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Abstract
A thermodynamically consistent phase‐field model for viscous sintering is pro-

posed. It is based on an energetic variational formulation that allows the govern-

ing equations to be analytically derived from a defined energy law. The

conservation of mass is satisfied through the incompressibility assumption and the

assumption that mass density is uniform initially within the particle compact

while the balance of linear momentum is formulated from an energy dissipation

law. The morphological changes of particles are described by the temporal and

spatial evolution of a phase‐field variable governed by a modified Cahn‐Hilliard
equation, and the motion of viscous mass flow is controlled by the Stokes equa-

tion incorporating the surface tension effect. The application of the phase‐field
model is illustrated by examining the effect of particle shape, initial contact angle

and rearrangement effects on viscous sintering.

1 | INTRODUCTION

Sintering is a process in which thermal energy is utilized to
densify and strengthen a powder compact driven by surface
energy reduction. It can be primarily classified into three
types: solid‐state sintering of crystalline materials, solid‐
state sintering of amorphous materials or viscous sintering,
and liquid phase sintering of crystalline materials. The
three types of sintering techniques distinguish themselves
by different densification mechanisms.1,2 Densification in
viscous sintering is achieved by the viscous flow of materi-
als without forming any boundaries or interfaces between
the particles. The thermodynamic driving force for the pro-
cess is the reduction in the total surface energy of a powder
aggregate. Sintering through viscous flow has broad

applications in engineering such as densification of
low‐temperature‐co‐fired ceramics3 and selective laser
sintering of polymer powder bed.4

For viscous sintering, most of the existing works have
primarily been focused on the neck growth and shrinkage
of two glass spheres as a benchmark example. Frenkel was
the first to propose an analytical model for the shape evolu-
tion of two spherical particles during coalescence.5 The
proposed model is based on a mechanical energy balance
by equating the work of surface tension and the work of
dissipation of mechanical energy due to viscous flow and
is limited to the early stage of viscous sintering. Eshelby
modified Frenkel's model by assuming biaxial extensional
flow.6 Pokluda et al7 further improved the model by
approximating the neck growth in all stages of sintering.
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Hopper8 derived an analytical solution for the coalescence
of two equally sized cylinders using a complex variable
theory for biharmonic functions. Olevsky et al9 have
obtained expressions for bulk modulus, sintering stress and
densification kinetics as functions of porosity and strain
rate sensitivity for nonlinear viscous materials. By employ-
ing a simple first‐order iterative procedure, the derived for-
mula can be a valuable extension of the continuum theory
of sintering. Wakai et al10,11 have analyzed the sintering
force of two sphere particles by employing the incompress-
ible Stokes equation. They found that the sintering force
can be evaluated from the neck growth rate. They also
derived sintering mechanics for coupled grain boundary
and surface diffusion.12

Computationally, various numerical approaches have
been employed for modeling viscous sintering, including
finite element method (FEM),13–17 boundary integral
method,18 boundary element method (BEM),19–22 fractional
volume of fluids,23,24 lattice Boltzmann method.25,26 Ross
et al27 were the first to introduce FEM to study the sinter-
ing process of an infinite line of cylinders. Their solution
confirmed that Frenkel's model is not suitable for the whole
stages of sintering. Kuiken employed the BEM to simulate
the moderate curvature‐gradient driven coalescence of vis-
cous particles.19 Van de Vorst20 also used BEM to analyze
the shrinkage of two equal or unequal spheres, and the pre-
dicted shrinkage rate matched very well with the corre-
sponding two‐dimensional analytic solutions. Kirchhof
et al24 applied the fractional volume of fluids to investigate
the viscous flow sintering of different agglomerate particle
morphologies and found that different sintering contacts in
agglomerates even during the first stage of sintering are not
completely independent of each other. Gross et al25

employed the lattice Boltzmann method to examine the
coalescence of two resting liquid droplets in a saturated
vapor phase. Their predictions differ from the existing ana-
lytical theories. However, a simple scaling argument, simi-
lar to Frenkel's analysis, is proposed that describes
simulation results well.

The phase‐field method (PFM) has been proven to be a
powerful tool to simulate microstructure evolution in a
wide variety of materials processes, such as solid‐state
phase transformations,28 grain growth and coarsening,29

dislocation dynamics,30 dendrite formation in Li‐ion batter-
ies,31 crack propagation32 and microstructure evolution in
thin films,33 just to name a few. In particular, the phase‐
field method has been applied to simulate microstructure
evolutions in solid‐state sintering34–38 and liquid phase sin-
tering.39 The difference in employing PFM in different sin-
tering processes lies in the corresponding sintering
mechanisms. For example, Wang developed a pioneering
phase‐field model for solid‐state sintering to incorporate
various diffusion mechanisms and possible rigid‐body

translation and rotation of powder particles.34 However,
dissolution and precipitation may have to be considered
due to the presence of a liquid phase in liquid phase sinter-
ing.39 A more detailed discussion on phase‐field models
for microstructure evolutions can be found in several excel-
lent review papers.40–42

The present work proposes a thermodynamically consis-
tent phase‐field model to study the particle coalescence in
viscous sintering. The proposed model is based on an ener-
getic variational formulation.43,44 As such, the employed
governing equations can be derived consistently under the
energy law and the principle of least action. To the best of
our knowledge, this is the first phase‐field model for vis-
cous sintering by employing a variational principle.

The rest of this paper is organized as follows. Section 2
introduces the proposed framework and illustrates its con-
sistency with thermodynamics. Section 3 qualitatively vali-
dates the proposed approach by comparing to theoretical
analysis. Section 4 presents several numerical examples to
demonstrate the capability of the proposed model to cap-
ture the effect of particle shape, initial angle between con-
tacting particles and rearrangement on the viscous sintering
behavior. Section 5 concludes with closing remarks on the
performance of the proposed approach and discussion on
future research work.

2 | GOVERNING EQUATIONS

In the phase‐field method, the microstructure evolution is
captured by means of a set of phase‐field variables that are
continuous functions of time and spatial coordinates. These
phase‐field variables change smoothly but rapidly across
interface regions and are generally classified into two
groups: conserved and nonconserved variables (or order
parameters). Conserved order parameters are typically
related to local composition and have to satisfy local con-
servation condition. The evolution of conserved variables is
described by the Cahn‐Hilliard diffusion equation. Noncon-
served variables usually contain information about local
material structure and orientation. The evolution of noncon-
served order parameters is governed by the Allen‐Cahn
equation.

For viscous sintering, as schematically shown in Fig-
ure 1A, a conserved order parameter C is introduced to
differentiate the powder compact (red region) from the sur-
rounding medium (usually vapor phase) (blue area).
Physically, C can be thought as a composition that has an
equilibrium value of 1 in amorphous particles and of 0 in
the surrounding medium. Assuming constant sintering
temperature, the total energy Π of the system consists of
two components: Helmholtz free energy F and kinetic
energy K, which can be expressed as follows:
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F ¼
Z
Ω
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In Equation (1), f(C) is a so‐called double‐well potential
as a function of order parameter C. The double‐well poten-
tial reaches minimum at the corresponding value of C in
each phase and is employed as f ðCÞ ¼ AC2 1� Cð Þ2 in the
present work. Let Γt represent the total surface area of the
evolving powder compact and γ be the constant isotropis-
pecific surface energy (surface tension). We note that F is
essentially a phase‐field approximation of surface energy
Γtγ with an accuracy determined by the width ɛ of the
interface between particle aggregates and the surrounding
medium. Mathematically, it has been rigorously proven that
F ! Γtγ as ɛ → 0.45,46 Parameters A and kc can be deter-
mined from γ and ɛ 43 as A ¼ 3γ

8
ffiffi
2

p
ɛ
and Kc ¼ 3γɛ

2
ffiffi
2

p :k � k rep-
resents the L2 norm for a vector object.

In Equation (2), v is the velocity vector field. Density ρ
of the mixed system can be calculated as:

ρ ¼ ρvapor þ ðρparticle � ρvaporÞNðCÞ; (4)

where ρvapor and ρparticle represent the densities of surround-
ing medium phase and powder particles, respectively, and
N(C) is an interpolation function of phase‐field variable C
with N(1) = 1 in particle compact and N(0) = 0 in vapor
phase.

The driving force for viscous sintering is to minimize
the total energy of particle compact through energy dissipa-
tion by viscous flow.2 As such, the energy dissipation law
for isothermal viscous sintering process can be expressed
as:

dΠ
dt

¼ dðKþFÞ
dt

¼ �
Z
Ω
2μðCÞ

����rvþ ðrvÞT
2

����
2

dΩ; (5)

where k � k denotes the Hilbert‐Schmidt or the Frobenius
norm for a tensor object, and μ is the viscosity of the
mixed system and can be expressed as:

μ ¼ μvapor þ ðμparticle � μvaporÞNðCÞ; (6)

Rp 2X

L

(A) (B) (C)

(D) (E) (F)

FIGURE 1 Microstructure evolution of two equally sized particles with radius Rp = R0 in 2D at (A) 1000, (B) 10 000, (C) 40 000, (D)
80 000, (E) 120 000, and (F) 200 000 timesteps, respectively. Rp is the initial particle radius, X represents the contact radius and L defines the
distance between two particles. Red color denotes the particle compact with the introduced phase‐field order parameter C. The “CON” in the
color bar represents the order parameter C having a value of 1 within particle compact and of zero within the surrounding medium represented
by blue color (See the color bar). This coloring scheme is consistently employed throughout the work if not otherwise mentioned
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where μvapor and μparticle are viscosities of the respective
surrounding vapor phase and viscous particles.

Under the energy dissipation law defined in Equa-
tion (5) and assuming the system is incompressible, gov-
erning equations for viscous sintering can be derived
following the energetic variational approach43:

@C
@t

¼ r � Mr δΠ
δC

� �� �
�r � vCð Þ (7)

ρ
@v
@t

þ ðv � rÞv
� �

¼ �rpþr � ½μðCÞðrvþ ðrvÞTÞ�

� r � @Π
@rC

�rC
� � (8)

r � v ¼ 0 (9)

Equation (7) is essentially a modified Cahn‐Hilliard equa-
tion by incorporating convection flux and M is a small
relaxation parameter. We note that energy dissipation
through the relaxation term in Equation (7) is not included
in the energy law defined in Equation (5). The reason is
that energy dissipation through viscous flow dominates. A
more comprehensive energy law considering energy dissi-
pation through relaxation can be found in43 and Equa-
tion (7) can be derived under such a comprehensive law.
Equation (8) is the Navier‐Stokes equation that physically
describes the balance of linear momentum. The Lagrange
multiplier p accounting for incompressibility adds the pres-
sure term −∇p to the force balance. Variation of energy
dissipation with respect to the velocity field produces
r � ½μðCÞðrvþ ðrvÞTÞ� as the dissipative force. The term
�r � @Π

@rC �rC
� 	

in Equation (8) physically represents the
surface tension contribution to the balance of linear momen-
tum in the proposed phase‐field or diffuse interface model
and can be mathematically derived by taking the variation
of the Helmholtz free energy (or surface energy) defined
in Equation (1) with respect to spatial positions of
particles. The detailed derivation of the surface tension
contribution can be found in.43 Equation (9) represents a
mathematical description of incompressibility, and conser-
vation of mass is satisfied under this condition with the
assumption that mass density is uniform initially within
the particle compact. As such, the proposed phase‐field
model is thermodynamically consistent in the sense that
conservation of mass is satisfied, and that balance of linear
momentum is derived under the energy dissipation law
defined in Equation (5).

3 | VALIDATION

To qualitatively validate the proposed phase‐field model in
Section 2, the classical benchmark problem of viscous
sintering of two equally sized circular particles in

two‐dimension (2D) is employed. The simulation domain
Ω is set to be Ω = (0,2π)2 and periodic boundary condi-
tions are applied in all directions. In the simulation, the
inertia term in Equation (8) is negligible since small parti-
cles with relatively high viscosity are considered, as
employed in the theoretical analysis11 and computer simu-
lation.13 In addition, the viscosity for the system is
assumed to be uniform and an arithmetically averaged vis-
cosity between particle and surrounding medium is
employed. Material properties of polyamide 12 (PA12)13

such as surface tension γ and viscosity μ at temperature
T = 175°C are employed as γ ¼ 0:03N=m and μ = 400
Pa·s. The normalized time t* is defined as t� ¼ γt

Rpμ
where t

represents the real time and Rp the initial particle radius, as
employed in.11,13 Equations (7-9) are spatially discretized
by a 256 × 256 uniform grid. The spectral method using
second‐order semi‐implicit discretization in time47 is
employed with a normalized timestep Δt* = 1.25e‐5t*. The
relaxation parameter M in Equation (7) is chosen to be
M = 1e‐6 and the interfacial thickness ε is chosen to be

FIGURE 2 Normalized contact radius as a function of
normalized time for viscous sintering of the respective theoretical
analysis (red), two equally sized particles with relatively large (blue)
and small (green) radius in 2D

FIGURE 3 Normalized shrinkage as a function of the
normalized time for viscous sintering of the respective particle sizes
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3 h where h represents the spacing between two spatial
grid points.

As denoted in Figure 1, let X represent the contact
radius and Rp be the initial particle radius. The normalized
contact radius X

Rp
is plotted as a function of the normalized

time t* and is compared to the Hopper's analytical solu-
tion8,13 in Figure 2. The definition of the normalized time
t* represents the scaling law in terms of surface tension,

viscosity and particle size. As such, the neck growth curve
with respect to different particle sizes can be obtained for
given surface tension and viscosity. In this section, two
equally sized particles with initial particle radius Rp = R0

and Rp = 0.75R0 are employed, respectively. It can be
observed from Figure 2 that for both particle sizes, the con-
tact radius growth behavior captured by the proposed
phase‐field model matches very well with that from the

(A) (B)

FIGURE 4 A, The shape of the
particle compact and (B) the distribution of
the axial velocity field inside the particle
compact along x (horizontal) direction at
t* = 0.5

(A) (B)

FIGURE 5 A, The shape of the
particle compact and (B) the distribution of
velocity field inside the particle compact
along x (horizontal) direction at t* = 1.25

FIGURE 6 The distributions of the introduced phase‐field C and
the velocity field within the particle compact in x (horizontal)
direction along the axis connecting the centers of the two particles at
t* = 0.5. The phase‐field C is unitless and the velocity has a unit of
γ
μ, where γ is the employed surface tension and μ the viscosity

FIGURE 7 The distributions of the introduced phase‐field C and
the velocity field within the particle compact in x (horizontal)
direction along the axis connecting the centers of the two particles
t* = 1.25. The phase‐field C is unitless and the velocity has a unit of
γ
μ, where γ is the employed surface tension and μ the viscosity
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(A) (B) (C)

(D)

L

(E) (F)

FIGURE 8 Microstructure morphology of the employed circle‐rectangle particle compact in 2D at (A) 1000, (B) 10 000, (C) 40 000, (D)
80 000, (E) 120 000, and (F) 200 000 timesteps, respectively

(A) (B) (C)

(D) (E) (F)

L

FIGURE 9 Microstructure evolution of the employed rectangle‐rectangle particle compact in 2D at (A) 1000, (B) 10 000, (C) 40 000, (D)
80 000, (E) 120 000, and (F) 200 000 timesteps, respectively
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theoretical analysis. The contact radius increases as time
proceeds, with a decreasing growth rate due to the reduc-
tion of driving force. The predicted normalized contact
radius X

Rp
is 1.412 at equilibrium. It matches very well with

the theoretical value
ffiffiffi
2

p
, which can be derived from the

conservation of area in 2D. Figure 1 shows snapshots from
the phase‐field simulation at different timesteps for the
employed two equally sized particles with a larger radius.
The “CON” in the color bar represents the introduced con-
served phase‐field variable C ranging from 0 to 1.

The normalized shrinkages as a function of normalized
time for Rp = R0 and Rp = 0.75R0 are shown in Figure 3.

Let L be the distance between two particles, as defined in
Figure 1. Then the normalized shrinkage can be defined as:
ΔL
2Rp

¼ 4Rp�L
2Rp

with ΔL being the distance change. The unity

of the two shrinkage curves with respect to the correspond-
ing particles sizes is reproduced qualitatively with a slight
difference between them. The difference may be introduced
due to the diffuse‐interface (phase‐field) approximation.
For example, the same interfacial thickness and discretiza-
tion gird are employed for both particle sizes. The shrink-
age increases as time proceeds, with an overall decreasing
rate. Similar to contact radius growth, the decrease in driv-
ing force with time may account for the deceasing shrink-
age rate. We note that the predicted normalized shrinkage
at equilibrium is 0.582 for both particle sizes, which is in

good agreement with the theoretical value 2� ffiffiffi
2

p
≅ 0:583.

The velocity profile vx inside the particle compact along
the x (horizontal) direction and the corresponding shape of
the particle compact at t* = 0.5 and t* = 1.25 are shown in
Figures 4 and 5, respectively. In Figures 4B and 5B, since
the velocity distribution within the particle compact is of
interest, the velocity profile is achieved by calculating the
product Cvx, where C is the introduced order parameter, to
smear out the velocity in the surrounding vapor phase and to
better visualize vx inside the particle compact. Figures 6 and
7 plot the distribution of Cvx and the profile of the phase‐
field C along the axis connecting the centers of the two
particles at t* = 0.5 and t* = 1.25, respectively. From the
symmetry, the point at x = π where the contact plane is

FIGURE 10 Normalized shrinkages at different timesteps for
viscous sintering of the respective circle‐circle (red), circle‐rectangle
(green), and rectangle‐rectangle (blue) compacts

FIGURE 11 Microstructure
morphologies of a three‐particle compact
from experimental observations (A)
(reproduced with permission from John
Wiley and Sons) and phase‐field predictions
(B)
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located is a stagnation point. At the later stage of viscous sin-
tering, the axial velocity field is approximately divided into
two regions: the straining region close to the stagnation point
where the axial velocity is linearly proportional to the dis-
tance from the stagnation point with a slope equal to the axial
strain rate and the so‐called rigid body motion region where
the axial velocity is close to constant. The axial velocity dis-
tribution pattern inside the particle compact matches very
well with that in the theoretical analysis,11 which qualita-
tively validates the proposed phase‐field model.

4 | NUMERICAL EXAMPLES

In this section, the proposed phase‐field model is employed
to investigate the effects of particle shape and initial con-
tact angle on viscous sintering of glass particles. To
demonstrate the effectiveness of the phase‐field approach
to capture the morphology of complex microstructures, a
many‐particle system with irregular green structure is
employed. The simulation results are compared with exper-
imental observations qualitatively.

4.1 | Particle shape effect

In order to investigate particle shape effect on viscous sinter-
ing, two‐particle models with the respective circle‐circle con-
tact (Figure 1), circle‐rectangle contact (Figure 8), and
rectangle‐rectangle contact (Figure 9) are employed and
compared with each other. The aforementioned three models
are designed such that the rectangle particle has the same
area as the employed circle and that each model has the same
initial length L0. The normalized shrinkage for each model is
plotted in Figure 10. It is demonstrated that the rectangle‐
rectangle compact has the fastest shrinkage rate with the
circle‐rectangle aggregates having the moderate and the cir-
cle‐circle model having the slowest, though the difference
between the last two models is small. The predicted particle
shape effect also matches well with the experimental observ-
tation.48 Since the employed rectangle and circle particles
have the same area, the nonequilibrium particle shape (rect-
angle) has more driving force (more perimeter in 2D) than
the equilibrium shape (circle in 2D). As such, particles with
nonequilibrium shapes sinter faster than equilibrium particle
shapes. We note that particle shape effect may be more

73°

109°

(A) (B) (C)

(D) (E) (F)

FIGURE 12 Microstructure evolution and the corresponding angle change for the employed three‐particle compacts with initial contact
angles 73° (A‐C) and 109°(D‐F) at the same timesteps. The dashed outlines in (C) and (F) represent the initial configurations of the respective
particle compacts
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significant for many‐particle models having complex green
structures and will be left for future study.

Microstructure evolutions for the employed circle‐rec-
tangle and rectangle‐rectangle models are shown in Fig-
ures 8 and 9, respectively. Both models will reach the
same equilibrium state to form a larger circle with different
sintering rates.

4.2 | Initial contact angle effect

The three‐particle models with different initial contact
angles in the experimental study49 have been employed for
the phase‐field simulation. The three‐particle compact with
an initial angle of 73° is firstly used to compare with the
experimental observations.49 Due to the lack of information
on material properties for glass particles employed in the
experiment, a qualitative comparison is performed. As
shown in Figure 11, PFM has the capability to qualitatively
reproduce the morphologies of the three‐particle model
observed in the experiment.

Microstructure evolutions of three‐particle compacts
with two different initial contact angles are compared with
each other in Figure 12. The dashed lines represent the ini-
tial configurations of the respective particle models. It is
observed that with a relatively smaller initial angle, the

particle in the middle moves more toward the right, which
has a tendency to open up the particle compact and that
with a relatively larger initial angle, the particle on the top
flows more downwards and the bottom particle proceeds
more upwards, which tends to close up the model. This is
due to the fact that the sintering force between particles
along the axis connecting particle centers has a larger pro-
jection along horizontal direction with the relatively smaller
initial angle and has a larger component in the vertical
direction with a relatively larger initial angle. As such, the
three‐particle compact with a small initial contact angle
opens up more and has a larger angle change, which
matches the experimental observations.49

4.3 | Many particles simulation

A many‐particle compact with the irregular arrangement, as
shown in Figure 13, is employed to demonstrate the capa-
bility of PFM to model systems with a complex green
structure. The particle chain is designed such that it has a
similar initial structure as the one used in an experimental
study.49 As shown in Figure 13, the stretching of the parti-
cle compact leads to an increasing distance between the
two marked particles (with rectangle boxes) in the top part
of the chain and a decrease in the maximum dimension of

(B) 

(A) 

FIGURE 13 Particle rearrangement of
the employed many‐particle chain from
experimental observations (A) (reproduced
with permission from John Wiley and Sons)
and phase‐field simulations (B)
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the pore area included by the particle compact, which qual-
itatively reproduces what is observed in the experiment. As
analyzed in Figure 12, the marked particle on the left‐hand
side has a sintering force projection along the negative hor-
izontal direction and the marked particle on the right‐hand
side has a sintering force component along the positive
horizontal direction due to the corresponding particle
arrangement nearby or different initial contact angles. The
discrepancy may be induced by the difference in green
structures employed in PFM and experiment (for instance,
initial angles between connecting particles and particle
shapes).

Figure 14 shows some further snapshots of microstruc-
ture morphology from PFM simulation. It is demonstrated
that the elongated pore tends to change shapes to rounded
one by changing the angles between contacting particles
and that the maximum dimension of the pore area is
decreasing until the particle chain reaches a donut‐like
equilibrium shape such that the total surface area is mini-
mized. We note that the closed pore will not disappear due
the fact that the vapor pressure in the pore can just balance
out the surface tension, as mentioned in the theoretical
analysis in.50

We note that the computational cost involved in model-
ing the many‐particle system is identical to that required in
a single particle simulation, as long as the domain sizes of

different systems are the same in PFM. The morphology of
arbitrary green structures can be captured using the PFM
without explicitly tracking positions of moving interfaces,
as in modeling particle systems with simplified geometries.
In addition, the proposed PFM has a dimensional generality
since the employed governing equations are not aware of
dimensionality. As such, it can be organically extended to
three‐dimension (3D).

5 | CONCLUSION

In this work, we have proposed a phase‐field model for
viscous sintering. Microstructure evolution of glass particle
compact is implicitly captured by the evolution of a con-
served order parameter to differentiate particles from sur-
rounding medium. The viscous flow is governed by the
Stokes equation coupled with surface tension effect.
Governing equations in the model can be analytically
derived under the energy law employing the energetic vari-
ational approach, which makes the proposed model thermo-
dynamically consistent.

To qualitatively validate the proposed PFM, the normal-
ized contact radius growth as a function of normalized time
from PFM is compared with that from theoretical analysis,
employing a two‐ equally sized circular particle model with

(A) (B) (C)

(D) (E) (F)

FIGURE 14 Microstructure morphologies of the employed many‐particle chain at (A) 30 000, (B) 40 000, (C) 50 000, (D) 80 000, (E)
100 000, and (F) 200 000 timesteps, respectively
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different radius in 2D. The predicted normalized contact
radius matches well with their theoretical counterparts.
Then the proposed PFM was applied to study the effect of
particle shape and initial contact angle on sintering of glass
particles. A many‐particle model with irregular arrangement
has also been employed to demonstrate the capability of
PFM to simulate microstructure evolution with a complex
green structure. The morphologies of different particle
compacts from PFM simulations have good agreement with
experimental observations qualitatively. We note that the
proposed approach can be readily and consistently
generalized to three‐dimension.

In the future, several research directions will be pur-
sued. First, glass particles with viscoelastic behavior will
be considered to study the effect of viscoelasticity on the
microstructure evolution in viscous sintering. Depending on
the employed constitutive model, elastic energy will be
considered in the total free energy. Second, particles with
varying material properties such as viscosity will be exam-
ined. Finally, the proposed phase‐field approach can be
extended to model solid‐state sintering by adding grain
boundary energy contribution to the total energy and to
simulate liquid phase sintering and the novel cold sintering
technique51 by considering the dissolution‐precipitation
process, with the ultimate goal to establish a robust and
unified phase‐field model for different sintering techniques.
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