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Abstract. The rotational incremental pressure-correction (RIPC) scheme, described in
Timmermans et al. [Int. J. Numer. Methods. Fluids., 22 (1996)] and Shen et al. [Math.
Comput., 73 (2003)] for non-rotational Navier-Stokes equations, is extended to rotat-
ing incompressible flows. The method is implemented in the context of a pseudo
Fourier-spectral code and applied to several rotating laminar and turbulent flows.
The performance of the scheme and the computational results are compared to the so-
called diagonalization method (DM) developed by Morinishi et al. [Int. J. Heat. Fluid.
Flow., 22 (2001)]. The RIPC predictions are in excellent agreement with the DM pre-
dictions, while being simpler to implement and computationally more efficient. The
RIPC scheme is not in anyway limited to implementation in a pseudo-spectral code or
periodic boundary conditions, and can be used in complex geometries and with other
suitable boundary conditions.
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1 Introduction

The ability to accurately and efficiently incorporate the effects of rotation in numerical
simulations of fluid flows is important in a number of different science and engineering
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applications including atmospheric, oceanic, astrophysical, internal combustion engine,
and turbo-machinery flows. Fundamental studies of rotating turbulence are also impor-
tant for improved understanding and modeling of such flows [1]. The numerical chal-
lenge is related to the presence of the Coriolis term in the Navier-Stokes equations. Ex-
plicit treatment of this term in time limits simulations to low rotation rates and/or small
time steps. This suggests that an implicit treatment of the Coriolis term is essential for
stable, affordable, and realistic simulations of rotating flows. For the case of rotating ho-
mogeneous turbulence, Diagonalization Methods (DM) are often used to perform exact
integration of the rotation terms [2–4]. These methods analytically integrate the Coriolis
terms to provide an accurate solution. However, due to its special form, DM methods can
only be applied to problems with periodic boundary conditions and is somewhat cum-
bersome to implement. Also, the DM method can not be easily extended to other type of
boundary conditions and/or complex geometries.

In the present study, we develop a rotational incremental pressure correction (RIPC)
method which treats the rotation term implicitly while being accurate and computation-
ally efficient, and show the mathematical analysis of stability of the scheme. To avoid
confusion, it is worth mentioning here that the word rotational in the name of the scheme
refers to the use of the rotational form of the diffusion operator in the incompressible
Navier-Stokes equations, whereas the word rotation refers to solid-body rotation of the
flow itself. Predictions from the RIPC scheme are compared to the DM method of Morin-
ishi et al. [4] with regard to accuracy versus efficiency. All computations in this study
are performed in the context of a Fourier pseudo-spectral simulation but are in no way
limited to this numerical discretization scheme or to the use of periodic boundary condi-
tions.

The rest of the paper is organized as follows. In the next section, we introduce the
RIPC scheme with rotation and prove its stability. In Section 3, we validate the accu-
racy and stability of the scheme against the DM scheme in [4]. We then present some
direct numerical simulation (DNS) and large eddy simulation (LES) results for rotating
turbulent flows in Section 4. We conclude with a few remarks in Section 5.

2 Mathematical formulation

2.1 Governing equations

The incompressible Navier-Stokes equations with rotation are given by the following:

∂ui

∂xi
=0, (2.1a)

∂ui

∂t
+uj

∂ui

∂xj
=−

∂p

∂xi
+ν

∂2ui

∂xj∂xj
−(Ωj×u)i, (2.1b)

where ui (i=1,2,3) are the components of the velocity field u, p is the effective pressure, ν
is the kinematic viscosity, Ω=(Ω1,Ω2,Ω3) is the rotation vector. Here we only study the
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case where Ω =(0,0,Ω). Hence, the Coriolis term on the right hand side of the Navier-
Stokes equations simplifies to −2Ωǫi3kuk. Eq. (2.1b) should be supplemented with a set
of suitable boundary conditions for the velocity field.

2.2 RIPC method

One of the major difficulties with numerical simulation of incompressible flows is the
coupled nature of the velocity and pressure fields due to the incompressibility constraint.
A popular and effective way to decouple the computation of the pressure from that of
the velocity is to use a projection type scheme originally proposed by Chorin [5] and
Temam [6]. An overview of projection schemes for incompressible flows can be found
in [7] where the projection schemes are classified into three classes: pressure-correction,
velocity-correction and consistent splitting, each with standard and rotational formula-
tion. In the current work, the RIPC scheme proposed by Timmermans et al. [8] (see
also [9]) is extended for rotating flows. A detailed description of the RIPC scheme for
non-rotating flows and an error analysis can be found in [9].

The RIPC scheme with a Backward Difference Formula (BDF) for Eq. (2.1b) (with
U=[u,v,w]T and τ being time step) is shown below:

1. In the first substep, we find Ũ=(ũn+1,ṽn+1,w̃n+1) by solving:

a1ũn+1−∑
q+1
i=2 aiu

n+2−i

τ
−ν∆ũn+1−2Ωṽn+1+

∂p⋆,n+1

∂x
+NLT1 =0, (2.2a)

a1ṽn+1−∑
q+1
i=2 aiv

n+2−i

τ
−ν∆ṽn+1+2Ωũn+1+

∂p⋆,n+1

∂y
+NLT2 =0, (2.2b)

a1w̃n+1−∑
q+1
i=2 aiw

n+2−i

τ
−ν∆w̃n+1+

∂p⋆,n+1

∂z
+NLT3 =0. (2.2c)

In the above, (ũn+1,ṽn+1,w̃n+1) satisfy the boundary condition of U(·,tn+1).

2. In the second substep, we find (Un+1,φn+1) from

a1(Un+1−Ũn+1)

τ
+∇φn+1 =0, (2.3a)

∇·Un+1 =0. (2.3b)

The correct boundary condition for (2.3a)-(2.3b) is that the normal component of Un+1

equals to the normal component of U(·,tn+1) at the boundary.

3. In the final substep, we update pn+1 by

pn+1 =φn+1+p⋆,n+1−ν∇·Ũn+1. (2.4)
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In the above scheme, {ai}
q+1
i=1 are chosen to form the q-th order BDF, namely,

q=2 : a1 =
3

2
, a2 =2, a3 =−

1

2
, (2.5a)

q=3 : a1 =
11

6
, a2 =3, a3 =−

3

2
, a4 =

1

3
; (2.5b)

p⋆,n+1 is the rth-order extrapolation for pn+1:

p⋆,n+1 =

{

pn, if r=1,

2pn−pn−1, if r=2;
(2.6)

and NLTi are the q-th order extrapolated nonlinear terms, namely,

q=2 : NLT1 =2(Un ·∇)ũn−(Un−1 ·∇)ũn−1, (2.7a)

q=3 : NLT1 =3(Un ·∇)ũn−3(Un−1 ·∇)ũn−1+(Un−2 ·∇)ũn−2, (2.7b)

similarly for NLT2 and NLT3.
Several comments are in order:

• In general, taking r = q−1 will lead to a q-th order scheme for the velocity (in the
L2-norm) but not necessarily for the pressure; but taking r=q will lead to a formally q-th
order scheme for both the velocity and pressure. We refer to [7] for more detail.

• In the above scheme, the rotational and viscous terms are treated implicitly, thus
removing the time step limitation associated with these two terms in the Navier-Stokes
equations.

• Eqs. (2.2a) and (2.2b) are coupled by the rotation. But since the coupled system is
elliptic, their simultaneous solution can be easily accomplished by using a standard finite
element method or a spectral method. In particular, we provide a fast Fourier-spectral
algorithm at the end of this section for the case of periodic boundary conditions. Effective
spectral algorithms can also be constructed for other type of boundary conditions, such
as mixed periodic-Dirichlet boundary conditions for channel flows or no-slip Dirichlet
boundary conditions, by using the spectral-Galerkin methods [10, 11].

• The system (2.3a)-(2.3b) can be easily decoupled. In fact, using the divergence free
condition, a Poisson equation can be obtained for φn+1:

∇2φn+1 =
a1

τ
∇·Ũn+1, (2.8)

with homogeneous Neumann boundary conditions for φn+1.

2.3 Stability proof

We will sketch, in this subsection, a proof for the stability of the RIPC scheme applied
to the forced Stokes equations in a simple setting, namely, the case with (q,r) = (1,1).
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To fix the idea, we shall assume that the velocity field satisfies the homogeneous no-slip
boundary condition. We note that the proof below, inspired by the proof in [9] for the
RIPC scheme for the non-rotational Navier-Stokes equations, carries over to the case of
periodic boundary conditions without modification.

To simplify the presentation, we rewrite the scheme with (q,r)= (1,1) for the forced
Stokes equations in the following vector form:

{

ũk+1−uk

τ −ν∆ũk+1+Ω×ũk+1+∇pk = f (tk+1),

ũk+1|Γ =0,
(2.9a)











uk+1−ũk+1

τ +∇(pk+1−pk +ν∇·ũk+1)=0,

∇·uk+1 =0,

uk+1 ·n|Γ =0.

(2.9b)

Let us introduce some notations. We denote

(u,v)=
∫

D
uvdx,

where D⊂R
d is the region occupied by the fluid, and ‖u‖2 =(u,v). For any sequence of

functions φk, we denote

δtφ
k =φk−φk−1.

Applying the operator δt to (2.9a), we find

{

δtũ
k+1−δtu

k

τ −ν∆δtũ
k+1+Ω×δtũ

k+1+δt∇pk =δt f (tk+1),

δtũ
k+1|Γ =0.

(2.10)

Next, we apply the operator δt to (2.9b) and rearrange the resultant system to:











δtu
k+1

τ +∇(δt p
k+1+ν∇·ũk+1)= δtũ

k+1

τ +∇(δt pk+ν∇·ũk),

∇·uk+1 =0,

uk+1 ·n|Γ =0.

(2.11)

Taking the inner-product of (2.10) with 2τδtũ
k+1, and using the fact that

(Ω×u,u)=0, ∀u∈L2(D)d,

we find

‖δtũ
k+1‖2−‖δtu

k‖2+‖δtũ
k+1−δtu

k‖2+2ντ‖∇δt ũ
k+1‖2

+2τ(∇δt pk,δtũ
k+1)=2τ(δt f k+1,δtũ

k+1). (2.12)
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Taking the inner product of each side of (2.11) with itself, and using the fact that ∇·uk+1=
0, we find

‖δtu
k+1‖2+τ2‖∇(δt pk+1+ν∇·ũk+1)‖2

=‖δtũ
k+1‖2+τ2‖∇(δt pk+ν∇·ũk)‖2+2τ(∇(δt pk +ν∇·ũk),δtũ

k+1). (2.13)

Summing up the last two equations, we arrive at

‖δtu
k+1‖2−‖δtu

k‖2+‖δtũ
k+1−δtu

k‖2+2ντ‖∇δtũ
k+1‖2

+τ2
(

‖∇(δt pk+1+ν∇·ũk+1)‖2−‖∇(δt pk+ν∇·ũk)‖2
)

=2τ(δtũ
k+1,∇∇·uk)+2τ(δt f k+1,δtũ

k+1). (2.14)

Integrating by parts in the first term on the right hand side, we find

2τ(δtũ
k+1,∇∇·uk)=−2∆t(∇·δt ũ

k+1,∇·uk)

=−τ
(

‖∇·ũk+1‖2−‖∇·ũk‖2−‖∇·δtũ
k+1‖2

)

. (2.15)

Plugging in the above in (2.14), and using the identity (cf. [12])

‖∇u‖2 =‖∇×u‖2+‖∇·u‖2, ∀u∈H1
0(D)d, (2.16)

we derive

‖δtu
k+1‖2−‖δtu

k‖2+‖δtũ
k+1−δtu

k‖2+ντ‖∇δtũ
k+1‖2

+ντ‖∇×δtũ
k+1‖2+τ2

(

‖∇(δt pk+1+ν∇·ũk+1)‖2−‖∇(δt pk+ν∇·ũk)‖2
)

=2τ(δt f k+1,δtũ
k+1)≤

C

ν
τ‖δt f k+1‖2+

ντ

2
‖∇δtũ

k+1‖2, (2.17)

where C=2C1 with C1 being the constant in the Poincaŕe inequality (cf. [12]).
Summing up the above relation for k=1,2,··· ,n, we have proved the following stabil-

ity result:

‖δtu
n+1‖2+τ2‖∇(δt pn+1+ν∇·ũn+1)‖2+ντ

n

∑
k=1

‖∇δtũ
k+1‖2+

n

∑
k=1

‖δtũ
k+1−δtu

k‖2

≤‖δtu
1‖2+τ2‖∇(δt p1+ν∇·ũ1)‖2+

Cτ

ν

n

∑
k=1

‖δt f k+1‖2, ∀n≥1. (2.18)

Several remarks are in order:

• The above inequality indicates that the scheme (2.9a)-(2.9b) is unconditionally sta-
ble, despite the fact that the pressure is treated explicitly in (2.9a).

• Due to the explicit treatment of the nonlinear terms, the RIPC scheme for the non-
linear Navier-Stokes equations is subjected to the usual CFL stability condition.

• By using essentially the same argument in the above and in [9], albeit with more
involved calculations, we can also prove that the RIPC scheme with (q,r)= (2,1) for the
forced Stokes equations is unconditionally stable.
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2.4 A fast pseudo Fourier-spectral algorithm in the periodic case

Since we are interested in the simulation of homogeneous rotating turbulence, we now
present implementation of the RIPC scheme with periodic boundary conditions in the
context of a Fourier pseudo-spectral code. The algorithm below is presented in Fourier
wavenumber space.

Assuming a constant rotating rate Ω, for any wave number k, the k-th component of
the Fourier transform of (2.2a) becomes

( a1

τ
+νk2

)

ˆ̃un+1
k +b1 ˆ̃vn+1

k =Fk

{

−
∂p⋆,n+1

∂x
−NLT1+

∑
q+1
i=2 aiu

n+2−i

τ

}

, (2.19)

where ûk,v̂k represent the k-th Fourier coefficients of the ũn+1 and ṽn+1, respectively, and
Fk is the k-th component of the Fourier transform. Similar equations for the other velocity
components can be written.

Defining

c=
a1

τ
+νk2, r(û)k =Fk

{

−
∂p⋆,n+1

∂x
−NLT1+

∑
q+1
i=2 aiu

n+2−i

τ

}

,

and similarly for r(v̂)k, r(ŵ)k, we find that (2.2a), (2.2b) and (2.2c) reduces to a sequence
(with index k) of systems:





c −2Ω 0
2Ω c 0
0 0 c









ũn+1
k

ṽn+1
k

w̃n+1
k



=





r(û)k

r(v̂)k

r(ŵ)k



. (2.20)

It is clear that the above system can be easily solved for each k.

We note that in the non-periodic case, the coupled linear system in (2.2) can not be
solved as easily as above in the periodic case. However, at least for regular domains, this
coupled system can still be solved efficiently by using a new spectral method at a cost
comparable to that of a decoupled system (cf. [13]).

3 Validation

An in-house Fourier pseudo-spectral code numerically integrates the incompressible
Navier-Stokes equations in a (0,2π)3 periodic box is the computational platform used
for validation purposes. The non-linear convective terms are computed in physical space
and the 2/3 rule is used for aliasing error removal [14]. The code was recently vali-
dated in the context of large eddy simulations of homogeneous turbulence using both
experimental measurements in grid-generated turbulence and direct numerical simula-
tion data. Further details about the code and the validation studies can be found in [15].
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The DM algorithm, proposed by Morinishi et al. [4], is also implemented here to serve
as a benchmark for comparison. In DM, the Navier-Stokes equations are first diagonal-
ized through a transformation technique described in [4]. The transformed equations
are then integrated using an integration factor approach, which facilitates analytic inte-
gration of both the viscous and Coriolis terms, hence removing the associated time-step
limitation. Note that the DM scheme can not be extended to other type of boundary
conditions.

In all simulations, a third-order Runge-Kutta scheme [16] is used for time advance-
ment in the DM scheme, while different sets of (q,r) are used for the RIPC scheme. More
precisely, to compare the accuracy of DM and RIPC schemes for the forced Stokes prob-
lems, we use (q,r) = (3,2) and (3,1) which are formally third-order and second-order,
respectively. However, our numerical experiments indicate using the third-order extrap-
olations for the pressure and nonlinear terms may lead to instabilities. So for nonlinear
simulations presented below, we use (q,r)=(2,2) and (2,1) which are both second-order
but the former is more accurate with smaller truncation errors, but may require a smaller
time step to be stable.

We shall use three discrete vector norms, namely L∞, L2 and H1, evaluated at the
Fourier-collocation points, to assess the efficiency of the schemes.

3.1 Comparison with an exact solution of the Stokes problem

In this subsection, we compare the accuracy of our RIPC scheme with the DM scheme.
The first case in this section involves the forced Stokes equations:

∂ui

∂xi
=0, (3.1a)

∂ui

∂t
=−

∂p

∂xi
+ν

∂2ui

∂xj∂xj
−2ǫijkΩjuk+ fi, (3.1b)

where Ω=(0,0,Ω) and the forcing functions are such that the solution to (3.1a)-(3.1b) is:

u=sin(x)cos(y)cos(z)esin(t), (3.2a)

v=−cos(x)sin(y)cos(z)esin(t), (3.2b)

w=0, (3.2c)

p=sin(x)cos(y)sin(z)esin(t). (3.2d)

Simulations are performed with 120 grid points in each of the three coordinate directions
and a constant time-step, τ. The L2 error norms the computed to the exact solution are
reported in Fig. 1. We notice that the RIPC scheme with (q,r)=(3,2) is as accurate as the
DM scheme. In order to illustrate the influence of the value r, we also plotted the results
of RIPC with (q,r)=(3,1). It is observed that the convergence rate of RIPC scheme is, as
expected, of order min(q,r+1).
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0 .1 0 .2 0 .310�810�710�610�510�410�310#2 RIPC(r=1)RIPC(r=2)DM Schemeslope=2slope=3
dt

L 2N orm
Figure 1: L2 Error Norm plot.

In the next set of simulations, we vary the rotation rate Ω while keeping time step
fixed. These simulations are performed at two fixed time steps of τ=0.008 s and τ=0.016
s. Results are shown Fig. 2. The DM scheme results appear to be highly sensitive to the
rotation rate applied in spite of the fact the solution of the equations are independent of
rotation rate. The RIPC scheme with (q,r) = (3,2) shows only slight response to vary-
ing rotation rate, while the accuracy of the DM scheme deteriorates significantly as Ω

increases and is less accurate than the RIPC scheme with (q,r)=(3,2). Just for the sake of
comparison, we have also plotted the results by RIPC scheme with (q,r)=(3,1).

As the second case, we utilize forcing functions such that the exact solution to (3.1a)-
(3.1b) depends on Ω as follows:

u=sin(x)cos(y)cos(z)esin(Ωt), (3.3a)

v=−cos(x)sin(y)cos(z)esin(Ωt), (3.3b)

w=0, (3.3c)

p=sin(x)cos(y)sin(z)esin(Ωt). (3.3d)

The L2 error norms are shown in Fig. 3. In this case, the accuracy of both RIPC and DM
schemes deteriorates as Ω increases, and the DM scheme is slightly more accurate than
the RIPC scheme with (q,r)=(3,2).

3.2 Laminar flow simulation

In this subsection we consider the Taylor-Green Vortex (TGV) flow subjected to solid-
body rotation, and report on the performance of the RIPC and MD methods. Here, we
solve the Navier-Stokes equations (2.1a)-(2.1b) with the initial velocity field given by:

u=sin(x)cos(y)cos(z), (3.4a)

v=−cos(x)sin(y)cos(z), (3.4b)

w=0. (3.4c)
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5 10 15 2010L710P610T510X410\310`2 DM(
τ=0.016)DM(
τ=0.008)r=2 (
τ=0.016)r=2 (
τ=0.008)r=1(τ=0.016)r=1(τ=0.008)

Ω

L 2N orm
Figure 2: Error Norm variation at different rotation
rate (Ω) and time steps.

10 2010 810¤710¨610¬510°410´310¸210¼1 DM(
τ=0.008)r=1(τ=0.008)r=2 (
τ=0.008)r=1(τ=0.004 )r=2 (
τ=0.004 )L 2N orm

Ω

Figure 3: L2 Error Norm variation at different ro-
tation rate (Ω) and time steps.

In what follows, the previously described norms are used to quantify the difference be-
tween the two schemes.

3.2.1 Effect of order of pressure extrapolation

A rotation rate of Ω = 20 rad/s is resolved on a 1203 grid using the DM scheme and
the RIPC scheme with (q,r) = (2,2) and (q,r) = (2,1). Fig. 4 shows velocity magnitude
contours with velocity vectors from a simulation using a fixed time step of ∆t=4.28×10−4

s (obtained based on the CFL constraint). The three results are visually identical.

(a) RIPC (q,r)=(2,1) (b) RIPC (q,r)=(2,2) (c) DM Scheme

Figure 4: Velocity magnitude contours using the RIPC and DM schemes.

To better understand the influence of pressure extrapolation order, errors of the first-
and second-order pressure extrapolations with the DM method are computed and tabu-
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Table 1: Errors of the RIPC scheme with (q,r)=(2,1).

τ (s) 4.28×10−03 2.14×10−03 4.28×10−04 2.14×10−04

L2

u 3.567×10−02 9.276×10−03 3.666×10−04 9.105×10−05

v 3.567×10−02 9.276×10−03 3.674×10−04 9.122×10−05

w 2.523×10−02 5.970×10−03 2.907×10−04 8.456×10−05

H1

u 7.139×10−02 1.856×10−02 7.337×10−04 1.823×10−04

v 7.139×10−02 1.856×10−02 7.353×10−04 1.826×10−04

w 5.051×10−02 1.195×10−02 5.820×10−04 1.693×10−04

L∞

u 9.451×10−02 2.487×10−02 9.528×10−04 2.290×10−04

v 9.451×10−02 2.487×10−02 9.567×10−04 2.286×10−04

w 7.131×10−02 1.687×10−02 8.218×10−04 2.391×10−04

Table 2: Errors of the RIPC scheme with (q,r)=(2,2).

τ (s) 4.28×10−03 2.14×10−03 4.28×10−04 2.14×10−04

L2

u 4.625×10−03 5.623×10−04 3.439×10−05 1.694×10−05

v 4.627×10−03 5.645×10−04 3.163×10−05 1.661×10−05

w 5.605×10−03 7.269×10−04 5.037×10−05 2.560×10−05

H1

u 9.262×10−03 1.127×10−03 6.954×10−05 3.410×10−05

v 9.266×10−03 1.131×10−03 6.409×10−05 3.342×10−05

w 1.121×10−02 1.454×10−03 1.010×10−04 5.146×10−05

L∞

u 1.055×10−02 1.250×10−03 7.731×10−05 3.505×10−05

v 1.055×10−02 1.252×10−03 7.349×10−05 3.660×10−05

w 1.583×10−02 2.052×10−03 1.429×10−04 7.057×10−05

lated in Table 1 and Table 2, respectively. The tables also show the effect of time step on
the error norms. Note that the results in the last column of Table 2 is not reliable due to the
limited resolution used. One observes that the RIPC scheme with (q,r)=(2,1) leads to es-
sentially second-order convergence rate, while the convergence rate of the RIPC scheme
with (q,r) = (2,2) seems to be slightly better than second-order. More importantly, the
errors with (q,r)=(2,1) is significantly larger than that obtained with (q,r)=(2,2). There-
fore, in all simulations below, we shall use (q,r)=(2,2) in the RIPC scheme.

3.2.2 Effect of rotation rate

The stability of the scheme over a wide range of rotation rates is investigated here. Three
rotation rates, Ω=2 rad/s, 20 rad/s, and 50 rad/s, are simulated using the RIPC scheme
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Table 3: Errors of RIPC scheme with (q,r)=(2,2) at different rotation rate.

Ω (rad/s) 2 20 50
L2

u 4.679×10−05 3.439×10−05 1.371×10−04

v 4.676×10−05 3.163×10−05 1.389×10−04

w 4.751×10−05 5.037×10−05 2.105×10−04

H1

u 9.843×10−05 6.954×10−05 2.745×10−04

v 9.839×10−05 6.409×10−05 2.783×10−04

w 9.680×10−05 1.010×10−04 4.213×10−04

L∞

u 1.357×10−04 7.731×10−05 2.964×10−04

v 1.326×10−04 7.349×10−05 3.056×10−04

w 1.394×10−04 1.429×10−04 5.960×10−04

with (q,r) = (2,2) and are compared with the results from the MD scheme. The results
are presented in Table 3. All these simulations are performed at a fixed time step of
τ = 4.28×10−04 s using 1203 grid points. The present scheme is found to be robust at
higher rotation rates and the results are in very good agreement with the MD scheme.

4 Turbulence flow simulation

In this section, we use the RIPC scheme with (q,r)= (2,2) to simulate rotating turbulent
flows using both large eddy simulation (LES) and direct numerical simulation (DNS),
and compare the results with the DM scheme.

4.1 Large eddy simulation

In LES, the low-pass spatially filtered incompressible Navier-Stokes equations, closed
with the Smagorinsky eddy-viscosity subgrid-scale (SGS) turbulence model, are consid-
ered. Since the focus of this paper is not to evaluate the suitability of LES subgrid models
for rotating turbulence, we have used a the classical Smagorinsky model with a con-
stant model coefficient=0.16. Detail of the LES equation and the SGS model can be found
in [15]. The numerical integration of these equations is the same as before with the addi-
tional SGS stress term treated in the same way as the non-linear convection term.

The velocity field is initialized with the following spectrum (see [4]):

E(k,0)= Ak4 exp(−Bk2), (4.1)

where k represents the wave number and A and B are constants. The simulation is per-
formed using a kinematic viscosity of 0.005 m2/s and rotation rates of Ω = 5 rad/s and
50 rad/s. Non-rotating simulations are started with the aforementioned spectrum and
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k 20 4010ó810÷710û610ÿ510�410�310�2E(k)
(a) Ω=5 rad/s

k 20 4010�810�710 610$510(410,31002E(k)
(b) Ω=50 rad/s

Figure 5: Energy spectrum obtained for the LES study; dashed line-DM method, dot-dash line-RIPC
[(q,r)=(2,2)]; Symbols: green circle-t=2.5 s, black square-t=5.0 s, red diamond-t= 7.5 s.

0 2 4 6 8 1000.30.60.91.21.5 u’ O DM Schemek O DM Schemeu’ O RIPC[(q,r)=(2,2)]k O RIPC[(q,r)=(2,2)]
u’kt (sec)

(a) Ω=5 rad/s

0 2 4 6 8 1000.30.60.91.21.5 u’ � DM Schemek � DM Schemeu’ � RIPC[(q,r)=(2,2)]k � RIPC[(q,r)=(2,2)]
u’kt (sec)

(b) Ω=50 rad/s

Figure 6: Rms velocity and the tke plot for the LES study.

run up to 1 s, after which solid body rotation is applied to the system. The LES stud-
ies are performed using both the RIPC and MD schemes on a 403 grid in a 2π periodic
box. Energy spectra at three different times from the simulations at the two rotation rates
are shown in Figs. 5(a) and 5(b). The temporal evolution of the rms velocity and turbu-
lent kinetic energy (tke) from both methods are shown in Figs. 6(a) and 6(b). Very good
agreement is observed between the two methods.
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Table 4: Comparison of Schemes for DNS run.

(a) Turbulent Kinetic Energy.

time(s) DM scheme RIPC [(q,r)=(2,2)]
1.0 0.6469 0.6468
2.0 0.2943 0.2945
3.0 0.1941 0.1944

(b) Rms Velocity.

time(s) DM scheme RIPC [(q,r)=(2,2)]
1.0 0.6965 0.6966
2.0 0.4777 0.4780
3.0 0.3923 0.3927

4.2 Direct numerical simulation

Finally, a short-duration direct numerical simulation (DNS) run of the above case on a
1283 mesh is carried out for the RIPC and MD schemes. The rotation rate was Ω = 5
rad/s. Turbulent kinetic energy and rms velocity predictions are shown in Table 4, while
energy spectra are shown in Fig. 7. Good agreement between both methods is observed.
Discrepancies between the DNS and LES results can be attributed to the fact that the
Smagorinsky SGS model has difficulties in handling rotating turbulent flows [1].

k100 101 10210²610¶510º410¾310Â2
DM Sc he meRIPC [(q ,r)=(2 ,2)]E( k)

Figure 7: Energy spectrum obtained for the DNS study.

5 Conclusions

We introduced in this paper the rotational incremental pressure-correction (RIPC) scheme
for rotational Navier-Stokes equations, and proved that the scheme with (q,r)= (1,1) is
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unconditionally stable when applied to the forced Stokes equations. We developed a fast
pseudo Fourier-spectral algorithm for the implementation of this scheme in the case of
periodic boundary conditions. We implemented this algorithm and applied it to several
rotating laminar and turbulent flows.

We made a careful comparison of the RIPC scheme with the diagonalization method
(DM) in various situations, including analytical solutions, laminar rotating flows and
LES and DNS for turbulent rotating flows. We showed that the results given by the
RIPC scheme with the second-order pressure extrapolation are in excellent agreement
with the DM method. However, the RIPC scheme is much simpler to implement and
computationally more efficient. Moreover, the RIPC scheme is not in anyway limited to
implementation in a pseudo-spectral code or periodic boundary conditions, and can be
used in complex geometries and with other suitable boundary conditions.
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