) — Aty 1)

+ (ﬁ(tn+4})'v)a(tn+4}) + Vﬁ(tn+4}) _f(tn+§) .
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Lemma 1.

T/hk—1
k Z IR™|2, < ck*- I(Ilumllz1+Ilun|!2+lpnl )dt < Mk* .

n=

Proof. Adding (3.5) to (1.1) at t = ¢,.;, we obtain
1
(3.6) R" = (};(u(tn+1) —u(t,)) — u’(t,.ﬂ)) — (VAU(ty+y) — vAu(ty+4))

+ ((@(tn s 3)* V)iH(tns3) — @E ) VIu(tar ) + (V(Bltnsy) = p(ta+s)))
= A} — A} + A3 + A}.
We majorize the four terms on the right hand side as follows.

Using the integral residual formula of Taylor series for u(t,. ) and u(t,), we
derive

(3.7) Al = 2k<t"j“(t,,+1 s)zum(s)ds—"jt*(s——t,,)zu,,,(s)ds).

thed t,

Applying Schwarz inequality to the above integrals, we obtain

tn+s
143121 = 45 f (s —tn)*ds | uu(s)|21ds

tn

!l+l 4 n+1 2
I (ths1 — 9)*ds j | theee(5) | 2 1 ds
tn+‘} tn+§

< ck? j | teee (5) “ Z,ds.
t,
Therefore

T/k—1

T
(3-8) ko 3 NATIZ ) S ck* [ w2 ds .
n=0 (4]

Let us denote
E;= ﬁ(tn+4}) - u(tn+§)’ E; = ﬁ(tn+i) - p(tn+%) .
Using again the integral residual of the Taylor series, we have

Er= %<lnfi(s s+ | (s — I ) ’

t, th+d

thed
E; = ( [ s—t)p"(s)ds + I (tns1 — S)p”(S)dS>
th+d
As above, we can derive by using Schwarz inequality,

tht1 ths1
IEZN? S ck® | llu"(s)lI2ds, |Ep|> S ck® | |p"(s)1*ds.
ty

Ly
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Therefore,
T/k—1 T/k-1
(39) k Y (143012, S cvk Z I|E"I|2<ck4jIIu”(S)IIst,
n=0
T/k—1 ’ T/k—1 2
(3.10) k Y (4312, Sck Yy max (—M
=0 n=0 veH}Q) o]
T/k—1

<ck Z |E} |2<ck4§|p” (s)%ds .

n=

Next, we can rewrite A% as
= (Ey-V)ii(ty+y) + (f(tn+4) V)EL .
Since | #(t,+4)Il £ M, by using (2.5), we have
(A3, v) = b(EL, i(ty+4), v) + b(i(t,+4), Ei, v)
SclEQl ol a4 < MIEZ] o]l .

Hence
Thk—1 Tk—-1 A
(3.11) K'Y Azt sk S max (ABOY
n=0 n=0 veH§Q)! ol
T/k—-1
<Mk Y |El? S Mk*.
n=0

Thanks to (3.8), (3.9), (3.10) and (3.11), the proof of Lemma 1 is complete. [
Now we are going to derive a first error estimate for the velocity approximations.

Lemma 2.

20—1 F
|eN+1|2+|~N+1 + Z |en+1—én+1l2

N
+hkv Y (&2 4 et 42} S MK:, YOS NS T/h—1.

n=0

Proof. Subtracting (3.1) from (3.5), we obtain
1
(3.12) E(e"‘+l e") — VA&t + V(p(ty+y) — ¢")

= B@"**, 4" ¥) — (ii(ty+4) V)i(ty+4) + R" = NLT + R".

Since divi(t,+;) = 0, we can rearrange the nonlinear terms on the right-hand
side as

(3.13) NLT = B@*4, ") — (i(ty+4) - V)il(tn+4)
= B(a"**, ") — B(i(tn+4), (tn+3))
— B(a*4, &) — B4, ii(ty+,)) -
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We now take the inner product of (3.12) with 2ké"*?,

( (~n+1 )_ VAé"Jr%, é’”"’i’) |en+1'2 |en|2 + 2kV “ é-n+§”2 .

2k<Rn ~n+4}>< " ~n+§"2 ”Rrxllz_1

By using (2.3) and (2.4),
2k(NLT, &"*%) = 2k(B@"* %, ii(tys4)), &%)

J. Shen

= 2kb(@" "%, i(ty+4), 8"*H) — 2kb(@" %, &M, (2, 44)) -

Since || u(t)]|; = M, using appropriate inequalities in (2.6) for the two terms above,

we derive

(3.14)  2k(NLT,e"**) < Mk|em*¥|||e"*?) < <= || &"t¥||2 + Mk|entH|? .

Combining the above inequalities, we obtain

(3.15) |e"*1 2 —|e"|® + 2kv| et 2

< 2k(R" &%y + 2k(NLT, &"* %) + 2k(V(P" — Pltn+s)), €" %)

< kv[|&"**|? + Mk|&"**|? + Mk||R"||2

+k(V(@" = Bltary)), &7 1) .

On the other hand, we derive from (3.2) that

(316) %(erﬁl _ é'n+1) = av(¢n+1 _ d)n) .
20 — 1)k
Taking the inner product of (3.16) with (—a—za—)—e” ! we obtain
20 — 1
(3‘17) (Xza {len+1|2 ’~n+1|2+|en+1_'én+1|2}=0

k
Now, taking the inner product of (3.16) with Z( e"*1 4+ &"*1), since

(3.18) (Vp,v)=0, VpeH!(RQ), veH,
we derive

1 n+ sn+1)2 __E n+l _ 4tny zn+
(3.19) 2l 1?2 —le ‘I)—Z(V(¢ ¢"), et
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Adding (3.15), (3.17) and (3.19), we arrive to

200—1

(3.20) [e"* 12 — |e"|? 4+ kv|é"tH|2 +
20

|en+1 _ én+l|2

; k
< Mk(le""*)* + | R"|121) + E(V(d"‘+1 + " — 2p(tasy)) ")

= Mk(le""** + | R"|12, )~—(V(q"+1 +q"),&"").

The pressure term on the right-hand side can be dealt as follows.
From (3.16), we have

én+1 — en+1 _ kth(¢”+1 . ¢n) .

Therefore
k n+1 ny sn+1 akZ n+1 n n+1 n
(2D —S(V@* 4 E) = S (Vg + ) V(@ = ¢7)
k2
= -V + Ve - )
= V(p(ta+1) — p(tn)))
ok? ok?
= = S0V = Vg + S50
where

322 Ip=(V(@""" + 4", V(p(tas1) — p(ta)) = (V(q'”'1 +4"), f Vp'(s)d )

< IV@* + ) | IV )l ds

29
Sk(IVg" 2+ (Vg2 + [ (Vp'(s)ds .
L,
Hence, adding (3.20) to (3.21), because of (3.22), we arrive to
+1)2 ., uk? n+1y2 2 sn+d 2
(323) (e e+ (Ve — V) + ket

20— 1

2 len*t —&" 1|2 < Mk(|&" 4] + | R"|2,)

n+1

+k3(1Vg" | + |Vq"|? )+ I IVp'(s)|* ds .

ty
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Now, taking the sum of (3.23) for n from 0 to N, since |&"*#|2 < 8"+ 1]? + |e"|?, we

arrive to
N+12 ak? N+12 l smigp2 20— 1 12
e 12+ — V¥ T2 4+ Y Skv[@n |2 4 ———|ent ! — gt
2 oy 20
N+1 akZ akl T
<Mk Y {|é"|2 + le"]? +Tqu"|2}+7(wq"|2 +I|Vp'(s)|2ds>-
n=1 ()

Since |&"*1|2 = |e"* 1|2 + |e"t! — &"" 12, for a >4, we can rewrite the above
inequality as

20 + 20 ak?

1 -1
3.24 o T |eNt1L2 SN+1)2 N+12
(3.24) o N Pl L Ml A
: a2 L 22— L i aiagpe
+ Y Skv[e"tH| 2 4 ———entt — gt
n=0 4o
N+1 akz
< Mk Z {lé"lz+Ie”|2+7|Vq"|2}+Mk2.
n=1
By applying the discrete Gronwall lemma to the last inequality, we derive
N
(3.25) |eN*12 4 [BVF2 4 T (k| @E |2 4 (et — et l|2)
n=0

SMk? YVOSNEZTk-1.
Thanks to (3.25) and the following inequality (see [13])
(3:26) | Prullgiy < c@)ullg@p, YueH (),
the proof of Lemma 2 is complete. [J
A side product of Lemma 2 is that we have
(327 lamtA S 21" ) + atae ) ) S M, VOSn<Thk-1.

In order to derive an error estimate for the pressure approximation, we need the
following

Lemma 3.

Tk—-1 Thk—1
Yollertt—erZ S MEE Y {[@tH2 + IR 2, ).

n=0 n=0

Proof. Taking the sum of (3.1) and (3.2), we obtain

1 o
(3.28) E(u"+1 —u") — VATt + Bt unt ) 4 Vot = f(t,y)
Taking the sum of (3.28) and (3.5), we obtain

(3.29) %(e"“ — ") — vA&"* + V(p(ty44) — "*¥) = NLT + R" .
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Since e"*! —e"e H = D(A™!), we can take the inner product of (3.29) with
kA~1(e"*! — ¢"). From the property (2.7) of A~ !, we derive

(V(p(turs) — ¢"7 %), 471"t —e") =0

("t —eh AT e —eM) = |e"T — e 2y,
k(R A™He" !t —e") S glle""t — e |2 + ck?|R™ 2y,
— kv (A" A7 (et — ")) = kv(VE" T VA" (e — o))
Stlen™t =2y ket

We recall that (see (3.13))

NLT = — B@"**, &"*4) — B@ "4, ii(t,,)) -
Then we derive from (2.4) that

k(NLT,A‘l(e"“ _ en)) = g(b(an+%, é'""'*’ A—l(en+1 _ en))
— bt AT e — o), 2 )
FEG@ ) AT~ )

= b@ AT ~ e"), i(tysy)))
Hence, by using (2.7), (2.5) and (3.27), we obtain
(3.30) k(NLT, A7 (e"*! — e") < ck || a"* 4| & 4| [le"™ ' — €] -,
+ ckllataeg) 18" 2] e — et -y
S Mkl ¥ Jle"*t — e -y
Shllentt —em|2y + ME?[[ TR 2.

Therefore, combining the above inequalities, we obtain

1 Th-1 Tik-1
5 Z et —e"lIZy < Mk Y {lIe"™? + [R"|2,}. O

n=0
We rearrange (3.29) to
1
k

where {qn+§’ en+4~} = {p(tn-i»-}) _ ¢n+§ sn+4
We notice that (3.31) is also true for {q"**, et} = {P(ty+ry) — ¢34 "1} So
we can consider the two pressure approximations simultaneously.

(3.31) Vqitt = — ("' — ") — aAelt* + NLT — R",

Lemma 4.
T/k—1 T/k—1 T/k—1
k Z g3 > < Mk Z {Ie™ 12 + R (21} +7 Y Nt —e"[2y

k

n= n=0
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Proof. Replacing A~ *(e"*! — e") by v in (3.30), we obtain
(3:32) (NLT,v) S M| é&"**| |lv|, YveH§Q).

Using Schwarz inequality, we have also VYve H§(Q)%,
1
(3.33) (;{-(e’”‘1 — ") — vAeltt — R", v) §%(|I et —em| 4

+ IR -y + vl Dol
Using the inequality

(3.34) plsc sup S22

veH ) (Q)4 ol

we derive from (3.31), (3.32) and (3.33) that

V n+3 v
i se sp T
veH)(Q)4 ol

M
=T len™t —e"ll—y + M(IR"[ -y + & ¥ + [[e""*]) .

The lemma is then a direct consequence of the last inequality and (3.26). O

Lemma 5. V0 < § < 1, 3¢; > 0 such that

5|PHu|2 —cslu — PH“|2

. VueHLQ) .
§|Pyul? — c,|divul? ueHo(Q)

(3.35) —{Au, A"*Pyu) = {
Proof. Yue H}(Q)%, let {v, p} be the solution of the following Stokes equation

—Av+Vp=Pyu, dive=0, [pdx=0, v|;=0.
Q2

Hence, v = A~ ! Pyu and
(3.36) lolls + Iplls-1 S cllPaulls-2, s=1,2.
Since u, A~ Pyue H5(Q), integrating by parts twice and using (3.36), we obtain
—{Au, A" *Pgud = {u, — AA"*Pyu) = (u, Pyu — Vp)
= |Pyul® + (u, Vp) = | Pgul* + (u — Pyu, Vp)
2 |Pyul|® — |u — Pyu||Vp| Z |Pgu|* — clu — Pyul|| Pyu|

2 0|Pyul* — cslu — Pgul®.
Likewise

— (Au, A™' Pyu) = |Pyul* + (u, Vp) = |Pyul* + (divy, p)
2 |Pyul® — |divu||p| Z | Pgul® — c|divu|| Pyul

§5|P5u|2—co|u——Pﬂu|2 . g
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Lemma 6.
T/k—-1 T/k—1

kv Z {lén+4»'2+|en+§|2}§k Z {”Rnuz_l+Ien+1_éu+1|2+k2”en+§” }
n=0 n=0

Proof. We rearrange the nonlinear term NLT as follows.
(3.37) NLT = — B(a"**,&"*4) — B@"*%, ii(t,+4))

= B@E* 4, ii(tysy)) — BE" 4, &%) + Bii(tys,), e"*1) .

We take the inner product of (3.29) with 2k4~'e"** By Lemma 5, we have
(3.38) — (AE"HE AT et ey > > 15 len+%|2 —clentt —gnr1z,

Using (2.7), and noticing that (4~ 'u, Vp) = 0(Vue H), we obtain

(339)  fletHIEy = lemlZy + l%le”‘*l2 S 2k(R" A7)

+cle"t! —é"*1|2 + B" — B + B},

where we have denoted 2k(NLT, A~ 'é"**) by B} — B} + Bj.
Using (2.7) and the fact that ||ul|-; < c|u| (VueLz(Q)), we have

(340) 2k(R™, A7 "ty < ck|[RM_ A et < |e"+*|2+Mk||R"H2

Using (2.4), we have
B} = 2kB(@" 4, 8(ty44), A e )

= k(b(é"”-&’ a(tn+§-)9A—1en+%) - b(‘én+*5A—1en+*’ ﬁ(tn‘i--})))

k
= z b(én+1 "+l, u(tn+§-), en+%) + b(en+{~, a(tn+4})’A‘len+%)

k
+5 bt = &L AT e it s)) + TR AT 80 14))

we then use (2.6) to derive

B} < Mk(l&"*! — e[ + Ile""*ll-l)le"**l
S Mk(le"™t — "2 + et 2 1)+ Ie'”*lz;

Similarly, we can derive

3 S Mk(le"t! — et + IIe"**lI-l)Ie"**I

< Mk(|~n+1 n+1|2 + "en+§”2 1)+ I n+4}l2
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As for B, we have
"= 2kb~(é~n+4}, én+4}’ A—len+5)
— k(b(én+-}’ én+f,A-—l en+§) _ b(én+§’A—len+&’én+}))

< Mk|e"*#|[|e"* ¥ |e" ¥ < Mk*||é"*#|||e"*#| (by Lemma 2)
vk
é Mk3”én+§“2 + ? |en+4}|2 .

Combining these inequalities into (3.39), we arrive to
le"* 112y — lle"|12y + vkle" > < Mk{] " ¥||2, + | R"|12,
+ Ien+1 _ §n+1|2} + Mk3 “é'n+§ ”2 .

Taking the sum of the last inequality for n from 0 to N(VO < N < T/k — 1), we
derive from Lemma 2 that

N N
leM* 2+ Y kvle" 2P < Mk Y, {|R"|2, + e — &2
n=0 n=0
N+1
+ k2| é"* |2} + Mk Z le"]|%; .

n=1

By applying the discrete Gronwall lemma to the last inequality, we obtain

N N
(3.41) eV M2+ Y kvle AP s Mk ) {IIR"2,
n=0 n=0
+ 'en+1 _ én+1l2 + k2”é'n+«}”2} .
Since
28ntE = gntl g on = Qpntd 4 gntl _ gntl

we derive from Lemma 2 that

T/k—1 T/k—1
k Z Ié‘n+}|2§k Z {Ie"+*|2+lé"“—e"“|2}4
n=0 n=0

The proof of the lemma is complete thanks to the last inequality and (3.41). O

Proof of Theorem 1. (3.4) is a direct consequence of Lemmas 2, 3 and 4. (3.3) is
a direct consequence of Lemmas 2 and 6. O

In proving Lemma 2, we notice that it is actually the term I}, defined in (3.22),
which prevents us from obtaining second order error estimates. The reason for
which we failed to obtain second order error estimates is directly linked to the
inconsistent Neumann boundary condition

opitr|  a¢"
on | on

However, in case that (1.7) is satisfied, the Neumann boundary condition for the
pressure is well represented by (3.42). Hence, we expect that (1.7) would lead to
second order error estimates. In fact we have the following

(3.42)

r on
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Theorem 2. We assume that |V(¢° — p(0))|> < O(k) and that the pressure p in (1.1)
verifies (1.7) and [§ |Ap’(s)|*ds < M. Then V& > 0, 3 M, > O such that the following
inequalities hold:

T/k—1
(3.43) k Z {le"*¥|2 + |e"* %2} < M k*"¢,
n=0
N
(344) |eN+l|2 + |éN+1|2 +k2|VqN+1l2 + k Z {”en+§“2 + I|§n+4}”2}

n=0
<Mk3® YOSN<Tk-1,

T/k—1

(345) kY {1617 = pltass)® + 1957 = Pltasy)?} S MR8

n=0

We will begin by proving the following recursive result.

Lemma 7. Under the assumptions of Theorem 2, YO < B < 1, if

T/k—1
(3.46) Y (k1 = pltasy)) + et — ) < MK
n=0
then
N
(347) |eN+1|2+k2|VqN+ll2+ Z {k”én+{”2+len+l_'én+1|2}

n=0

1+p
SMK**TZ, VOSNESTk-1,

T/k—1 +8
(348) k Z {191 — pltar )I> +1905%% = Blta+4)? }<Mk2+ 2

Proof. Since
P1tE=¢"+ (@ — ") =3(P" T+ )+ (a = (" — 9",
we have
3@+ G = Pltary) — 01T+ G — ) (9" = 9").

On the other hand, we derive from (3.16) and the Poincaré inequality that
971 = ¢ S elV(@"* ! — g S Tlemtt =

We then derive from the last two relations and (3.46) that
Tk—1 Thk-1

(3.49) k Z "+ P a4k Y {IBltary) — 0T + (@ — D) " — @7}
n=0

T/k—1

<4k |Bltnss) — $17H? — 5lent — r+1 2
‘!‘ k2

n=0

< Mk**E
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Now we will treat I; differently as we did in the proof of Lemma 2. In fact, thanks to
(1.7), we can integrate by parts for I so that

Ip= (V@ + q"). V(p(tas1) — P(t4))

= - (qn+1 + qn, A(P(tn+l) - p(tn)))

1273

4
< Jklg"t* + q"|< | |Ap'(s)|2)

1+ 1+B ths1
Sk g P+ k2 [ |Ap'(s)|Pds .
t
Therefore, as in the proof of Lemma 2, we can derive the following inequality
similar to (3.24):

N
|eN+1|2+k2IVqN+1|2+ Z {k”én+§“2+|en+1__én+1|2}
n=0

-.3

< k?|vq° |2+k2+ j p'(s)|?ds

[=]

SR L
+M Y (k3T |g" + g2 + k| R 2}

n=0
1+8
< Mk**72 (from (3.49)) .
Thanks to Lemmas 3, 4 and the above inequality, we can obtain (3.48). O

Proof of Theorem 2. Thanks to Lemmas 2 and 3, the condition of Lemma 7 is
satisfied with f = 0. Then V¢ > 0, we can apply successively Lemma 7 with § = 0
and f=B,=)1-,1/2, for m=1,2,.... For m large enough such that
Bm =1 — &, Lemma 7 implies (3.44) and (3.45). (3.43) is then a direct consequence of
(3.44), (3.45) and Lemma 6. The proof of Theorem 2 is complete. [J

Remark 3. Theorem 2 tells that if (1.7) is satisfied, then the scheme (4.1)—(4.2) is
essentially (i.e. to within an arbitrary small ¢ > 0) weakly second order in L?(2)?
for the velocity.

It is interesting to observe that the choice of a does not affect the precision of the
scheme. The restriction on « being strictly larger than 4 seems purely technical, we
do expect comparable results in practice with o = 4. In fact, no essential difference
in results was observed by Gresho in [3] when using different «.

Schemes similar to (3.1)—(3.2) can be easily constructed. For instance, the
following scheme is based on another second order time discretization scheme with
pressure correction:

(3 50) 2k(3~n+1 4un+un-—1)_ ~n+1 +B(ﬁ"+1 ~n+1)+v¢n f(t,,+1) ,

an+1|r;0 ,
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and 1
E(urﬁl _ ﬁ"+l) + dV(¢"+l _ ¢n) =0 ,
(3.51) divu"t' =0,

“"+1'”|r=0 s

By using essentially the same technique, we can prove similar results as in
Theorems 1 and 2 for the scheme (3.50)-(3.51) with & > 1.

4 Kim and Moin’s scheme

Since the semi-implicit scheme (1.2)—(1.3) is only conditionally stable and it seems
that the totally implicit form of (1.2)—(1.3) is inconsistent, we will only consider the
scheme (1.2)-(1.3) applied to the unsteady Stokes equations, i.e. without the
nonlinear term. After all, the explicit treatment of the nonlinear term in (1.2)—(1.3)
would only affect the stability of the scheme and would not spoil the time
discretization accuracy which is the main concern of this paper.

If we introduce a new intermediate velocity &i"*! and let 4"*! = a"*! + kV¢",
we can rewrite (1.2)—(1.3) without the nonlinear term as

k
‘1"l~ln+l _un)_zA(an+1 + u")+V<¢"—v—A¢") =f(tn+*) s
ﬁn+1|r=0 5
and 1
E(un+1 _ ﬁ”+1)+ V(¢”+1 _ (b”) =0 ,
4.2) divu"*1=0 ,
uwtlen|;=0.

We notice that (4.1)-(4.2) is very similar to (3.1)—(3.2) with o = 1 and without
%VA¢" in
(4.1). We then expect they lead to approximations with comparable accuracy.

Actually, we can prove the following analog of Theorem 1 for the scheme
4.1)-(4.2).

the nonlinear term. In fact, their only difference is a small extra potential

Theorem 3. ii"** and u"** are weakly order 3 approximations to u(t,+) in L*(Q)%,

k
"t — %A(b”“ as well as p"*1 — ——2‘—’A¢” are weakly first order approximation to

P(tn+y) in L*(2)%. Namely,

Tk—1

4.3) kY {1e3 + e 42} < MEP,
n=0

2

k kv ~
P+ _gm"—ﬁaﬁf) +[6" =S A" = Bltns )

Thk-1 2
44 k Y { }é Mk? .
n=0
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Sketch of the proof. The proof of this Theorem is very similar to that of Theorem 1, so
we will only point out how to handle the extra potential term in (4.1).
The corresponding error equations for (4.1)—(4.2) are:

45 T — e JAET e+ V(ﬁ(t,.m — ¢+ %‘Afp") — R

1
(46) E(e’”-l _én+1)___v(¢n+1 _d)n),
where R} is R" excluding the nonlinear terms.
As in the proof of Lemma 2 we take respectively the inner product of (4.5) with
2ké"** and that of (4.6) with _(e.,+ 14 &"*1), we can derive exact as before the

following inequality similar to (3.23) with o = 1,
k2
@7 e = [ (V= (VG + kv

+%|en+1 __é'n+1|2 + D"

2ty

k
S Mk(|&" ¥ + |R™121) + (Vg™ * + V")) t7 | 1Vp' ()2 ds,
tn

where D" = vk2(VA@", &"**) is the only extra term on the left hand side. Using the
relation
dive"*! = — kA(¢"*! — ¢,

We can rearrange D" as follows.

(4.8)
vk? . 5
D" = 2 VA¢" n+1)__ —‘_—(A(,b" dlven+1)
vk3

k3
= (A¢", A" + ¢") = VT{IA¢"“|2 —|A¢"? — |Ap"" — Ag"|?}

3
=X’f_{|A¢n+1|2 |A¢" }———‘dlv~"+l|2.

We recall that (see [13]) |divu| < ||u||, V ue H3(R2). Therefore, replacing D" in (4.7) by
(4.8), we obtain

k2
4.9) Ie"“lz—le"lz+7‘-(qu"“|2 IV"1?) + 2 (IA¢”“|2 |Ad"?)

3kv
+T”'e~n+§"2+%|en+1 ~n+1|2<Mk(l n+f|2+ ”Rnnl )

k2 {71
+ K (Vg "2 + IVq"I2)+7 [ IVp'(s)|2ds .

tn
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Taking the sum of the last inequality for n from 0 to N, we obtain

(4‘10) ’eN+1|2 + léN+1|2 +k2|VqN+1|2 +k3|A¢N+1[2
N
+ Z {kv||§n+«}”2 + |en+1 _é-n+1|2}
n=0

N
§M Z {k\e”|2 +k2|Vq"+1|2 + k3|A¢n+1|2} + Mk2 .

n=0

Applying the discrete Gronwall lemma, we can derive the following result similar to
ILemma 2:

(411) IeN+1|2 + |éN+1|2+k2|VqN+1'2 +k3|A¢N+1|2
N
+ 3 {kvlle ) + kvl
n=0

+ |en+1 _é”+1|2} §Mk2 .

The rest of the proof is basically identical to that of Theorem 1 with

k
¢11|+§=¢n+1 __E‘)A‘pn’ ¢T+<}=¢n_%XA¢n+l .0

Remark 4. With ¢7** and ¢%** defined as above, the results in Theorem 2 also apply
to the scheme (4.1)—(4.2).
5 Penalty method

With the framework we established in the previous sections, it is now an easy matter to
prove the following result for the penalty scheme (1.8).

Theorem 4. Let e" = u(t,) — u", where u" is defined in (1.8). Then

N
(5.1 le"* 1|2 + kv Z {lle"“||2+%|dive"“|2}
n=0
<MK+, VOSN<Th—1.
=11 2
(5.2 kY gdivu”+1 — Pltars)| SMK* +o).
n=0

Proof. Taking the difference of (1.1) and (1.8), we obtain the following error equation
1
(5.3) %(e”+1 —e") —vAe"tt — ;Vdivu"*”1 =NLT' + R" — Vp(ty+s) ,

where NLT' = — B(e"*4, ii(ty+4)) — Bu"*%, e"*¥).
Taking the inner product of (5.3) with 2ke"**, as in (3.14), we can derive

2k(NLT', e"“‘“}) < %Y I en+t”2 + Mk‘en-w}lz.
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Therefore, using Schwarz inequality, we obtain
le"* 1|2 — |e"|® + 2kv|e"* %% + ’gldivu"“ﬁ
S 2k(R™ €™ ¥) + k(P(ty+y) divu" 1) + 2k(NLT', e"* %)

k
Skvlle™¥|? + ck||R"|2; + Eéldivu”+’|2

k
2 Bltas3)I? + Mkle"* 42

Taking the sum of the last inequality for n from 0 to N and using discrete Gronwall
lemma, we recover (5.1).

The proof of (5.2) is now standard. In fact, we can prove (5.2) exactly as we proved
Lemmas 3and 4. O

Remark 5. 1t is clear from Theorem 3 that in order to get second order accuracy, we
have to choose & = O(k*) for which the system (1.8) would become seriously ill
conditioned. This might be the primary reason for which the success of Penalty
methods is somewhat limited.

6 A penalty-projection scheme

We notice that the precision of the projection schemes partially depends on how well
the incompressibility condition is satisfied by the intermediate velocity #"**. In order
to reduce div #"* !, we can introduce a penalty function as in (1.8) to the first step of the
scheme (3.1)—(3.2), hoping that we can improve the error estimates to second order with
a much relaxed parameter ¢. So we consider here the following penalty-projection
scheme

6.1)

%(arﬂl _ un) —vA"tE 4 E(ﬁn+£-’ ﬁ"*’%) —k PV divant! + V¢" =f(tn+<}) ,

a4 =0,
and 1
i(u'ﬁl _ ﬁ"+l) + av(¢n+1 . ¢n) =0 ,
6.2) divu"tt =0,
un+1‘"|r=0 s

where f is some constant > 0.
The corresponding error equations are

(6.3) -11; Gt — ) — yAS"E — k PV divi"t ! + V(p(tys,) — ¢") = NLT + R",

(64) %(en-ﬁ-l - -e~n+1) —_ aV(¢"“ _ ¢n) i
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Let us denote
¢n+}_¢n+a(¢n+l ¢")—k ﬁle ~n+1

n+4}_¢n+a(¢n+1 d)n) (¢n+1 ¢)—k pd1V~"+1.
We have the following

Theorem 5. If f = 2 and o > %, then the following error estimates hold:
T/k—1

6.5) k Y le"t¥* < Mk*,

n=0

N
66) NP +k Y {lle"tHP + &2} S MK, VOSNETh-1,
n=0
T/k—1

(6.7) k 5 {1¢17% — Bltar )I® + 1057 — pltns )1} < ME® .
We begin with a ﬁrst error estimate for the velocity and the pressure approximations.
Lemma 8. V § > 0, we have

N
(68) leN+1|2+ Z {k"évn+§”2+|en+1_én+1‘2+k1—ﬂ‘div-e~n+1|2}
n=0
<MK YOSNSTh-1,

Tk—1

(6.9) k Z {117 = Bltass)1 + 157 — Plta4y)*} < MK

Sketch of the proof. The proof of (6.8) is essentially identical to the proof of
Lemma 2. We only have to take care of the extra term — k #Vdiva"*!. Since
divu(t,+;) =0, we have — k #Vdivi"*! = — k"#Vdivé"*!. Taking the inner
product of (6.3) with 2ké"**, using mtegratlon by parts, the extra term becomes

1-8 1-8

(dlvé"+1 le n+1)_k n+1|2

(6.10) (— k™ PVdiven*+? 2kem*?) = k

|div e

Keeping in mind the above term and repeating the proof of Lemma 2, we can
obtain (6.8). With ¢7** and ¢4** defined as above, (6.9) is a direct consequence of
(6.8) and Lemmas 3 and 4. O

Next, we prove a first improvement to the last lemma.

Lemma 9. V 8 > 0, we have

N B
(611) 'eN+1|2 +k z {"'én+4}"2 + "en+§”2} éMk2+§+Mk3,

n=0

VOSN=T/k-1,

Tk~ B
(6.12) k Z {1¢1% = Bltuss) > + |05 — Pltasy)?} < ME?*Z 4+ ME> .
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Proof. Taking the inner product of (6.3) with 2ké"** and that of (6.4) with
k(e"*! + é"*1), using (3.14), we can obtain

(6.13) le"t 1|2 — |e"|® + kv|le"t¥|?
S Mk(1&"" 37 + | R™21) = k(V(B(ta+y) — ¢77H), 8"
S Mk(le" 112 + [e"|? + |e" !t — 2" 1|2 + | R"||2y)
— k(V(B(tary) — @17H), 8" 1)

We treat the pressure term on the right hand side as follows.
Integrating by parts and using Schwarz inequality, we derive

— K(V(Bltnsy) = B1*H), &) = (Blry) = 9178 G
B
<Kty ) — 8174 4+ k3 div 2

Therefore, taking the sum of the last two inequalities for n from 0 to N, using the
results of Lemma 8, we obtain

| N+l|2+kv Z “én+4}”2<Mk Z {len+1|2+ ”Rn” 1+|e"+1 ~n+1[2}
n=0

g N
k2 Z {k1gi*% — pltys+y) 1> + k' 7P |diven* 12}

B
< Mk Z le"* 12 + Mk2*Z + Mk3 .

n=0

Applying the discrete Gronwall lemma to the above inequality, we obtain (6.11).
The proof of (6.12) is again essentially identical to the proof of Lemmas 3
and 4. O

Proof of Theorem 4. In case = 2, the previous lemma implies (6.6) and (6.7). So it
remains to prove (6.5). To this end, we will proceed as in the proof of Lemma 6.
Taking the sum of (6.3) and (6.4), we obtain

(6.14)

%(e"+1 —e") —vAe"* — kTPVdiva"t! + V(P(te+y) — @17 = NLT + R".

We now take the inner product of (6.14) with 2k4~'e"**. From Lemma 5, we have
1
___<Aén+§’A—len+§>gl_2]en+ﬂ2 C]d1V€"+1|2

We can then obtain the following analog of Lemma 6:

Tik—1 Tlk-1
kv Z |en+«}|2<k Z {“Rnllzl+’dlv~n+1|2+k2”én+f”2}'
n=0 n=
(6.5) is then a direct consequence of and the last inequality and Lemmas 8 and 9.
The proof of Theorem 3 is complete. [



Error estimates of higher order projection and penalty-projection methods 73

Remark 6. We notice that the pressure approximation ¢}** here is no longer
plagued by the inconsistent Neumann boundary condition (3.42), so that the
improvement over the scheme (3.1)—(3.2) is not surprising.

A penalty function can also be added to the schemes (4.1)-(4.2) and (3.50)-(3.51)

to get similar improvements presented in Theorem 5.
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