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ON THE ERROR ESTIMATES
FOR THE ROTATIONAL PRESSURE-CORRECTION

PROJECTION METHODS

J. L. GUERMOND AND JIE SHEN

Abstract. In this paper we study the rotational form of the pressure-correc-
tion method that was proposed by Timmermans, Minev, and Van De Vosse.
We show that the rotational form of the algorithm provides better accuracy in
terms of the H1-norm of the velocity and of the L2-norm of the pressure than
the standard form.

1. Introduction

There are numerous way to discretize the unsteady incompressible Navier-Stokes
equations in time. Undoubtedly, the most popular one consists of using projection
methods. This class of techniques has been introduced by Chorin and Temam
[2, 3, 17]. They are time marching algorithms based on a fractional step technique
that may be viewed as a predictor-corrector strategy aiming at uncoupling viscous
diffusion and incompressibility effects. The method proposed originally, although
simple, is not satisfactory since its convergence rate is irreducibly limited to O(δt).
This limitation comes from the fact that the method is basically an artificial com-
pressibility technique as shown in [11] and [13]. To cure these problems, numerous
modifications have been proposed, among which are pressure-correction methods
(see [6, 20]) and splitting techniques based on extrapolated pressure boundary con-
ditions (see [10, 9]).

Pressure-correction methods are widely used and have been extensively ana-
lyzed. These schemes are composed of two substeps by time step: the pressure is
made explicit in the first substep and is corrected in the second one by projecting
the provisional velocity onto the space of incompressible vector fields. Rigorous
second-order error estimates for the velocity have been proved by E and Liu [4] and
Shen [15] in the semi-discrete case and by Guermond [7] and E and Liu [5] in the
fully discrete case. We refer also to [16] and [1] for different proofs based on normal
mode analysis in the half plane and in a periodic channel, respectively.

It is well known that standard pressure-correction schemes still suffer from the
nonphysical pressure boundary condition which induces a numerical boundary layer
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and, consequently, degrades the accuracy of the pressure approximation. In 1996,
Timmermans, Minev and Van De Vosse [19] proposed a modified version of the
pressure-correction scheme, which we shall hereafter refer to as the rotational form
of the pressure-correction scheme for reasons we shall specify later, and they showed
numerically that it leads to improved pressure approximation. Recently, Brown,
Cortez and Minion [1] used normal mode analysis to study the accuracy of this
scheme in a periodic channel and showed that the pressure approximation in this
particular case is second-order accurate. However, whether the rotational form can
yield second-order pressure approximation in more general domains is still an open
question. In fact, to the best of the authors’ knowledge, there is no rigorous analysis
available yet in the literature for this type of algorithms in general domains.

The aim of this paper is to provide a rigorous stability and error analysis for
the rotational form of pressure-correction schemes. Our results indicate that while
the rotational form of pressure-correction schemes does not improve the accuracy
on the approximate velocity in the L2-norm, it does improve the accuracy on this
quantity in the H1-norm and that on the approximate pressure in the L2-norm from
first-order to 3

2 -order. Based on our numerical results, this 3
2 -order convergence rate

on the pressure appears to be the best possible for the rotational form of pressure-
correction schemes in general domains.

This paper is organized as follows. In §2, we introduce notation and recall
important results that are used repeatedly in the core of the paper. In §3, we
present the rotational form of the pressure-correction algorithm using a second-
order backward difference formula (BDF2) to march in time. In this section, we
also analyze a singular perturbation of the Navier-Stokes equations that mimics the
characteristics of the new scheme. The analysis of the discrete scheme is performed
in §4. We illustrate the performance of the proposed scheme in §5 by showing
numerical convergence tests using P2/P1 finite elements and PN/PN−2 spectral
approximations.

2. Notation and preliminaries

We now introduce some notation. We shall consider the time-dependent Navier-
Stokes equations on a finite time interval [0, T ] and in an open, connected, and
bounded domain Ω ⊂ Rd (d = 2 or 3) with a boundary Γ sufficiently smooth. Let
δt > 0 be a time step and set tk = kδt for 0 ≤ k ≤ K = [T/δt].

Let φ0, φ1, . . . , φK be some sequence of functions in some Hilbert space E. We
denote by φδt this sequence, and we use the following discrete norms:

(2.1) ‖φδt‖l2(E) :=

(
δt

K∑
k=0

‖φk‖2E

)1/2

, ‖φδt‖l∞(E) := max
0≤k≤K

(
‖φk‖E

)
.

We use the standard Sobolev spaces Hm(Ω) (m = 0,±1, · · · ) whose norms are
denoted by ‖ ·‖m. In particular, the norm and inner product of L2(Ω) = H0(Ω) are
denoted by ‖ · ‖ and (·, ·), respectively. We also set L2

0(Ω) = {q ∈ L2(Ω) :
∫

Ω qdx =
0}. To account for homogeneous Dirichlet boundary conditions, we define H1

0 (Ω) =
{v ∈ H1(Ω) : v|Γ = 0}. Thanks to the Poincaré inequality, for v ∈ H1

0 (Ω)d, ‖∇v‖
is a norm equivalent to ‖v‖1. We also have

(2.2) ‖∇v‖2 = ‖∇·v‖2 + ‖∇×v‖2, ∀v ∈ H1
0 (Ω)d.
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We introduce two spaces of incompressible vector fields

H = {v ∈ L2(Ω)d; ∇·v = 0; v · n|Γ = 0},(2.3)

V = {v ∈ H1(Ω)d; ∇·v = 0; v|Γ = 0},(2.4)

and we define PH as the L2-orthogonal projector in H , i.e.,

(2.5) (u− PHu, v) = 0 ∀u ∈ L2(Ω)d, v ∈ H.
We denote by c a generic constant that is independent of ε and δt but possibly

depends on the data and the solution. We shall use the expression A . B to say
that there exists a generic constant c such that A ≤ cB.

Next, we define the inverse Stokes operator S : H−1(Ω)d −→ V . For all v in
H−1(Ω)d, (S(v), r) ∈ V × L2

0(Ω) is the solution to the following problem{
(∇S(v),∇w) − (r,∇·w) = 〈v, w〉, ∀w ∈ H1

0 (Ω)d,
(q,∇·S(v)) = 0, ∀q ∈ L2

0(Ω),

where 〈·, ·〉 denotes the duality paring between H−1(Ω)d and H1
0 (Ω)d.

We assume that Γ is sufficiently smooth so that the following regularity properties
hold (cf. [18]):

(2.6) ∀v ∈ L2(Ω)d, ‖S(v)‖2 + ‖∇r‖ ≤ c‖v‖.
The following properties of S are proved in [8].

Lemma 2.1. For all v in H1
0 (Ω)d and all 0 < γ < 1 we have

(∇S(v),∇v) ≥ (1− γ)‖v‖2 − c(γ)‖v − v?‖2, ∀v? ∈ H.
In particular,

(∇S(v),∇v) = ‖v‖2, ∀v ∈ V.

Lemma 2.2. The bilinear form H−1(Ω)d × H−1(Ω)d 3 (v, w) 7−→ 〈S(v), w〉 ∈ R
induces a semi-norm on H−1(Ω)d that we denote by | · |?, and

|v|? = ‖S(v)‖1 ≤ c‖v‖−1, ∀v ∈ H−1(Ω)d.

3. Rotational form of the pressure-correction methods

We consider the movement of an incompressible fluid inside Ω whose velocity u
and pressure p are governed by the Navier-Stokes equations:

(3.1)

∂tu− ν∇
2u+ u·∇u+∇p = f in Ω× [0, T ],

∇·u = 0 in Ω× [0, T ],
u|Γ = 0, u|t=0 = u0 in Ω.

The boundary condition on the velocity is set to zero for the sake of simplicity, and
u0 ∈ H is an initial velocity field.

Since for projection methods the treatment of the nonlinear term does not con-
tribute in any essential way to the error behaviors, we shall describe the rotational
pressure-correction scheme and carry out all the error analyses for the linearized
equations only, thus avoiding technicalities associated with the nonlinearities which
obscure the essential difficulties. In fact, the error estimates established here for
the linearized equations are valid for the fully nonlinear Navier-Stokes equations,
provided the solution is sufficiently smooth, and these estimates can be proved by
combining the techniques used here and those in [7, 15, 17]. In practice, the nonlin-
ear terms can be treated either implicitly, semi-implicitly or explicitly depending on
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various factors such as stability, simplicity, efficiency, and the practitioners’ pref-
erences. Thus, to fix the ideas, we will only consider the approximation of the
following linearized Navier-Stokes equations (we set ν = 1 for simplicity):

(3.2)

∂tu−∇
2u+∇p = f in Ω× [0, T ],

∇·u = 0 in Ω× [0, T ],
u|Γ = 0, u|t=0 = u0 in Ω.

To simplify our presentation, we assume that the unique solution (u, p) to the above
system is sufficiently smooth in time and in space.

3.1. Description of the scheme. Before introducing the rotational form of the
pressure-correction algorithm, let us recall its standard form using BDF2 to march
in time. Using the linearized version of the Navier-Stokes equations, the first sub-
step accounting for viscous diffusion is

(3.3)


3ũk+1 − 4uk + uk−1

2δt
−∇2ũk+1 +∇pk = f(tk+1),

ũk+1|Γ = 0,

and the second substep accounting for incompressibility is

(3.4)


3uk+1 − 3ũk+1

2δt
+∇(pk+1 − pk) = 0,

∇·uk+1 = 0,
uk+1 · n|Γ = 0.

This step is usually referred to as the projection step, for it is a realization of the
identity uk+1 = PH ũ

k+1.
This scheme has been thoroughly studied (cf. [12, 4, 15, 7]). Though it is

second-order accurate on the velocity in the L2-norm, it is plagued by a numerical
boundary layer that prevents it from being fully second-order on the H1-norm of
the velocity and on the L2-norm of the pressure. Actually, from (3.4) we observe
that ∇(pk+1 − pk) · n|Γ = 0 which implies that

(3.5) ∇pk+1 · n|Γ = ∇pk · n|Γ = · · ·∇p0 · n|Γ.

It is this nonrealistic Neumann boundary condition on the pressure that introduces
the numerical boundary layer referred to above and consequently limits the accuracy
of the scheme.

In 1996, a modified scheme with a divergence correction has been proposed in
[19]. More precisely, the second step (3.4) is replaced by

(3.6)


3uk+1 − 3ũk+1

2δt
+∇(pk+1 − pk +∇·ũk+1) = 0,

∇·uk+1 = 0,
uk+1 · n|Γ = 0.

The authors have shown numerically that the modified scheme (3.3)–(3.6) provides
significantly better approximations for the pressure. To the best of our knowledge,
no rigorous analysis for the modified scheme (3.3)–(3.6) has yet been proposed in
the literature.
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To understand why the modified scheme performs better, we take the sum of
(3.3) and (3.6) (note from (3.6) that ∇×∇×ũk+1 = ∇×∇×uk+1), and we get

(3.7)


3uk+1 − 4uk + uk−1

2δt
+∇×∇×uk+1 +∇pk+1 = f(tk+1),

∇·uk+1 = 0,

with uk+1 · n|Γ = 0. We observe from (3.7) that

∂pk+1

∂n
|Γ = (f(tk+1)−∇×∇×uk+1) · n|Γ,

which, unlike (3.5), is a consistent pressure boundary condition. The splitting error
now manifests itself only in the form of an inexact tangential boundary condition
for the velocity.

In view of (3.7), where the operator∇×∇×plays a key role, we shall hereafter refer
to the algorithm (3.3)–(3.6) as the pressure-correction scheme in rotational form,
and we shall refer to the original algorithm (3.3)–(3.4) as the pressure-correction
scheme in standard form.

The aim of this paper is to prove stability and derive error estimates for the
scheme (3.3)–(3.6).

3.2. Initialization of the scheme. Note that we need (u0, ũ0, p0) and (u1, ũ1, p1)
to start the scheme (3.3)–(3.6). We set

(3.8) u0 = u0, ũ
0 = u0, p

0 = p(0),

where p(0) is determined from u0 and equations (3.2). We solve (u1, ũ1, p1) from
the following first-order pressure-correction projection scheme:

(3.9)


ũ1 − u0

δt
−∇2ũ1 +∇p0 = f(t1),

ũ1|Γ = 0

and

(3.10)


u1 − ũ1

δt
+∇(p1 − p0) = 0,

∇·u1 = 0,
u1 · n|Γ = 0.

Let us denote R1 = ut(δt) − u(δt)−u(0)
δt . The error equation corresponding to (3.9)

is
(u(δt)− ũ1)− δt∆(u(δt)− ũ1) = −δt∇(p(δt)− p(0))− δtR1 = O(δt2),

(u(δt)− ũ1)|∂Ω = 0.
(3.11)

One derives immediately from the standard PDE theory that

(3.12) ‖u(δt)− ũ1‖+ δt
1
2 ‖∇(u(δt)− ũ1)‖+ δt‖∆(u(δt)− ũ1)‖ . δt2.

The error equation corresponding to (3.10) is

(3.13) ∇(p(δt)− p1) = − (u(δt)− u1)− (u(δt)− ũ1)
δt

+∇(p(δt)− p(0)).

We derive easily from (3.13) and (3.12) that

(3.14) ‖∇(p(δt)− p1)‖ . δt.
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Repeating the same above procedure for (3.3)–(3.6) with k = 1, we obtain

(3.15) ‖u(2δt)− ũ2‖+ δt
1
2 ‖∇(u(2δt)− ũ2)‖ + δt‖∆(u(2δt)− ũ2)‖ . δt2.

(3.16) ‖∇(p(2δt)− p2)‖ . δt.

3.3. Time continuous version: a singularly perturbed PDE. Since the essen-
tial error behaviors of (3.3)–(3.6) are determined by its limiting system as δt −→ 0,
it is instructive to study the following singularly perturbed system, which is ob-
tained by eliminating uk from (3.3)–(3.6) and by dropping some lower-order terms
as ε ∼ δt→ 0:

∂tu
ε −∇2uε +∇pε = f, uε|Γ = 0,(3.17)

∇·uε − ε∇2φε = 0, ∂φε

∂n |Γ = 0,(3.18)
ε∂tp

ε = φε −∇·uε,(3.19)

with uε|t=0 = u(0) and pε(0) = p(0).
The following lemma exhibits the essential feature of this singularly perturbed

system and is the key to prove higher order estimates.

Lemma 3.1. Provided that u and p are smooth enough in time and space, we have

‖∇·uε‖L∞(L2(Ω)) . ε
3
2 .

Proof. We shall first derive some a priori estimates.
We denote e = uε − u and q = pε − p. Subtracting (3.17) from (3.2), we find

et −∇2e+∇q = 0, e|Γ = 0,(3.20)

∇·e− ε∇2φε = 0, ∂φε

∂n |Γ = 0,(3.21)
εqt = φε −∇·uε − εpt,(3.22)

with e(0) = 0 and q(0) = 0.
Taking the inner product of the time derivative of (3.20) with et, we find

(3.23)
1
2
∂t‖et‖2 + ‖∇et‖2 − (qt,∇·et) = 0.

Using (3.21) and (3.22),

−(qt,∇·et) = −ε(qt,∆φεt ) = −(φε − ε∆φε − εpt,∆φεt )

=
1
2
∂t‖∇φε‖2 +

ε

2
∂t‖∆φε‖2 − ε(∇pt,∇φεt )

=
1
2
∂t‖∇φε‖2 +

ε

2
∂t‖∆φε‖2 − ε∂t(∇pt,∇φε) + ε(∇ptt,∇φε).

(3.24)

The above two relations lead to
1
2
∂t‖et‖2 + ‖∇et‖2 +

1
2
∂t‖∇φε‖2 +

ε

2
∂t‖∆φε‖2

= ε∂t(∇pt,∇φε)− ε(∇ptt,∇φε),
(3.25)

since we have e(0) = 0 and q(0) = 0, which imply that φε(0) = 0 and et(0) = 0.
Therefore, an application of the Gronwall lemma to the above relation leads to

(3.26) ‖et(t)‖2 + ‖∇φε(t)‖2 + ε‖∆φε(t)‖2 +
∫ t

0

‖∇et(s)‖2ds . ε2.
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We immediately obtain

�(3.27) ‖∇·uε(t)‖2 = ε2‖∆φε(t)‖2 . ε3.

Lemma 3.2. Provided that u and p are smooth enough in time and space, we have

‖u− uε‖L2(L2(Ω)d) . ε2.

Proof. We take the inner product of (3.20) with S(e), where S is the inverse Stokes
operator defined in §2. Since S(e) ∈ V , we find

(3.28)
1
2
∂t|e|2? + (∇e,∇S(e)) = 0.

Thanks to Lemma 2.1, we have

(3.29)
1
2
∂t|e|2? +

1
2
‖e‖2 . ‖e− PHe‖2.

By the definition of PH , we can write e−PHe = ∇r with ∂r
∂n |∂Ω = 0. Consequently

∇·e = ∆r and from (3.21), we infer r = εφε and

(3.30) ‖e− PHe‖2 = ‖∇r‖2 = ε2‖∇φε‖2.

Applying the Gronwall lemma to (3.29) and taking into account (3.26), we derive

|e(t)|2? +
∫ t

0

‖e(s)‖2ds . ε2

∫ t

0

‖∇φε(s)‖2ds . ε4. �

Remark 3.1. These two lemmas are essential to understanding the arguments that
will be used in the discrete case. They will have two discrete counterparts in the
form of Lemmas 4.1 and 4.2.

4. Error estimates for the time discrete case

Let us first introduce some notation. For any sequence φ0, φ1, . . ., we set

δtφ
k = φk − φk−1, δttφ

k = δt(δtφk), δtttφ
k = δt(δttφk)

and

(4.1)
{
ek = u(tk)− uk, ẽk = u(tk)− ũk,
ψk = p(tk+1)− pk, qk = p(tk)− pk.

The main result in this paper is

Theorem 4.1. Provided the solution to (3.2) is smooth enough in time and space,
the solution (uk, ũk, pk) to (3.3)–(3.6) satisfies the estimates

‖eδt‖l2(L2(Ω)d) + ‖ẽδt‖l2(L2(Ω)d) . δt2,
‖eδt‖l2(H1(Ω)d) + ‖ẽδt‖l2(H1(Ω)d) + ‖qδt‖l2(L2(Ω)) . δt

3
2 .

The remainder of this section is devoted to the proof of the above theorem. The
proof of Theorem 4.1 will be carried out through a sequence of estimates presented
below.



1726 J. L. GUERMOND AND JIE SHEN

4.1. Stability and a priori estimate on ‖∇· ũk‖. We first establish a result
similar to that of Lemma 3.1.

Lemma 4.1. Under the hypotheses of Theorem 4.1, we have

‖∇·ũδt‖l∞(L2(Ω)) . δt3/2,
‖eδt − ẽδt‖`2(L2(Ω)d) . δt2,

‖δteδt − δtẽδt‖l2(L2(Ω)d) . δt5/2.

Proof. The proof of this lemma follows the same principle as that we used in §3
for the time continuous version of the algorithm. The critical step here consists in
working with the time increments δtek+1 and δtẽ

k+1, which corresponds to taking
the inner product of the time derivative of (3.20) with ∂te.

Let us first write the equations that control the time increments of the errors.
We define

(4.2) Rk =
3u(tk)− 4u(tk−1) + u(tk−2)

2δt
− ∂tu(tk).

Then, for k ≥ 1, we have

(4.3)


3δtẽk+1 − 4δtek + δte

k−1

2δt
−∆δtẽk+1 +∇δtψk = δtR

k+1,

δtẽ
k+1|Γ = 0

and

(4.4)


3

2δt
δte

k+1 +∇(δtqk+1 +∇·ẽk+1) = 3
2δt

δtẽ
k+1 +∇(δtψk +∇·ẽk),

δte
k+1 · n|Γ = 0.

We take the inner product of (4.3) with 4δt δtẽk+1 to get

2(δtẽk+1, 3δtẽk+1 − 4δtek + δte
k−1) + 4δt‖∇δtẽk+1‖2 + 4δt(δtẽk+1,∇δtψk)(4.5)

= 4δt(δtek+1, δtR
k+1) ≤ 2δt‖δtek+1‖2 + 2δt‖δtRk+1‖2.

The treatment of the first term is quite technical but similar to that in [8]. For the
readers’ convenience, we show the details below. We denote

I =2(δtẽk+1, 3δtẽk+1 − 4δtek + δte
k−1)

=6(δtẽk+1, δtẽ
k+1 − δtek+1) + 2(δtẽk+1 − δtek+1, 3δtek+1 − 4δtek + δte

k−1)

+2(δtek+1, 3δtek+1 − 4δtek + δte
k−1),

and we denote by I1, I2 and I3 the three terms in the right-hand side. Using the
algebraic identities

2(ak+1, ak+1 − ak) = |ak+1|2 + |ak+1 − ak|2 − |ak|2,(4.6)

2(ak+1, 3ak+1 − 4ak + ak−1) = |ak+1|2 + |2ak+1 − ak|2 + |δttak+1|2(4.7)

−|ak|2 − |2ak − ak−1|2,
we derive

I1 = 3‖δtẽk+1‖2 + 3‖δtek+1 − δtẽk+1‖2 − 3‖δtek+1‖2,
I3 = ‖δtek+1‖2 + ‖2δtek+1 − δtek‖2 + ‖δtttek+1‖2 − ‖δtek‖2 − ‖2δtek − δtek−1‖2.
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Due to (4.4) and using the fact that ek ∈ H , we derive the equality

3

2δt
I2 = 2(∇δt(qk+1 − ψk) +∇∇·δtẽk+1, 3δtek+1 − 4δtek + δte

k−1) = 0.

Combining all the above results, we obtain

3‖δtẽk+1‖2− 3‖δtek+1‖2 + 3‖δtek+1 − δtẽk+1‖2 + ‖δtek+1‖2
(4.8)

+ ‖2δtek+1 − δtek‖2 − ‖δtek‖2 − ‖2δtek − δtek−1‖2 + ‖δtttek+1‖2

+ 4δt‖∇δtẽk+1‖2 + 4δt(δtẽk+1,∇δtψk) = 4δt(δtek+1, δtR
k+1).

By taking the square of (4.4), multiplying the result by 4
3δt

2 and integrating over
the domain, we have

3‖δtek+1‖2+
4δt2

3
‖∇(δtqk+1 +∇·ẽk+1)‖2 = 3‖δtẽk+1‖2(4.9)

+4δt(δtẽk+1,∇(δtψk +∇·ẽk)) +
4δt2

3
‖∇(δtψk +∇·ẽk)‖2.

The last two terms in the above relation can be bounded as follows.
The term 4δt(δtẽk+1,∇δtψk) cancels out with the same term in (4.8). Integrating

by parts and using (4.6), we infer

4δt(δtẽk+1,∇∇·ẽk) = −4δt(∇·(ẽk+1 − ẽk),∇·ẽk)

= 2δt(‖∇·ẽk‖2 − ‖∇·ẽk+1‖2 + ‖∇·δtẽk+1‖2).
(4.10)

The term 2δt‖∇·δtẽk+1‖2 can be controlled by 4δt‖∇δtẽk+1‖2 in (4.8), thanks to
the identity (2.2), we have

(4.11) ‖∇δtẽk+1‖2 = ‖∇× δtẽk+1‖2 + ‖∇·δtẽk+1‖2.

For ‖∇(δtψk +∇·ẽk)‖2, we have

‖∇(δtψk +∇·ẽk)‖2 =‖∇(δtqk +∇·ẽk) +∇δttp(tk+1)‖2

≤
(
cδt2 + ‖∇(δtqk +∇·ẽk)‖

)2
≤c δt4 + 2cδt2‖∇(δtqk +∇·ẽk)‖+ ‖∇(δtqk +∇·ẽk)‖2

≤c δt4 + cδt(δt2 + ‖∇(δtqk +∇·ẽk)‖2) + ‖∇(δtqk +∇·ẽk)‖2

≤c δt3 + (1 + cδt)‖∇(δtqk +∇·ẽk)‖2.

(4.12)

Combining the relations (4.8)–(4.12), we derive

3‖δt(ek+1 − ẽk+1)‖2 + ‖δtek+1‖2 + ‖2δtek+1 − δtek‖2 + ‖δtttek+1‖2

+ 2δt‖∇δtẽk+1‖2 + 2δt‖∇·ẽk+1‖2 +
4
3
δt2‖∇(δtqk+1 +∇·ẽk+1)‖2

≤ cδt5 + 2δt‖δtek+1‖2 + (1 + cδt)
4
3
δt2‖∇(δtqk +∇·ẽk)‖2

+ ‖δtek‖2 + ‖2δtek − δtek−1‖2 + 2δt‖∇·ẽk‖2 + 2δt‖δtRk+1‖2.
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Finally, applying the discrete Gronwall lemma to the above relation and taking into
account the initial estimates (3.12)–(3.16), we obtain

δt‖∇·ẽk+1‖2 + ‖δtek+1‖2 + ‖2δtek+1 − δtek‖2 +
k∑
l=2

‖δtel+1 − δtẽl+1‖2

+ δt
k∑
l=2

‖∇δtẽl+1‖2 + δt2‖∇(δtqk+1 +∇·ẽk+1)‖2

≤ c
(
δt4 + δt‖∇·ẽ2‖2 + ‖δte2‖2 + ‖2δte2 − δte1‖2 + δt2‖∇(δtq2 +∇·ẽ2)‖2

)
+ c δt

k∑
l=2

‖δtRl+1‖2

≤ c δt4 + δt

k∑
l=2

‖δtRl+1‖2 . δt4.

(4.13)

The estimates on ∇·ũδt and δteδt − δtẽδt are now direct consequences of the above
inequality. To derive the estimate on eδt − ẽδt, we use (3.6) to infer

ek+1 − ẽk+1 = −2δt
3
∇(δtqk+1 +∇·ẽk+1 − δtp(tk+1)).

Then, it is clear that

‖eδt − ẽδt‖`2(L2(Ω)d) . δt‖∇(δtqδt +∇·ẽδt)‖`2(L2(Ω)d) + δt2 . δt2. �

Remark 4.1. From (4.13), we observe the remarkable fact that the bound
‖∇·ũδt‖l2(L2(Ω)) ≤ δt3/2 still holds even if we replace the second-order BDF2 time
stepping in (3.3) and (3.6) by the first-order backward Euler time stepping (i.e., in
the case Rk+1 ∼ O(δt)).

4.2. Error estimates. We start with a result similar to that stated in Lemma 3.2.

Lemma 4.2. Under the hypotheses of Theorem 4.1, we have

‖ẽδt‖l2(L2(Ω)d) . δt2.

Proof. From (3.6), we can write

(4.14) uk+1 = ũk+1 − 2δt
3
∇(pk+1 − pk +∇·ũk+1).

Substituting the above relation in (3.3) and considering the error equation, we
obtain

(4.15)
3ẽk+1 − 4ẽk + ẽk−1

2δt
−∇2ẽk+1 +∇γk+1 = Rk+1,

where ∇γk+1 represents all the gradient terms in the error equation and Rk+1 is
defined in (4.2).

As in the time continuous case, we make use of the inverse Stokes operator. By
taking the inner product of (4.15) with 4δtS(ẽk+1) and using the identity (4.7), we
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obtain

|ẽk+1|2? + |2ẽk+1 − ẽk|2?+|δttẽk+1|2? + 4δt(∇S(ẽk+1),∇ẽk+1)

= 4δt(Rk+1, S(ẽk+1)) + |ẽk|2? + |2ẽk − ẽk−1|2?.

Thanks to Lemma 2.1 and the fact that ek+1 is in H , we deduce

4δt(∇S(ẽk+1),∇ẽk+1) ≥ 2δt‖ẽk+1‖2 − cδt‖ẽk+1 − ek+1‖2.
Due to (2.6), we have

4δt(Rk+1, S(ẽk+1)) ≤ cδt‖Rk+1‖2−1 + δt‖ẽk+1‖2.
As a result, we obtain

|ẽk+1|2? + |2ẽk+1 − ẽk|2? + |δttẽk+1|2? + δt‖ẽk+1‖2

≤ cδt‖Rk+1‖2−1 + cδt‖ẽk+1 − ek+1‖2 + |ẽk|2? + |2ẽk − ẽk−1|2?.
Applying the discrete Gronwall lemma and using the initial estimates (3.12), (3.15)
and Lemma 2.2, we infer

‖ẽδt‖2l2(L2(Ω)d) ≤ c‖ẽδt − eδt‖2l2(L2(Ω)d) + δt4.

The desired result is now an easy consequence of Lemma 4.1. �

The key for obtaining improved estimates on ‖ẽδt‖l2(H1(Ω)d) and ‖qδt‖l2(L2(Ω)) is
to derive an improved estimate on 1

2δt (3δtẽ
k+1 − 4δtẽk + δtẽ

k−1).
For any sequence of functions φ0, φ1, . . ., we set Dtφk+1 = 1

2 (3φk+1−4φk+φk−1).

Lemma 4.3. Under the hypotheses of Theorem 4.1, we have

‖(Dtẽ)δt‖l2(L2(Ω)d) . δt5/2.

Proof. We use the same argument as that in the proof of the L2-estimate, but we
use it on the time increment δtẽk+1. For k ≥ 2 we have

3δtẽk+1 − 4δtẽk + δtẽ
k−1

2δt
−∇2δtẽ

k+1 +∇δtγk+1 = δtR
k+1.

By taking the inner product of the above relation with 4δtS(δtẽk+1) and repeating
the same arguments as in the previous lemma, we obtain

|δtẽk+1|2?+|2δtẽk+1 − δtẽk|2? + |δtttẽk+1|2? + δt‖δtẽk+1‖2

≤ cδt‖δtRk+1‖2 + cδt‖δtẽk+1 − δtek+1‖2 + |δtẽk|2? + |2δtẽk − δtẽk−1|2?.
Applying the discrete Gronwall lemma and using the initial estimates (3.12), (3.15)
and Lemma 4.1, we obtain

‖δtẽδt‖2l2(L2(Ω)d) ≤ c‖δtẽδt − δteδt‖2l2(L2(Ω)d) + |δtẽ2|2? + |2δtẽ2 − δtẽ1|2?
+ cδt‖δtRk+1‖2 . δt5.

The result follows from the above estimate and the fact that 2Dtẽk+1 = 3δtẽk+1 −
δtẽ

k. �

We are now in position to prove the remaining claims in Theorem 4.1.

Lemma 4.4. Under the hypotheses of Theorem 4.1, we have

‖eδt‖l2(H1(Ω)d) + ‖ẽδt‖l2(H1(Ω)d) + ‖qδt‖l2(L2(Ω)) . δt
3
2 .
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Proof. We start from the reformulated relation (3.7). Using (3.6), we have

∇×∇×uk+1 = ∇×∇×ũk+1 = −∇2ũk+1 +∇∇·ũk+1.

Thus, the error equation corresponding to (3.7) and (3.6) can be written as a
nonhomogeneous Stokes system for the couple (ẽk+1, qk+1 +∇·ẽk+1):

−∇2ẽk+1 +∇(qk+1 +∇·ẽk+1) = hk+1,

∇·ẽk+1 = gk+1, ẽk+1|Γ = 0,
(4.16)

where

hk+1 = Rk+1 − 3ek+1 − 4ek + ek−1

2δt
,

gk+1 = −2δt
3
∇2(pk+1 − pk +∇·ẽk+1).

(4.17)

Thanks to Lemma 4.1, we have

(4.18) ‖gk+1‖ = ‖∇·ẽk+1‖ . δt 3
2 , ∀k.

Since ek = PH ẽ
k, we have

‖3ek+1 − 4ek + ek−1

2δt
‖ ≤ ‖3ẽk+1 − 4ẽk + ẽk−1

2δt
‖ =

1
δt
‖Dtẽk+1‖.

Hence, we have
(4.19)

‖hk+1‖−1 ≤ ‖Rk+1‖−1 + ‖3ek+1 − 4ek + ek−1

2δt
‖−1 ≤ ‖Rk+1‖−1 +

1
δt
‖Dtẽk+1‖−1.

Now, we apply the following standard stability result for nonhomogeneous Stokes
systems [18] to (4.16),

(4.20) ‖ẽk+1‖1 + ‖(qk+1 +∇·ẽk+1)‖ . ‖hk+1‖−1 + ‖gk+1‖.
Thanks to (4.18), (4.19) and Lemma 4.3, we derive

‖ẽδt‖l2(H1(Ω)d) . δt
3
2 .

Then, from
‖qk+1‖ ≤ ‖qk+1 +∇·ẽk+1‖+ ‖∇·ẽk+1‖,

we derive
‖qδt‖l2(L2(Ω)) . δt

3
2 .

We conclude by using the fact that ‖PHv‖1 . ‖v‖1 for all v ∈ H1
0 (Ω)d (cf. Remark

I.1.6 in [18]). �

Thus, all the bounds stated in Theorem 4.1 have been proved.

5. Numerical results and discussions

5.1. Numerical results with a spectral approximation. Let us first consider
a square domain Ω = (−1, 1)2 with Dirichlet boundary conditions on the velocity.
We have implemented the second-order pressure-correction scheme in standard and
rotational forms with a Legendre-Galerkin approximation [14]. Denoting by PN the
space of polynomials of degree less than or equal to N , we approximate the velocity
and the pressure in PN × PN and PN−2, respectively.
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Figure 1. Pressure error field at time t = 1 in a square: left,
standard form; right, rotational form.

We take the exact solution (u, p) of the linearized (at u = 0) Navier-Stokes
equations to be

u(x, y, t) = π sin t(sin 2πy sin2 πx,− sin 2πx sin2 πy),

p(x, y, t) = sin t cosπx sinπy.

Then the source term f is given by f = ut−∆u+∇p. In the computations reported
herein, we take N = 48 so that the spatial discretization errors are negligible
compared with the time discretization errors.
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Figure 2. Convergence rates in a square: dashed lines for the
standard formulation and solid lines for the rotational formulation.
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In Figure 1, we plot the pressure error field at t = 1 for a typical time step,
and in Figure 2, we represent errors on the pressure and the velocity measured in
various norms as functions of the time step δt.

We note in Figure 1 that for the standard form of the algorithm, a numerical
boundary layer appears on the two boundaries {(x, y) : x ∈ (−1, 1), y = ±1} where
the exact pressure is such that ∂p

∂~n 6= 0 ( ∂p∂~n = 0 on the other two boundaries). For
the rotational form, there is no numerical boundary layer, but we observe large
spikes at the four corners of the domain. These observations suggest that the
divergence correction in the rotational form, which leads to consistent approximate
pressure Neumann boundary conditions, successfully cured the numerical boundary
layer problem. However, the large errors at the four corners degrade the global
convergence rate of the pressure approximation. Indeed, we observe in Figure 2
that the pressure approximation from the rotational formulation is not fully second-
order accurate, though it is significantly more accurate than that calculated using
the standard formulation. We also note that the rotational formulation does not
yield any improvement on the approximation of the velocity in the L2-norm.

To better understand why there are localized large errors at the corners of the do-
main, we have also implemented the standard and rotational forms of the pressure-
correction scheme in a periodic channel Ω = (0, 2π)× (−1, 1). We assume that the
solution is periodic in the x direction and that the velocity is subject to a Dirichlet
boundary condition at y = ±1. We choose the same exact solution (u, p) as given
above, and we use a Fourier-Legendre spectral approximation with 48× 49 modes

Figure 3. Error field on pressure at time t = 1 in a channel: left,
standard form; right, rotational form.
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Figure 4. Convergence rates in a periodic channel: left, standard
form; right, rotational form.
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guaranteeing that the spatial discretization errors are negligible compared with the
time discretization errors.

In Figure 3, we show the pressure error field at t = 1 for a typical time step, and
in Figure 4, we plot the errors on the velocity and on the pressure as functions of
δt.

We observe that the pressure error from the standard formulation still exhibits
numerical boundary layers, whereas the pressure error from the rotational formula-
tion is now smooth everywhere. Moreover, the rate of convergence on the pressure
from the rotational formulation is now fully second-order.

The main difference between the problem set in the square domain and that set
in the periodic channel is that the former has corner singularities while the latter
does not. Thus, it can be conjectured that the large errors occurring at the corners
of the square domain are due to the lack of smoothness of the domain. However,
why the corner singularity affects the convergence rate for a smooth solution is still
not well understood. This conclusion is confirmed by the numerical experiments
using mixed finite elements reported in the next section.

5.2. Numerical results with P2/P1 finite elements. To further assess the re-
spective capabilities of the standard and rotational formulations, we have also car-
ried out convergence tests using P2/P1 finite elements.

To avoid using an exceedingly refined mesh to guarantee that the spatial dis-
cretization error is negligible compared with the time discretization error on a wide
range of time steps, we use the analytical solution

u = sin(x+ t) sin(y + t),

v = cos(x + t) cos(y + t),

p = sin(x− y + t),

which is somewhat smoother than the one used to test the spectral approximation.
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Figure 5. Convergence rates in a square: dashed line for the
standard formulation; solid line for the rotational formulation.
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Figure 6. Error field on pressure in a rectangular domain: left,
standard formulation; right, rotational formulation.

The domain considered to perform the convergence tests is the square (0, 1)2. We
used a P2/P1 mesh composed of 14774 elements (7548 P1 nodes and 29869 P2 nodes)
corresponding to the average mesh size h = 1/80. In Figure 5, we show the error on
the velocity in the L2-norm and that on the pressure in the L2-norm and L∞-norm.
The errors are measured at time t = 1. The conclusions are essentially the same
as that from the tests with the spectral approximation. The rate on the velocity is
clearly second-order, and the rotational formulation does not significantly improve
the accuracy on the velocity, though the error produced is systematically lower than
that from the standard formulation. Concerning the pressure, the convergence rates
on the errors in the L2-norm are slightly lower than second-order for both forms of
the algorithm, the rotational form systematically producing better results though.
The slight saturation of the errors for very small time steps is due to the spatial
interpolation error that becomes visible. For the L∞-norm, the convergence rates
are obviously different. It is 1.6 for the rotational formulation and first-order for the
standard formulation, with the departure from first-order for small time steps due
to nonuniform inverse estimates as we have verified that the position of departure
moves to the left when the mesh is refined.

We show in Figure 6 the error fields on the pressure at time t = 1 for δt = 0.00625.
As for the spectral approximation, we note that the rotational form of the algorithm
yields a pressure field that is free of a numerical boundary layer, whereas a boundary
layer is clearly visible on the pressure field obtained by means of the standard
algorithm. We note also that large errors are still present at the corners of the
domain for both formulations.

To clarify the effect of the smoothness of the boundary on the error on the pres-
sure, we have tested the two methods on the circular domain Ω = {(x, y);

√
x2 + y2

≤ 0.5}, using the same analytical solution as before and h = 1/80. We show in Fig-
ure 7 the error field on the pressure for δt = 0.0125 at t = 2. A numerical boundary
layer is clearly visible on the entire boundary for the pressure calculated by means
of the standard formulation, but the error is uniformly small for the pressure cal-
culated using the rotational formulation. This test confirms that the smoothness
of the boundary has a very important impact on the quality of the approximation
offered by the rotational formulation.
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Figure 7. Error field on pressure in a circular domain: left, stan-
dard formulation; right, rotational formulation.

This point is made even more clear in Figure 8. In the left graph of the figure,
we show the convergence rates on the velocity in the L2-norm and that on the
pressure in the L2-norm and L∞-norm, with the error measured at time t = 2.
The convergence rates are all second-order for the rotational formulation, whereas
this is not the case for the standard one. In the graph in the right panel of the
figure, we compare the convergence rates on the pressure in the L∞-norm for the
rotational formulation only, one series of computation being made on the square
and the other on the circle. It is clear that the errors calculated on the circular
domain are O(δt2), whereas those calculated on the square are only O(δt1.6).

Figure 8. Left: convergence rates on a circular domain; dashed
lines for the standard formulation; solid lines for the rotational
formulation. Right: comparison of convergence rates on pressure
in L∞-norm; solid line for the circular domain; dashed line for the
square.
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5.3. Discussions on the convergence rates of the pressure approximations.
There exists in the literature a substantial number of works dedicated to numer-
ical and theoretical investigations on the convergence rates of the pressure using
pressure-correction schemes. For the standard form, first-order error estimates on
the pressure are established in [12, 15] for the semi-discrete case and in [7] for the
fully discrete case. These results are valid in fairly general domains such as con-
vex polygons. In [4], E and Liu, using asymptotic analysis in a periodic channel,
obtained for the standard formulation a first-order error estimate on the pressure
in the L∞-norm. All these results are consistent with the claim of Strikwerda and
Lee in [16] that the pressure approximation in the standard formulation can be at
most first-order accurate. This claim is based on a normal mode analysis in the
half-plane.

In [1], using a normal mode analysis in a periodic channel, Brown, Cortez and
Minion showed that the pressure approximation in the rotational formulation is
second-order accurate. This is consistent with our numerical results in a periodic
channel as well, but unfortunately, this result does not hold for general domains
as is evidenced by our numerical results. Therefore, it seems that the convergence
rate of 3

2 we established here for the pressure approximation in rotational form is
the best possible for general domains.
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