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ERROR ANALYSIS OF PRESSURE-CORRECTION SCHEMES
FOR THE TIME-DEPENDENT STOKES EQUATIONS

WITH OPEN BOUNDARY CONDITIONS∗
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Abstract. The incompressible Stokes equations with prescribed normal stress (open) boundary
conditions on part of the boundary are considered. It is shown that the standard pressure-correction
method is not suitable for approximating the Stokes equations with open boundary conditions,
whereas the rotational pressure-correction method yields reasonably good error estimates. These
results appear to be the first ever published for splitting schemes with open boundary conditions.
Numerical results in agreement with the error estimates are presented.
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1. Introduction. In this paper we consider the time-dependent Navier–Stokes
equations with normal stress boundary conditions prescribed on parts of the boundary.
These conditions are usually imposed to model outflow boundaries or free surfaces.
For Newtonian flows, the boundary conditions in question take the form[

pn− ν(∇u + (∇u)T )n
]
|Γ = b,

where u is the velocity vector field, p is the pressure, Γ is the boundary of the domain Ω,
n is the unit outward normal, and b is the prescribed data.

There are numerous ways to discretize the time-dependent incompressible Navier–
Stokes equations in time. Undoubtedly, the most popular one consists of using projec-
tion methods. Most of these techniques are based on the original ideas of Chorin [2]
and Temam [22]. They are usually fractional step methods composed of two substeps
such that either the Laplacian of the velocity or the pressure gradient is made ex-
plicit in one substep and (implicitly) corrected in the other substep. In both cases,
one substep always consists of the projection of some vector field onto a divergence-
free space. Following the terminology introduced in [11], a scheme is classified as a
pressure-correction (resp., velocity-correction) method if the pressure gradient (resp.,
Laplacian of the velocity) is treated explicitly in one substep and (implicitly) corrected
in the other substep. In the present paper we restrict ourselves to pressure-correction
methods. Each of the above two classes of methods has a standard form and a ro-
tational form (see [9, 10]), and each of them can be implemented either in algebraic
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form (cf. [4, 5, 15]) or in differential form. However, to the best of our knowledge,
no rigorous error analysis of any of these schemes with open boundary conditions is
available in the literature. Moreover, there is some confusion in the literature over
the performance of these methods with this type of boundary condition. The aim of
this paper is to discuss some of these issues and to derive error estimates.

We show that the standard pressure-correction schemes, implemented either in
algebraic form or in differential form (in fact, they can be shown to be equivalent),
are not suitable for approximating the Navier–Stokes equations supplemented with
open boundary conditions. However, we show that the rotational pressure-correction
schemes yield reasonable error estimates. More precisely, assuming full regularity
of the Stokes problem, the second-order rotational pressure-correction method yields
O(Δt3/2) convergence rate for the velocity in the L2-norm and O(Δt) convergence
rate for both the velocity in the H1-norm and the pressure in the L2-norm. These
estimates deteriorate if the Stokes problem does not possesses full regularity, as is
probably the case in three dimensions.

2. Preliminaries. We shall consider the time-dependent Navier–Stokes equa-
tions on a finite time interval [0, T ] and in an open, connected, bounded domain
Ω ⊂ R

d (d = 2, or 3) with a boundary Γ sufficiently smooth. We assume that
the following nontrivial partition holds: Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, meas(Γ1) �= ∅,
meas(Γ2) �= ∅.

2.1. Notation. We denote by Hm(Ω) and ‖ · ‖m (m = 0,±1, . . .) the standard
Sobolev spaces and norms. In particular, the norm and inner product of L2(Ω) =
H0(Ω) are denoted by ‖·‖0 and (·, ·), respectively. We shall also make use of fractional
Sobolev spaces Hs(Ω) which are defined by interpolation. To account for homogeneous
Dirichlet boundary conditions on Γ1, we define

X = {v ∈ H1(Ω) : v|Γ1
= 0}.(2.1)

Owing to the Poincaré inequality, ‖∇v‖0 is a norm equivalent to ‖v‖1 for all v ∈ X.
Henceforth, we redefine the norm ‖ · ‖1 in X such that ‖v‖1 := ‖∇v‖0.

We introduce two spaces of incompressible vector fields,

H = {v ∈ L2(Ω)d; ∇·v = 0; v · n|Γ1
= 0},(2.2)

V = {v ∈ H1(Ω)d; ∇·v = 0; v|Γ1 = 0},(2.3)

and we define PH to be the L2-orthogonal projection onto H, i.e.,

(u− PHu, v) = 0 ∀u ∈ L2(Ω)d, ∀v ∈ H.(2.4)

We also denote

N = {q ∈ H1(Ω); q|Γ2 = 0}.(2.5)

The following well-known lemma plays a key role in the analysis of projection methods.
Lemma 2.1. The following orthogonal decomposition of L2(Ω)d holds:

L2(Ω)d = H ⊕∇N.(2.6)

Since the nonlinear term in the Navier–Stokes equations has a marginal influence
on the splitting error, we shall hereafter consider only the time-dependent Stokes
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equations written in terms of velocity, u, and pressure, p:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu + Au + ∇p = f in Ω × [0, T ],

∇·u = 0 in Ω × [0, T ],

u|Γ1
= 0, and (pn− ν(Du)n)|Γ2

= 0 in [0, T ],

u|t=0 = u0 in Ω.

(2.7)

Henceforth, the operators A and D may assume one of the two following forms:

Av = −2ν∇·Dv,(2.8)

Dv =

{
1
2∇v, case 1,
1
2 (∇v + (∇v)T ), case 2.

(2.9)

We recall that the symmetric positive definite bilinear form

a(u, v) = ν(Du,Dv)(2.10)

induces a norm on X that is equivalent to the H1-norm. We denote by α the coercivity
constant of a:

a(v, v) ≥ α‖∇v‖2
0 ∀v ∈ X.(2.11)

In case 1, α = ν, whereas in case 2, α = cν, where c is a constant that can be derived
by using a Korn inequality; see, e.g., [1].

To simplify our presentation, we assume that the unique solution (u, p) to the
above system is as smooth as needed.

To perform the temporal discretization of the problem, we define Δt > 0 to be
a time step and we set tk = kΔt for 0 ≤ k ≤ K = [T/Δt]. Let φ0, φ1, . . . , φK be a
sequence of functions in some Hilbert space E. We denote by φΔt this sequence, and
we use the following discrete norms:

‖φΔt‖�2(E) :=

(
Δt

K∑
k=0

‖φk‖2
E

)1/2

, ‖φΔt‖�∞(E) := max
0≤k≤K

(
‖φk‖E

)
.(2.12)

We denote by c a generic constant that is independent of small parameters like
ε, Δt, and h but possibly depends on the data and the solution. We shall use the
expression A � B to say that there exists a generic constant c such that A ≤ cB.

Let μ be a positive real number. We shall repeatedly make use of the following
interpolation result, whose proof is fairly standard and so we omit it due to the space
limitation.

Lemma 2.2. For all 0 ≤ s ≤ 1, there exists an operator Iμ,s : Hs(Ω) −→ H1
0 (Ω)

such that for all r in Hs(Ω) we have

‖r − Iμ,sr‖0 � μ
s
2 ‖r‖Hs(Ω),(2.13)

‖Iμ,sr‖1 � μ−1+ s
2 ‖r‖Hs(Ω).(2.14)

2.1.1. The inverse of the Stokes operator and its regularity index. In
this section we recall properties of the inverse of the Stokes operator. Let X ′ be the
dual space of X. We denote by 〈·, ·〉 the duality pairing between X ′ and X. The
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inverse of the Stokes operator, which we shall denote by S : X ′ −→ X, is defined as
follows. For all v in X ′, S(v) ∈ X is the solution to the dual problem

{
a(w, S(v)) − (r,∇·w) = 〈v, w〉 ∀w ∈ X,

(q,∇·S(v)) = 0 ∀q ∈ L2(Ω).
(2.15)

Obviously, we have

∀v ∈ X ′, ‖S(v)‖1 + ‖r‖0 ≤ c‖v‖X′ .(2.16)

It is well known that when Dirichlet boundary conditions on the velocity are
enforced on the entire boundary and Ω is smooth or convex, we have ‖r‖1 � ‖v‖0

(see, for instance, [23]). In the present case, where boundary conditions are mixed,
it is a nontrivial task to determine the regularity of r. It is generally expected that
the H1-regularity does not hold in the three-dimensional case. However, it is possible
that regularity in some fractional Sobolev space holds. To account for this, we make
the following definition.

Definition 2.1 (regularity index of the Stokes operator). The regularity index of
the Stokes operator is the largest number, s, such that for all v ∈ L2(Ω)d, the solution
r ∈ L2(Ω) to the dual Stokes problem (2.15) satisfies ‖r‖Hs(Ω) � ‖v‖0.

We observe from (2.16) that s ≥ 0, and it is clear that s ≤ 1. Hence, the case
s = 0 is referred to as no regularity while the case s = 1 is referred to as full regularity.
We refer to [14] for techniques to evaluate this index in two dimensions.

The operator S has interesting properties, as listed below.

Lemma 2.3. For all v in X, all 0 < γ < 1, and all 0 < μ < 1, we have

a(v, S(v)) ≥ (1 − γ)‖v‖2
0 − c(γ)

(
μ2α1‖∇·v‖2

0 + μ−2α2‖v − PHv‖2
0

)
,

with α1 = s
2 and α2 = 1 − s

2 and s being the regularity index of the Stokes operator.
In particular, for all v ∈ V , (∇S(v),∇v) = ‖v‖2

0.

Proof. Owing to the definition of S(v) and to the fact Iε,sr is zero on Γ2, we have

a(v, S(v)) = ‖v‖2
0 + (r,∇·v)

= ‖v‖2
0 + (r − Iμ,sr,∇·v) + (∇Iμ,sr, v)

= ‖v‖2
0 + (r − Iμ,sr,∇·v) + (∇Iμ,sr, v − PHv)

≥ ‖v‖2
0 −

(
μα1‖∇·v‖0 + μ−α2‖v − PHv‖0

)
‖r‖Hs(Ω).

Then using the fact that s is the regularity index of the Stokes operator (see Defini-
tion 2.1), we derive the desired bound.

Lemma 2.4. The bilinear form X ′×X ′ � (v, w) �−→ 〈S(v), w〉 := a(S(v), S(w)) ∈
R induces a seminorm on X ′ that we denote by | · |�, and

∀v ∈ X ′, |v|� = a(S(v), S(v))1/2 � ‖v‖X′ .

Proof. It is clear that the bilinear form is symmetric, 〈S(v), w〉 = a(S(v), S(w)) =
〈S(w), v〉, and positive, 〈S(v), v〉 = a(S(v), S(v)); hence, 〈S(v), w〉 induces a semi-
norm on X ′. Furthermore, |v|2� = 〈S(v), v〉 = a(S(v), S(v)) � ‖v‖2

X′ . The proof is
complete.
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3. Standard pressure-correction methods. For purely Dirichlet boundary
conditions, the second-order pressure-correction scheme is known to be one-order more
accurate than the original projection scheme of Chorin–Temam (cf. [25, 3, 21, 7]).
Using the second-order backward difference formula (BDF2) to discretize the time
derivative, the second-order pressure-correction scheme takes the following form:

Set u0 = u0, p0 = p|t=0, which can be computed from the data, and compute
(ũ1, u1, p1) by using the scheme below with BDF2 replaced by the backward Euler
formula. Then, for k ≥ 1, compute (ũk+1, uk+1, pk+1) such that⎧⎨

⎩
3ũk+1 − 4uk + uk−1

2Δt
+ Aũk+1 + ∇pk = f(tk+1),

ũk+1|Γ1
= 0 and (pkn− ν(Dũk+1)n)|Γ2

= 0

(3.1)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3uk+1 − 3ũk+1

2Δt
+ ∇(pk+1 − pk) = 0,

∇·uk+1 = 0,

uk+1 · n|Γ1
= 0 and (pk+1 − pk)|Γ2 = 0.

(3.2)

The first substep accounts for viscous effects, whereas the second one accounts for
incompressibility. The second substep is usually referred to as the projection step, for
it is a realization of the identity uk+1 = PH ũk+1. We emphasize that it is essential,
for stability considerations, that (pk+1 − pk)|Γ2

= 0 is enforced. Otherwise, (3.2) can
not be interpreted as a projection step. Note that the boundary conditions in (3.2)
lead to the series of equalities

∂

∂n
pk+1|Γ1

=
∂

∂n
pk|Γ1

= · · · =
∂

∂n
p1|Γ1

,

pk+1|Γ2 = pk|Γ2 = · · · = p1|Γ2 ,
(3.3)

which are certainly inaccurate since they are almost never satisfied by the exact
solution. In the purely Dirichlet case, i.e., Γ2 = ∅, it is possible to deduce a reasonably
good approximation result for the pressure in the L2-norm. But when Γ2 �= ∅ the
pressure approximation is severely degraded.

Not being aware of any published convergence result for the scheme (3.1)–(3.2),
we shall prove the following result.

Theorem 3.1. If (u, p), the solution to (2.7), is smooth enough in space and
time, the solution to (3.1)–(3.2) satisfies the following error estimates:

‖pΔt − pΔt‖�∞(L2(Ω)) + ‖uΔt − ũΔt‖�∞(H1(Ω)d) � Δt
1
2 ,

‖uΔt − uΔt‖�2(L2(Ω)d) + ‖uΔt − ũΔt‖�2(L2(Ω)d) � Δt
s+1
2 ,

where s is the regularity index of the Stokes operator.
Proof. As will become clear in the course of the proof, using BDF2 instead of

the backward Euler formula does not improve the accuracy in the presence of open
boundary conditions. So to simplify the presentation, we consider the backward Euler
formula for the time derivative:⎧⎨

⎩
ũk+1 − uk

Δt
+ Aũk+1 + ∇pk = f(tk+1),

ũk+1|Γ1
= 0 and (pkn− ν(Dũk+1)n)|Γ2

= 0

(3.4)
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and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uk+1 − ũk+1

Δt
+ ∇(pk+1 − pk) = 0,

∇·uk+1 = 0,

uk+1 · n|Γ1
= 0 and (pk+1 − pk)|Γ2

= 0.

(3.5)

Technically, the proof is very similar to those in Shen [21] and Guermond [6]; hence
we show only those steps where the consistency error is degraded.

Let us introduce the interpolation operator IΔt,1 : H1(Ω) �−→ H1
0 (Ω) defined in

Lemma 2.2. This operator is such that for all r in H1(Ω),

‖IΔt,1r − r‖0 � Δt
1
2 ‖r‖1,(3.6)

‖∇IΔt,1r‖0 � Δt−
1
2 ‖r‖1.(3.7)

Without introducing any essential extra error, we can take p0 = IΔt,1p|t=0, which
implies pk|Γ2 = 0 for all k.

Now we introduce the following notation:{
ek = u(tk) − uk, ẽk = u(tk) − ũk,

ψk = IΔt,1p(tk+1) − pk, qk = IΔt,1p(tk) − pk.

The weak form of the error equation that corresponds to the viscous step (3.4) is
given by

1

Δt
(ẽk+1 − ek, v) + a(ẽk+1, v) − (ψk,∇·v) = (R(tk+1), v)

+ (p(tk+1) − IΔt,1p(tk+1),∇·v) ∀v ∈ X,

where R(tk+1) = 1
Δt (u(tk+1) − u(tk)) − ut(t

k+1) = O(Δt). Note that the surface
integrals resulting from the integration by parts cancel on both Γ1 and Γ2 due to the
boundary conditions in (3.4).

Taking v = 2Δtẽk+1 in the above equation and using (3.6), we can derive

2Δt(p(tk+1) − IΔt,1p(tk+1),∇·ẽk+1) � Δt2 + αΔt‖ẽk+1‖2
1,

‖ẽk+1‖2
0 + ‖ẽk+1 − ek‖2

0 + αΔt‖ẽk+1‖2
1 − 2Δt(ψk,∇·ẽk+1) ≤ ‖ek‖2

0 + cΔt2.(3.8)

Note that the consistency error is degraded at this step; more precisely, a Δt factor
is already missing in the above estimate.

The error equation corresponding to the projection step (3.5) can be written as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

Δt
ek+1 + ∇qk+1 =

1

Δt
ẽk+1 + ∇ψk,

∇·ek+1 = 0,

ek+1 · n|Γ1
= 0 and qk+1|Γ2

= 0.

Taking the square of the first relation above and multiplying the result by Δt2, we
infer

‖ek+1‖2
0 + Δt2‖∇qk+1‖2

0 = ‖ẽk+1‖2
0 + Δt2‖∇ψk‖2

0 − 2Δt(ψk,∇·ẽk+1).(3.9)
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Note that integration by parts can be performed on both sides owing to the fact that
qk+1|Γ2 = 0 = ψk|Γ2 . Now we have

Δt2‖∇ψk‖2
0 = Δt2‖∇qk + ∇(IΔt(p(tk+1) − p(tk)))‖2

0,

≤ Δt2(‖∇qk‖2
0 + cΔt1−

1
2 ‖∇qk‖0 + c′Δt2(1−

1
2 ))

≤ Δt2(1 + Δt)‖∇qk‖2
0 + cΔt2,

where the consistency error is also degraded by a factor of O(Δt). Combining this
result and the previous one, we have

‖ek+1‖2
0 + Δt2‖∇qk+1‖2

0 ≤ ‖ẽk+1‖2
0 + Δt2(1 + Δt)‖∇qk‖2

0

− 2Δt(ψk+1,∇·ẽk+1) + cΔt2.
(3.10)

The first error estimate of the theorem is obtained by combining (3.8) and (3.10),
using the discrete Gronwall lemma, and repeating the whole argument for time in-
crements. The second estimate can be derived by a duality argument similar to that
used in the proof of Lemma 4.4.

Remark 3.1. Note that the error on the pressure in the L2-norm is O(Δt
1
2 ),

whereas it is O(Δt) when Dirichlet boundary conditions are enforced on the whole
boundary. It is clear that the artificial Dirichlet boundary condition (3.3) is re-
sponsible for this poor convergence property. Since using an inexact factorization
(cf. [4, 5, 15, 16, 17, 13]) of the discrete Stokes operator does not enforce the Dirichlet
boundary condition on Γ2 explicitly, some authors have argued that the inexact factor-
ization scheme does not suffer from the error due to the artificial Dirichlet boundary
condition. However, it can be shown (see [12] for details) that the inexact factorization
scheme actually enforces the artificial Dirichlet boundary condition weakly and hence
suffers from the same accuracy loss as its PDE counterpart. In other words, mere al-
gebraic manipulations cannot overcome essential difficulties encountered in functional
analysis.

Remark 3.2. Note that the need to integrate by parts the term 2Δt(∇ψk+1, ẽk+1)
in (3.9) is critical, and it is made possible by enforcing the homogeneous Dirichlet
boundary condition on the pressure at Γ2 in the projection step (3.2).

We finish this section by recalling that to simulate outflow boundary conditions,
an alternative set of conditions is p|Γ2

= 0, u × n|Γ2
= 0. This set of conditions is

not equivalent to the zero normal stress conditions studied above. Nevertheless, an
interesting property of these boundary conditions is that they are compatible with
the pressure-correction algorithm (3.1)–(3.2); i.e., they yield near optimal convergence
rates. We refer to [8] for other technical details on this matter.

4. Rotational pressure-correction methods. In this section, we show that
the rotational pressure-correction scheme introduced in [24] improves, by a factor of

Δt1/2, the error estimates of the standard pressure-correction scheme. It is proved in
[11, 10] that when Dirichlet boundary conditions are enforced on the entire boundary,
the same improvement holds. The main result is stated in Theorem 4.1.

4.1. Rotational form. When applied to problems with open boundary condi-
tions on Γ2, the rotational pressure-correction scheme takes the following form:

Set u0 = u0, p0 = p|t=0, which can be computed from the data, and compute
(ũ1, u1, p1) by using the scheme shown below with BDF2 replaced by the backward
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Euler formula. Then, for k ≥ 1, compute (ũk+1, uk+1, pk+1) such that⎧⎨
⎩

3ũk+1 − 4uk + uk−1

2Δt
+ Aũk+1 + ∇pk = f(tk+1),

ũk+1|Γ1
= 0, (pkn− ν(Dũk+1)n)|Γ2

= 0,

(4.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3uk+1 − 3ũk+1

2Δt
+ ∇φk+1 = 0,

∇·uk+1 = 0,

uk+1 · n|Γ1 = 0, φk+1|Γ2 = 0.

(4.2)

φk+1 = pk+1 − pk + χ∇·ũk+1,(4.3)

where χ is a tunable positive coefficient.
Remark 4.1. As originally introduced in [24], the coefficient χ was taken to be

equal to α, defined in (2.11), which is simply ν in the Newtonian case. The analysis
performed in [11, 10] shows that this choice is sufficient to guarantee stability and
convergence when Dirichlet boundary conditions are enforced. However, when natural
boundary conditions are enforced on parts of the boundary, the analysis (see below)
shows that χ should be chosen such that

0 < χ < 2α inf
v∈X

‖∇v‖2

‖∇·v‖2
.(4.4)

Owing to the inequality ‖∇·v‖2 ≤ d‖∇v‖2, where d is the space dimension, it is
sufficient to choose

0 < χ <
2

d
α.(4.5)

4.2. A corresponding singularly perturbed system. To better understand
the behavior of the scheme (4.1)–(4.3), we examine first a singularly perturbed system
corresponding to the limiting case as Δt → 0 (with ε ∼ Δt). This system of PDEs
is obtained by eliminating uk from (4.1)–(4.2) and dropping some higher-order terms
in ε: ⎧⎪⎪⎨

⎪⎪⎩
∂tu

ε + Auε + ∇pε = f, uε|Γ1 = 0, (pεn− ν(Duε)n)|Γ2 = 0,

∇·uε − ε∇2φε = 0,
∂φε

∂n
|Γ1 = 0, φε|Γ2 = 0,

ε∂tp
ε = φε − χ∇·uε,

(4.6)

with uε|t=0 = u(0) and pε(0) = p(0).

4.2.1. An estimate on ∇·uε. The following lemma is the key to obtaining
improved error estimates.

Lemma 4.1. Provided u and p are smooth enough in time and space, we have

‖∇·uε‖L∞(L2(Ω)d) +
√
ε‖∇φε‖L∞(L2(Ω)) � ε

5
4 .

Proof. We set e = uε − u and q = pε − p. Subtracting (4.6) from (2.7), we find

et + Ae + ∇q = 0; e|Γ1 = 0, (qn− ν(De)n)|Γ2 = 0,(4.7)

∇·e− ε∇2φε = 0,
∂φε

∂n
|Γ1

= 0, φε|Γ2
= 0,(4.8)

εqt = φε − χ∇·e− εpt,(4.9)

with e(0) = 0 and q(0) = 0.
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Taking the inner product of the time derivative of (4.7) with et, we find

1

2
∂t‖et‖2

0 + α‖∇et‖2
0 − (qt,∇·et) ≤ 0.(4.10)

The inner product of (4.9) with ∇·et yields

(qt,∇·et) =
1

ε
(φε,∇·et) − (pt,∇·et) −

χ

2ε
∂t‖∇·e‖2,(4.11)

and the inner product of the time derivative of (4.8) with φε yields

1

ε
(φε,∇·et) = −(∇φε

t ,∇φε).(4.12)

The above two relations lead to

(qt,∇·et) = −1

2
∂t‖∇φε‖2

0 − (pt,∇·et) −
χ

2ε
∂t‖∇·e‖2.(4.13)

Substituting this expression into (4.10) we obtain

1

2
∂t‖et‖2

0 + α‖∇et‖2
0 +

1

2
∂t‖∇φε‖2

0 +
χ

2ε
∂t‖∇·e‖2

0 ≤ −(pt,∇·et).(4.14)

At this point, one would like to replace ∇·et by ε∇2φε
t in (pt,∇·et) and integrate

by parts. The integration by parts is not possible since neither pt nor ∂nφ
ε
t is zero at

the boundary Γ2. To account for this fact, we introduce the interpolation operator
Jε : H1(Ω) �−→ H1

0 (Ω) ⊂ N such that Jε = I√ε,1, where Iμ,s has been defined in

Lemma 2.2. Recall that for all r in H1(Ω), Lemma 2.2 (with μ =
√
ε, s = 1) yields

‖Jεr − r‖0 � ε
1
4 ‖r‖1, ‖∇Jεr‖0 � ε−

1
4 ‖r‖1.(4.15)

We rewrite (4.14) as

1

2
∂t

(
‖et‖2

0 + ‖∇φε‖2 +
χ

ε
‖∇·e‖2

0

)
+ α‖∇et‖2

0 = −(pt − Jεpt,∇·et) + ε(∇Jεpt,∇φε
t ).

Note that we used the fact that Jεpt is zero at Γ2 to integrate by parts. This is the
key argument in this proof. Since e(0) = 0 and q(0) = 0, we infer et(0) = 0. Since
∇ · uε(0) = ∇ · u(0) = 0, we derive from (4.8) that φε(0) = 0. By integrating in time
between 0 and t, we obtain

1

2

(
‖et‖2

0 + ‖∇φε‖2
0 +

χ

ε
‖∇·e‖2

0

)
+ α

∫ t

0

‖∇et‖2
0dτ

≤ −(pt − Jεpt,∇·e) +

∫ t

0

(pττ − Jεpττ ,∇·e)dτ

+ ε(∇Jεpt,∇φε) −
∫ t

0

ε(∇Jεpττ ,∇φε)dτ

≤ 1

4

(χ
ε
‖∇·e‖2

0 + ‖∇φε‖2
0

)
+

∫ t

0

(χ
ε
‖∇·e‖2

0 + ‖∇φε‖2
0

)
dτ

+ c ε‖pt − Jεpt‖2
L∞(0,t;L2(Ω)) + c′ ε2‖Jεpt‖2

L∞(0,t;H1(Ω))

+ c ε‖ptt − Jεptt‖2
L2(0,t;L2(Ω)) + c′ ε2‖Jεptt‖2

L2(0,t;H1(Ω)).
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Using the estimates (4.15), we infer

1

4

(
‖et‖2

0 + ‖∇φε‖2
0 +

χ

ε
‖∇·e‖2

0

)
+ α

∫ t

0

‖∇et‖2
0dτ ≤

∫ t

0

(χ
ε
‖∇·e‖2

0 + ‖∇φε‖2
0

)
dτ + c ε

3
2 .

An application of the Gronwall lemma leads to

‖et‖2
0 + ‖∇φε‖2

0 +
χ

ε
‖∇·e‖2

0 +

∫ t

0

‖∇eτ‖2
0dτ � ε

3
2 .(4.16)

The proof is complete.

4.2.2. L2-estimate on the velocity. An estimation of the error on the velocity
in the L2-norm is given by the following lemma.

Lemma 4.2. Provided u and p are smooth enough in time and space, then

‖u − uε‖L2(L2(Ω)d) � ε
5+s
4 ,(4.17)

where s is the regularity index of the Stokes operator.
Proof. We multiply (4.7) by S(e). Owing to Lemma 2.4 we infer

1

2
∂t|e|2� + a(e, S(e)) = 0.

Using Lemma 2.3 with μ =
√
ε, we obtain

1

2
∂t|e|2� +

1

2
‖e‖2

0 � εα1‖∇·e‖2
0 + ε−α2‖e− PHe‖2

0.

From the definition of φε, it is clear that ε∇φε = e − PHe; we then derive from the
estimates in Lemma 4.1 that

1

2
∂t|e|2� +

1

2
‖e‖2

0 � εα1‖∇·e‖2
0 + ε1−α2ε‖∇φε‖2

0 � ε
5
2 (εα1 + ε1−α2).

Since α1 = 1 − α2, we find

1

2
∂t|e|2� +

1

2
‖e‖2

0 � ε
5
2+α1 = ε

5+s
2 .

The proof is completed using an integration in time.

4.3. Error estimates for the time discrete case. The main result in this
paper is the following.

Theorem 4.1. Let 0 < χ < 2α
d . Assuming that the solution to (2.7) is smooth

enough in time and space, the solution (uk, ũk, pk) to (4.1)–(4.3) satisfies the estimates

‖uΔt − uΔt‖�2(L2(Ω)d) + ‖uΔt − ũΔt‖�2(L2(Ω)d) � Δt
5+s
4 ,

‖uΔt − ũΔt‖�2(H1(Ω)d) + ‖pΔt − pΔt‖�2(L2(Ω)) � Δt
3+s
4 ,

where s is the regularity index of the Stokes operator.
Remark 4.2. With full Stokes regularity, i.e., s = 1, the L2-norm of the error on

the velocity is O(Δt
3
2 ), and the H1-norm of the error on the velocity and the L2-norm

of the error on the pressure are O(Δt). In view of Lemma 4.1 and of the first estimate

in Lemma 4.3, we believe that the H1-estimates can be improved up to O(Δt
5
4 ) by a
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sophisticated argument using weighted seminorms in time as in [18, 20]. However,
the details of this proof are beyond the scope of this paper. Numerical results reported
in section 5 seem to confirm this conjecture, at least in two dimensions.

The proof of Theorem 4.1 is carried out in a way similar to that of Theorem 4.1
in [10], but since there are several important differences in the proofs of the underlying
lemmas, we give all the details. In particular the error analysis reveals why a homo-
geneous Dirichlet boundary condition must be enforced on φk+1 on Γ2; it explains
also the origin of the factor χ in (4.3).

Let us first introduce some notation. For any sequence ϕ0, ϕ1, . . . , we set

δtϕ
k = ϕk − ϕk−1, δttϕ

k = δt(δtϕ
k), δtttϕ

k = δt(δttϕ
k),

and {
ek = u(tk) − uk, ẽk = u(tk) − ũk,

ψk = p(tk+1) − pk, qk = p(tk) − pk.
(4.18)

It is straightforward to show that (ũ1, u1, p1) obtained by using the scheme (4.1)–(4.3),
with BDF2 replaced by backward Euler, satisfies the following estimates:

‖e1‖0 + ‖ẽ1‖0 + Δt
1
2 (‖∇e1‖0 + ‖∇ẽ1‖0) � Δt2,

‖q1‖0 � Δt.
(4.19)

Note that for any bilinear form (·, ·) and any sequences a0, a1, . . . , and b0, b1, . . . ,
the following holds:

δt(a
k+1, bk+1) = (δta

k+1, bk+1) + (ak, δtb
k+1).(4.20)

The error estimates of Theorem 4.1 are proved through a succession of lemmas.
The following result is the discrete counterpart of Lemma 4.1.

Lemma 4.3. Under the hypotheses of Theorem 4.1, we have

‖∇·ũΔt‖�∞(L2(Ω)) +
√

Δt‖∇φΔt‖�∞(L2(Ω)) � Δt
5
4 ,

‖δtẽΔt‖�2(H1(Ω)d) � Δt
7
4 ,

‖δtẽΔt − δteΔt‖�2(L2(Ω)d) � Δt
9
4 .

Proof. Upon defining

Rk = ∂tu(tk) − 3u(tk) − 4u(tk−1) + u(tk−2)

2Δt
,(4.21)

then, for k ≥ 2, the equations that control the time increments of the errors are⎧⎨
⎩

3δtẽ
k+1 − 4δte

k + δte
k−1

2Δt
+ Aδtẽ

k+1 + ∇δtψ
k = δtR

k+1,

δtẽ
k+1|Γ1

= 0, (δtψ
kn− ν(Dδtẽ

k+1)n)|Γ2
= 0

(4.22)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3

2Δt
δte

k+1 −∇φk+1 =
3

2Δt
δtẽ

k+1 −∇φk,

∇·δtek+1 = 0,

δte
k+1 · n|Γ1 = 0, φk+1|Γ2 = φk|Γ2 = 0.

(4.23)
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We take the inner product of (4.22) with 4Δt δtẽ
k+1 and obtain

2(δtẽ
k+1, 3δtẽ

k+1 − 4δte
k + δte

k−1) + 4αΔt‖∇δtẽ
k+1‖2

0

− 4Δt(∇·δtẽk+1, δtψ
k) = 4Δt(δtẽ

k+1, δtR
k+1)

≤ γαΔt‖∇δtẽ
k+1‖2

0 + cΔt7,

(4.24)

where γ will be chosen later, and we have used the coercivity of the bilinear form a
together with the fact that ‖δtRk+1‖0 � Δt3. Note also that we have used the
inequality 2ab ≤ γa2 + b2/γ, which holds for all γ > 0. We shall repeatedly use this
standard trick hereafter without mentioning it anymore.

Let us denote I = 2(δtẽ
k+1, 3δtẽ

k+1 − 4δte
k + δte

k−1); then we have

I = 6(δtẽ
k+1, δtẽ

k+1 − δte
k+1) + 2(δtẽ

k+1 − δte
k+1, 3δte

k+1 − 4δte
k + δte

k−1)

+ 2(δte
k+1, 3δte

k+1 − 4δte
k + δte

k−1).

Let I1, I2, and I3 be the three terms in the right-hand side. Using the algebraic
identities

2(ak+1, ak+1 − ak) = |ak+1|2 + |ak+1 − ak|2 − |ak|2,(4.25)

2(ak+1, 3ak+1 − 4ak + ak−1) = |ak+1|2 + |2ak+1 − ak|2 + |δttak+1|2(4.26)

− |ak|2 − |2ak − ak−1|2,

we derive

I1 = 3‖δtẽk+1‖2
0 + 3‖δtek+1 − δtẽ

k+1‖2
0 − 3‖δtek+1‖2

0,

I3 = ‖δtek+1‖2
0 + ‖2δtek+1 − δte

k‖2
0 + ‖δtttek+1‖2

0 − ‖δtek‖2
0 − ‖2δtek − δte

k−1‖2
0.

Owing to (4.23) and using the fact that ek ∈ H, we derive the following equality:

3

2Δt
I2 = −2(∇δtφ

k+1, 3δte
k+1 − 4δte

k + δte
k−1) = 0.

Collecting all the above results, we obtain

3‖δtẽk+1‖2
0 − 3‖δtek+1‖2

0 + ‖δtek+1‖2
0 + ‖2δtek+1 − δte

k‖2
0

+ 3‖δtek+1 − δtẽ
k+1‖2

0 + ‖δtttek+1‖2
0

+ (4 − γ)αΔt‖∇δtẽ
k+1‖2

0 − 4Δt(∇·δtẽk+1, δtψ
k)

≤ cΔt7 + ‖δtek‖2
0 + ‖2δtek − δte

k−1‖2
0.

(4.27)

Taking the square of (4.23) and integrating over the domain, we obtain

3‖δtek+1‖2
0 +

4

3
Δt2‖∇φk+1‖2

0 = 3‖δtẽk+1‖2
0 +

4

3
Δt2‖∇φk‖2

0

+ 4Δt(∇·δtẽk+1, φk).
(4.28)

Note that integration by parts on (δte
k+1,∇φk+1) and (δtẽ

k+1,∇φk) is legitimate
because both φk+1|Γ2 and φk|Γ2 are zero. Since φk = pk − pk−1 − χ∇· ẽk, we can
bound the inner product in the right-hand side of (4.28) as follows:

4Δt(∇·δtẽk+1, φk) = 4Δt(∇·δtẽk+1, pk − pk−1 − χ∇·ẽk)
= 2χΔt(−‖∇·ẽk+1‖2

0 + ‖∇·ẽk‖2
0 + ‖∇·δtẽk+1‖2

0)

− 4Δt(∇·δtẽk+1, δtψ
k) + 4Δt(∇·δtẽk+1, δtp(tk+1)).

(4.29)
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To control the troublesome term Δt‖∇·δtẽk+1‖2
0 we use

χ‖∇·v‖2
0 ≤ 2γ′α‖∇v‖2

0 ∀v ∈ X.(4.30)

Due to the condition χ, (4.4), we know that the constant γ′ is such that 0 < γ′ < 1.
Summing (4.27), (4.28), and (4.29), and using (4.30), we finally obtain

‖δtek+1‖2
0 + ‖2δtek+1 − δte

k‖2
0 +

4

3
Δt2‖∇φk+1‖2

0 + 2χΔt‖∇·ẽk+1‖2
0

+ (4 − 4γ′ − γ)αΔt‖∇δtẽ
k+1‖2

0 + 3‖δt(ek+1 − ẽk+1)‖2
0 + ‖δtttek+1‖2

0(4.31)

≤ ‖δtek‖2
0 + ‖2δtek − δte

k−1‖2
0 +

4

3
Δt2‖∇φk‖2

0 + 2χΔt‖∇·ẽk‖2
0

+ 4Δt(∇·δtẽk+1, δtp(tk+1)) + cΔt7.

At this point, we are formally at the same stage as (4.14). To integrate by parts in
time the term (∇·δtẽk+1, δtp(tk+1)), we use (4.20) as follows:

(∇·δtẽk+1, δtp(tk+1)) = δt(∇·ẽk+1, δtp(tk+1)) − (∇·ẽk, δttp(tk+1)).

Next, we use the interpolation operator defined in (4.15). Let us denote Rk+1 =
p(tk+1) − JΔt(p(tk+1)) (where JΔt = I√Δt,1). Then we have

1

Δt
‖δttRk+1‖2

0 + ‖∇δttJΔt(p(tk+1))‖2
0 � Δt

7
2 .

Since JΔt(p(tk+1)) is zero on Γ2, we have

(∇·δtẽk+1, δtp(tk+1)) = δt(∇·ẽk+1, δtRk+1) + δt(∇·ẽk+1, δtJΔt(p(tk+1)))

− (∇·ẽk, δttRk+1) − (∇·ẽk, δttJΔt(p(tk+1)))

= δt(∇·ẽk+1, δtRk+1) +
2Δt

3
δt(∇φk+1,∇δtJΔt(p(tk+1)))

− (∇·ẽk, δttRk+1) − 2Δt

3
(∇φk,∇δttJΔt(p(tk+1)))

≤ δt(∇·ẽk+1, δtRk+1) +
2Δt

3
δt(∇φk+1,∇δtJΔt(p(tk+1)))

+
χΔt

2
‖∇·ẽk‖2

0 +
Δt2

3
‖∇φk‖2

0 + cΔt
7
2 .

By inserting this bound into (4.31), we obtain

‖δtek+1‖2
0 + ‖2δtek+1 − δte

k‖2
0 +

4

3
Δt2‖∇φk+1‖2

0 + 2χΔt‖∇·ẽk+1‖2
0

+ (4 − 4γ′ − γ)αΔt‖∇δtẽ
k+1‖2

0 + 3‖δt(ek+1 − ẽk+1)‖2
0 + ‖δtttek+1‖2

0

≤ ‖δtek‖2
0 + ‖2δtek − δte

k−1‖2
0

+
4

3
Δt2(1 + Δt)‖∇φk‖2

0 + 2χΔt(1 + Δt)‖∇·ẽk‖2
0

+ 4Δtδt(∇·ẽk+1, δtRk+1) +
8Δt2

3
δt(∇φk+1,∇δtJΔt(p(tk+1))) + cΔt

9
2 .
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Summing up the relation above for l = 2, . . . , k and taking into account (4.19), we
obtain

‖δtek+1‖2
0 + ‖2δtek+1 − δte

k‖2
0 +

4

3
Δt2‖∇φk+1‖2

0 + 2χΔt‖∇·ẽk+1‖2
0

+ (4 − 4γ′ − γ)αΔt

k∑
l=2

‖∇δtẽ
l+1‖2

0 + 3

k∑
l=2

‖δtel+1 − δtẽ
l+1‖2

0

≤ c
(
‖δte2‖2

0 + ‖2δte2 − δte
1‖2

0 + Δt2‖∇φ2‖2
0 + Δt‖∇·ẽ2‖2

0 + Δt
7
2

)

+ Δt
k∑

l=2

(
4

3
Δt2‖∇φl‖2

0 + 2χΔt‖∇·ẽl‖2
0

)

− 4Δt(∇·ẽk+1, δtRk+1) − 8Δt2

3
(∇φk+1,∇δtJΔt(p(tk+1)))

+ 4Δt(∇·ẽ2, δtR2) +
8Δt2

3
(∇φ2,∇δtJΔt(p(t2)))

≤ cΔt
7
2 +

2

3
Δt2‖∇φk+1‖2

0 + χΔt‖∇·ẽk+1‖2
0

+ Δt

k∑
l=2

(
4

3
Δt2‖∇φl‖2

0 + 2χΔt‖∇·ẽl‖2
0

)
.

Since 0 < γ′ < 1, we can choose γ such that 4 − 4γ′ − γ ≥ 0. Then an application of
the discrete Gronwall lemma yields the desired result.

Remark 4.3. Note that to balance the term −(∇·δtẽk+1, ψk) in (4.27) it is nec-
essary to integrate by parts the term (δtẽ

k+1,∇φk) in (4.28). This is possible only
because the Dirichlet boundary condition φk|Γ2 = 0 is enforced. This fact is the main
reason why we enforce a homogeneous Dirichlet boundary condition on φk+1 in (4.2).
This argument shows the importance of the error analysis (or stability analysis) per-
formed in the proof of Lemma 4.3. The necessity of the Dirichlet boundary condition
also becomes clear when one understands that (4.2) is a realization of uk+1 = PH ũk+1,
since the orthogonal complement of H is ∇N according to Lemma 2.1.

Remark 4.4. The introduction of the parameter χ together with the bound (4.4)
is justified by step (4.30). Whether the bound (4.4) is sharp is not yet clear.

Lemma 4.4. Under the hypotheses of Theorem 4.1, we have

‖uΔt − ũΔt‖�2(L2(Ω)d) + ‖uΔt − uΔt‖�2(L2(Ω)d) � Δt
5+s
4 .

Proof. By using the relation el = ẽl + 2Δt
3 ∇φl, for all l ≥ 2, one obtains⎧⎨

⎩
3ẽk+1 − 4ẽk + ẽk−1

2Δt
+ Aẽk+1 + ∇γk = Rk+1,

ẽk+1|Γ1 = 0, (γkn− ν(Dẽk+1)n)|Γ2
= 0,

(4.32)

where ∇γk stands for the collection of all the gradient terms.
As in the time continuous case, we make use of the inverse Stokes operator. By

taking the inner product of (4.32) with 4ΔtS(ẽk+1) and using the identity (4.26), we
obtain

|ẽk+1|2� + |2ẽk+1 − ẽk|2� + |δttẽk+1|2� + 4Δt a(ẽk+1, S(ẽk+1))

= 4Δt (Rk+1, S(ẽk+1)) + |ẽk|2� + |2ẽk − ẽk−1|2�.
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Using Lemma 2.3 with μ =
√

Δt and Lemma 4.3, we infer

4a(ẽk+1, S(ẽk+1)) ≥ 2‖ẽk+1‖2
0 − c(Δtα1 ‖∇·ẽk+1‖2

0 + Δt−α2 ‖ẽk+1 − ek+1‖2)

≥ 2‖ẽk+1‖2
0 − c(Δtα1 ‖∇·ẽk+1‖2

0 + Δt1−α2 Δt‖∇φk+1‖2

≥ 2‖ẽk+1‖2
0 − cΔtα1+

5
2 ≥ 2‖ẽk+1‖2

0 − cΔt
5+s
2 .

We also derive from the Cauchy–Schwarz inequality and (2.16) that

4Δt(Rk+1, S(ẽk+1)) ≤ cΔt‖Rk+1‖2
X′ + Δt‖ẽk+1‖2

0 ≤ c′Δt5 + Δt‖ẽk+1‖2
0.

Combining these two estimates, we obtain

|ẽk+1|2� + |2ẽk+1 − ẽk|2� + Δt‖ẽk+1‖2
0 ≤ |ẽk|2� + |2ẽk − ẽk−1|2� + cΔt1+

5+s
2 .

The desired result is now an easy consequence of the discrete Gronwall lemma. The
estimate on ‖uΔt−uΔt‖0 is obtained by using the triangular inequality ‖uΔt−uΔt‖0 ≤
‖uΔt − ũΔt‖0 + 2Δt

3 ‖∇φΔt‖0 (derived from (4.2)) and Lemma 4.3.
The key for obtaining improved estimates on ‖ẽΔt‖�2(H1(Ω)d) and ‖qΔt‖�2(L2(Ω))

is to derive an improved estimate on 1
2Δt (3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1). To this end, for
any sequence of functions φ0, φ1, . . . , we define

Dtφ
k+1 :=

1

2
(3φk+1 − 4φk + φk−1).

Lemma 4.5. Under the hypotheses of Theorem 4.1, we have

Δt−1‖(Dtẽ)Δt‖�2(L2(Ω)d) � Δt
3+s
4 .

Proof. We use the same argument as in the proof of the L2-estimate, but we use
it on the time increment δtẽ

k+1. For k ≥ 2 we have

3δtẽ
k+1 − 4δtẽ

k + δtẽ
k−1

2Δt
+ Aδtẽ

k+1 + ∇δtγ
k+1 = δtR

k+1.

Taking the inner product of the above relation with 4ΔtS(δtẽ
k+1), using Lemma 2.3

with μ =
√

Δt, and repeating the same arguments as in the previous lemma, we
obtain

|δtẽk+1|2� + |2δtẽk+1 − δtẽ
k|2� + |δtttẽk+1|2� + Δt‖δtẽk+1‖2

0

≤ cΔt‖δtRk+1‖2
0 + cΔt(Δtα1‖∇·δtẽk+1‖2

0 + Δt−α2‖δtẽk+1 − δte
k+1‖2

0)

+ |δtẽk|2� + |2δtẽk − δtẽ
k−1|2�.

Applying the discrete Gronwall lemma, and using the initial estimates and Lemma 4.3,
we obtain

‖δtẽΔt‖2
l2(L2(Ω)d) � Δt

7+s
2 .

We conclude by using the fact that 2Dtẽ
k+1 = 3δtẽ

k+1 − δtẽ
k.

We are now in position to prove the remaining claims in Theorem 4.1.
Lemma 4.6. Under the hypotheses of Theorem 4.1, we have

‖uΔt − ũΔt‖�2(H1(Ω)d) + ‖pΔt − pΔt‖�2(L2(Ω)) � Δt
3+s
4 .
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Proof. By adding the viscous step and the projection step, it is clear that we have

{
Aẽk+1 + ∇(qk+1 + χ∇·ẽk+1) = hk+1,

∇·ẽk+1 = gk+1, ẽk+1|Γ1 = 0, ((qk+1 + χ∇·ẽk+1)n− (Dẽk+1)n)|Γ2
= 0,

(4.33)

where

hk+1 = Rk+1 − Dte
k+1

Δt
, gk+1 = −2Δt

3
∇2φk+1.(4.34)

Owing to Lemma 4.3, we have

‖gk+1‖0 = ‖∇·ẽk+1‖0 � Δt
5
4 ∀k.(4.35)

Since ek = PH ẽk, owing to Lemma 4.5, we infer

Δt−1‖δteΔt‖l2(L2(Ω)d) ≤ Δt−1‖δtẽΔt‖l2(L2(Ω)d) � Δt
3+s
4 .

Hence, we have

‖hΔt‖�2(X′) � ‖RΔt‖�2(L2(Ω)d) + Δt−1‖DtẽΔt‖�2(L2(Ω)d) � Δt
3+s
4 .(4.36)

Now, we apply the following standard stability result for nonhomogeneous Stokes
systems to (4.33) (cf. [23]):

‖ẽk+1‖1 + ‖(qk+1 + χ∇·ẽk+1)‖0 � ‖hk+1‖X′ + ‖gk+1‖0.(4.37)

Owing to (4.35) and (4.36), we derive

‖ẽΔt‖�2(H1(Ω)d) + ‖(q + χ∇·ẽ)‖�2(L2(Ω)) � Δt
3+s
4 .

Then, from

‖qk+1‖0 ≤ ‖qk+1 + χ∇·ẽk+1‖0 + χ‖∇·ẽk+1‖0,

we derive ‖qΔt‖l2(L2(Ω)) � Δt
3+s
4 .

Thus, all the results in Theorem 4.1 have been proved.

5. Numerical results and discussions.

5.1. Standard pressure-correction scheme. We take the exact solution (u1,
u2, p) of the linearized Navier–Stokes equations to be

u1(x, y, t) = sinx sin(y + t), u2(x, y, t) = cosx cos(y + t), p(x, y, t) = cosx sin(y + t).

We set Ω = ]0, 1[
2
, Γ2 = {(x, y) ∈ Γ, x = 0}. This solution satisfies the following open

boundary conditions:

−∂xu2|Γ2 = 0, p − ∂xu1|Γ2 = 0.

To confirm the results in Theorem 3.1, we have carried out convergence tests
in time using P2/P1 finite elements as well as the P

2
N × PN−2 Legendre–Galerkin

method [19] (where Pk denotes the space of polynomials of degree less than or equal
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Finite elements with h = 1/20, 1/40, and 1/80. Legendre–Galerkin with N = 40.

Fig. 5.1. Errors vs. Δt, standard pressure-correction scheme: Note that the curves correspond-
ing to the error on the velocity in H1-norm and the pressure in L2-norm almost coincide.

to k). We use the standard BDF2 pressure-correction scheme, which enforces a homo-
geneous Dirichlet boundary condition on the pressure increment at the open boundary
in the projection step.

For the finite elements, the errors at t = 1 for three meshes (h = 1/20, 1/40,
1/80) and 5.10−4 ≤ Δt ≤ 10−1 are reported in the left panel of Figure 5.1. Note that
the error for small time steps is dominated by the spatial discretization error. The
reference slope represents the asymptotic convergence rate as h → 0.

For the Legendre–Galerkin method, the results with N = 40 are reported in the
right panel of Figure 5.1. For the range of time steps explored, the spatial discretiza-
tion error is negligible compared to the time discretization error.

These tests clearly indicate that the L2-error of the velocity (resp., the pressure)

is of order Δt (resp., Δt
1
2 ), which are consistent with Theorem 3.1.

5.2. Rotational pressure-correction scheme. We again use the analytical
solution described above to test the time accuracy of the rotational pressure-correction
scheme (4.1)–(4.3).

We first report the results with P2/P1 finite elements. We use h = 1/80 to
guarantee that the error in space is significantly smaller than the splitting error. The
results are reported in the left panel of Figure 5.2. The convergence rate of the error
on the velocity in the L2-norm is close to O(Δt3/2), and that of the H1-norm behaves

like O(Δt5/4), which is higher than the O(Δt) rate predicted by Theorem 4.1 (see
Remark 4.2 and Lemma 4.3). The convergence rate of the error on the pressure in the

L∞-norm is O(Δt), and that of the L2-norm is between O(Δt) and O(Δt
3
2 ). These

rates are mostly consistent with the error estimates in Theorem 4.1. The accuracy
saturation observed for small time steps comes from the spatial discretization error.

The results using the Legendre–Galerkin method are reported in the right panel
of Figure 5.2. We note that the convergence rate for the error on the velocity in

the L2-norm is of order O(Δt
3
2 ), as predicted by Theorem 4.1. The convergence

rates on all the other quantities are also close to O(Δt
3
2 ), which is higher than what

Theorem 4.1 predicts (see Remark 4.2).
To complete this series of tests, we have performed convergence tests in three
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(using h = 1/80). Right, spectral method; error vs. Δt with N = 40 fixed.
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Fig. 5.3. Pressure-correction scheme with P2/P1 finite elements in three dimensions. Errors
vs. Δt. Velocity: (�) L2-norm. Pressure: (�) L2-norm.

dimensions using P2/P1 finite elements. The boundary conditions and the source
term in the Stokes equations are set so that the solution is given by

u1(x, y, z, t) = sinx sin(y + z + t), u2(x, y, z, t) = cosx cos(y + z + t),

u3(x, y, z, t) = cos(x) sin(y + t), p(x, y, t) = cosx sin(y + z + t).

Both the standard and the rotational forms of the BDF2 pressure-correction
scheme were tested. We show in Figure 5.3 the maximum in time of the L2-norm
of the errors on the velocity and the pressure for both schemes. On the left panel we
compare the standard and rotational forms of the scheme using h = 1/40. Unfortu-
nately, using a higher uniform resolution in space was not possible due to the high
cost of the computations. The grid with a stepsize h = 1/40 already contains close to
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500,000 P2 nodes. On the right panel we show the errors for the rotational form of the
scheme using three different meshes: h = 1/10, 1/20, 1/40. The convergence rates of
the standard version of the scheme are clearly lower than those of the rotational form.
The slopes for both the velocity and the pressure errors obtained with the rotational
form of the scheme are slightly lower than the best possible estimate following from

the claim of Theorem 4.1. The rates O(Δt
4
3 ) and O(Δt

5
6 ) seem to correspond to a

regularity index s < 1.

6. Concluding remarks. In this paper, we have analyzed pressure-correction
schemes for approximating the incompressible Navier–Stokes equations with pre-
scribed normal stress boundary conditions enforced on parts of the boundary. Our
conclusions are twofold.

First, we have shown that the convergence rates of standard pressure-correction
methods are too poor to be recommendable for approximating the Navier–Stokes
equations in these circumstances. The main reason for the poor accuracy is that
an artificial homogeneous Dirichlet boundary condition on the pressure has to be
imposed to ensure stability.

Second, we have shown that the rotational pressure-correction method leads to
reasonably good error estimates. More precisely, assuming full regularity of the Stokes
problem, we have shown that the second-order rotational pressure-correction method
yields O(Δt3/2) accuracy for the velocity in the L2-norm and O(Δt) accuracy for
the velocity in the H1-norm and the pressure in the L2-norm. To the best of our
knowledge, the results presented in this paper are the first published convergence
estimates for a splitting method solving the time-dependent Stokes equations with
open boundary conditions.

Finally, it is clear that even though the second-order rotational pressure-correction
method yields the best error estimates to date, these are still suboptimal and more
research is needed to find a splitting scheme with better properties.
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