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Abstract. We consider in this paper a mathematical model for the incom-

pressible flows with a surfactant monolayer. The presence of surfactant gives

rise to coupling surface terms which make the analysis and simulation chal-
lenging. We study the well-posedness of this coupled system of PDEs with

physically relevant boundary conditions, as well as the stability of a numeri-

cal scheme. We also preform numerical simulations by a fast-spectral method
and use it to study the effect of surfactant concentration on the motion of an

incompressible fluid in a cylinder.

1. Introduction. The dynamics of gas/liquid interfaces play an important role in
many fields, ranging from biological applications such as lung surfactant therapy [7]
and bioreactor [5, 6], to manufacturing applications such as polyurethane foam
stabilization [28]. Surfactant monolayers on the gas/liquid interface are ubiquitous
in nature and technology. However, the realization of a surfactant-free gas/liquid
interface is practically impossible, even in the laboratory [1, 24]. Thus, the modeling
of surfactant monolayers on gas/liquid interfaces, and the coupling of bulk flow and
the interface in the presence of surfactant monolayers, is very important.

In the present paper, we study a model problem that involves the flow in a cylin-
der of aspect ratio Γ = H/R filled with an incompressible fluid, where H and R
are the height and radius of the cylinder, respectively. The flow is driven by the
constant rotation of the bottom wall with angular velocity Ω. The cylinder has
no lid and a monolayer of insoluble surfactant of concentration c0 is distributed
uniformly on the free surface initially. In fact, experiments were recently conducted
by Vogel et al. [33] and Hirsa et al. [11] using vitamin K1 as the surfactant. For
simplicity, we neglect effects due to the surface shear viscosity and surface dilata-
tional viscosity. We also assume that the free surface remains flat. Experimental
justifications of these simplifications can be found in [9, 11, 33].
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Without surfactant, the flow structure of the free-surface flow has been studied
experimentally [5, 6, 10, 16, 19, 23, 29, 30, 34], numerically [3, 4, 12, 13, 19, 23],
and theoretically [3]. In contrast, there are only a few studies concerning flows with
surfactants [11, 23, 33]. In particular, it appears that no three-dimensional simula-
tion for the flow with surfactant is available in the literature. In the present work,
we derive the governing equations in the three-dimensional case, prove the global
existence of a weak solution, and present three-dimensional numerical simulations
using the fast spectral method developed in [14, 15].

The rest of the paper is organized as follows. In Section 2, we introduce the
governing equations, derive the relevant boundary conditions and set up the weak
formulation. We then derive a priori estimates for the coupled system and prove
the existence of a weak solution in Section 3. We consider numerical approximations
of the coupled system in Section 4 and prove the stability for a semi-discretized (in
time) scheme. We present in Section 5 some numerical simulations of the monolayer
dynamics. We conclude with some remarks in the last section.

2. Governing equations.

2.1. Basic equations. The motion of an incompressible fluid in the cylinder, D =
{(r, θ, z) : 0 ≤ r < 1, 0 < z < Γ}, is governed by the incompressible Navier-Stokes
equations

∂u
∂t

+ u · ∇u− 1
Re

∆u +∇p = 0,

∇ · u = 0,
(2.1)

where u = ur r̂+uθθ̂ +uz ẑ is the velocity field, and the Reynolds number is defined
as Re = ΩR2/µ with µ being the dynamic viscosity coefficient of the fluid. The
surfactant concentration is governed by the advection-diffusion equation [31]:

∂c

∂t
+∇s · (cv) =

1
Pes

∆sc on S = {(r, θ, z) : 0 ≤ r < 1, z = Γ}, ∂c
∂ν

∣∣∣
∂S

= 0, (2.2)

where c is the surfactant concentration, v is the restriction of u on the free surface,
Pes = ΩR2/Ds is the surface Péclect number with Ds being the surface diffusion
coefficient of the surfactant, and ∇s, ∆s are the surface gradient and Laplacian
operators, respectively. Decomposing v into the components along the surface, us,
and normal to the surface, (v · n)n, equation (2.2) can be expressed as

∂c

∂t
+∇s · (cus) + c(∇s · n)(v · n) =

1
Pes

∆sc.

Since the free surface is assumed to remain flat, we have

n = ẑ, v · n = uz = 0 on S. (2.3)

Hence the concentration equation becomes

∂c

∂t
+∇s · (cus) =

1
Pes

∆sc on S. (2.4)
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2.2. Stress balance on the surface. Let S̃ ⊂ S be a surface bounded by a closed
curve C̃. We invoke the balance of surface force∫

S̃
t(n) dA =

∫
C̃

ts(ν) d`, (2.5)

where t(n) = n ·T is the stress vector representing the contact force per unit area
exerted on the surface by the fluid, T = −pI + µ[∇u + (∇u)T ] is the stress tensor,
ts(ν) = ν ·Ts is the surface stress vector denoting the contact force per unit length
on the curve C̃, ν is the outward normal vector to C̃ on S, and Ts is the surface
stress tensor. We employ the Boussinesq surface fluid model [2, 25, 27] so that the
surface stress tensor takes the form

Ts = σI + (κs − µs)(∇s · us)I + µs
[
∇sus + (∇sus)T

]
, (2.6)

where σ is the surface tension, κs is the surface dilatational viscosity, µs is the
surface shear viscosity, and ∇s represents the surface gradient operator. Applying
the curl theorem we obtain∫

C̃
σν d` =

∫
S̃

[∇sσ − σn(∇s · n)] dA. (2.7)

By neglecting κs and µs, and combining (2.6) with (2.7), the surface force balance
(2.5) becomes ∫

S̃
n ·T dA =

∫
S̃

[∇sσ − σn(∇s · n)] dA.

Since S̃ is arbitrary, this results in the surface stress balance equation

n ·T = ∇sσ − σn(∇s · n). (2.8)

2.3. Boundary conditions. In the cylindrical coordinates, the constant rotation
of the bottom is represented by uθ = r on z = 0. However, this boundary condition
for uθ is incompatible along the edge of the bottom wall {(r, θ, z) : r = 1, z = 0}
since the side walls are stationary. This singularity for uθ is due to the mathemat-
ical idealization of the physical situation, where there is a thin gap over which uθ
adjusts from 1 on the edge of the bottom wall to 0 on the sidewall. To remove
the nonphysical singularity, we replace the boundary condition of uθ on the bottom
wall by a boundary layer function

uθ(r, θ, 0) = g(r) := r

[
1− exp

(
−1− r2

ε

)]
, (2.9)

which converges to the singular boundary condition uθ = r outside a boundary layer
of width O(ε). The behavior of this boundary function with ε = 0.005 is shown in
Figure 1.

With the above modification, the boundary conditions on the bottom and side
walls are given by

ur = uθ = uz = 0 on r = 1, (2.10a)

ur = uz = 0 on z = 0, (2.10b)

uθ = g(r) on z = 0, (2.10c)

Since the surface is assumed to remain flat, the surface stress balance (2.8) re-
duces to

ẑ ·T = ∇sσ. (2.11)
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Figure 1. Boundary condition (2.9) with ε = 0.005.

The tangential components (r̂ and θ̂) are

µ
∂ur
∂z

=
∂σ

∂r
, µ

∂uθ
∂z

=
1
r

∂σ

∂θ
. (2.12)

Writing equation (2.12) in the dimensionless form, the boundary conditions for the
velocity field on the surface are

∂ur
∂z

=
1

Ca
∂σ

∂r
,

∂uθ
∂z

=
1

Ca
1
r

∂σ

∂θ
, uz = 0 on S, (2.13)

where Ca = µΩR/σ0 is the capillary number with σ0 being the surface tension
coefficient of the clear fluid, i.e., a fluid without surfactant.

Conservation of amount of surfactant can be verified by integrating the concen-
tration equation (2.4) over the surface:

d

dt

∫
S
c dA+

∫
∂S
cu · n d` =

1
Pes

∫
∂S

∂c

∂ν
d`,

where ν is the outward normal to ∂S. The second term on the left-hand side
vanishes because of the boundary condition (2.13), and the term on the right-hand
side vanishes thanks to the homogeneous Neumann boundary condition for c (cf.
(2.2)).

2.4. Weak formulation. Before we state the weak formulation, we first need to
introduce some notations.

For k ∈ N, p ≥ 1, let W k,p(R; Rn) denote the Sobolev space of all functions
u : R → Rn satisfying

||u||Wk,p =

 k∑
j=0

∫
R
|∇ju|p dx

 1
p

<∞, R ⊂ Rm.

We use the standard notation W k,p(R) for W k,p(R; R), and also abuse the notation
W k,p(R) to denote W k,p(R; Rn) when the target space Rn is clear. Let ( , )D and
( , )S denote the inner products on L2(D) and L2(S) respectively. For simplicity,
we use the following notations

||f ||R = ||f ||L2(R), ||f ||k,R = ||f ||Wk,2(R), |f |k,R = ||∇kf ||L2(R), k ∈ N,
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for a function f and a domain R in Rm. For A,B > 0, we use a short notation
A . B to mean that A ≤ CB for some C > 0.

Let us introduce the following functional spaces

Ŵ =
{
u ∈W 1,2(D; R3) : u = 0 on ∂D \ S, u · n = 0 on S

}
,

Ĥ =
{

u ∈ Ŵ : ∇ · u = 0 in D
}
,

W =
{

u = û + g : û ∈ Ŵ
}
, H =

{
u = û + g : û ∈ Ĥ

}
,

V = W 1,2(S; R),

where g(x, t) = g(r)θ̂, and g(r) is as defined in (2.9). We also define the trilinear
form

b(u,v,w) :=
∫
D

(u · ∇)u ·w dx.

Since ∇ · g = 0 and g · n|∂D = 0, we have

b(u,v,v) = 0 for all u ∈ H, v ∈W 1,2(D,R3). (2.14)

For any function space V with its norm || · ||V , and t > 0, let Lp(0, t;V) denote
the space of all functions u : (0, t)→ V satisfying∫ t

0

||u(s)||pVds <∞.

Then a weak formulation corresponding to the system (2.1)-(2.2) with boundary
conditions (2.10) and (2.13) for u reads:

Find û ∈ L2(0, T ; Ĥ) and c ∈ L2(0, T ;V ) so that u = û + g and c satisfy(
∂u
∂t
,v
)
D

+ b(u,u,v) +
1
Re

(∇u,∇v)D −
1

ReCa
(∇sσ,vs)S = 0,(

∂c

∂t
, f

)
S
− (cus,∇sf)S = − 1

Pes
(∇sc,∇sf)S ,

(2.15)

for any v ∈ L2(0, T ; Ĥ) and f ∈ L2(0, T ;V ). Note that the extra surface integral
in the first equation is the result of integration by parts and (2.13).

3. Mathematical analysis. In this section, we derive a priori estimates and prove
the existence of a global weak solution for the couple nonlinear system (2.1) and
(2.4) with boundary conditions (2.10) and (2.13).

3.1. A priori estimates. Next, we recall the following general interpolation the-
orem due to Gagliardo and Nirenberg (see [22] and references therein).

Lemma 1 (Gagliardo-Nirenberg). Let m ∈ N, p, r ∈ [1,∞], R ⊂ RN ,and u ∈
Wm,2(R) ∩ Lr(R). For integer j ≤ m, and θ ∈ [ jm , 1] (θ 6= 1 if m − j − N

2 ∈ N),
define q by

1
q

=
j

m
+ θ

(
1
2
− m

N

)
+

1
r

(1− θ).

Then for any γ ∈ NN , with |γ| = j,∇γu ∈ Lq(R), and satisfies

||∇γu||Lq(R) ≤ C1

∑
|α|=m

||∇αu||θL2(R)||u||
1−θ
Lr(R) + C2||u||Ls(R),

where s = max{2, r}, C1 > 0, C2 ≥ 0 are independent of u. C2 = 0 if R = RN .
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We note that if u = 0 on ∂R, then the above inequality holds with C2 = 0. but
in general, it is not possible to take C2 = 0 when u 6= 0 on ∂R. As a consequence
of the Gagliardo-Nirenberg inequality, we have

||u||L4 ≤ C1||u||1/2L2 ||∇u||1/2L2 + C2||u||L2 if R ⊂ R2,

||u||L4 ≤ C1||u||1/4L2 ||∇u||3/4L2 + C2||u||L2 if R ⊂ R3,
(3.1)

for u ∈W 1,2(R).
It is easy to check that

b(û, û,w) =
∫
D

(û · ∇)û ·w dx = −b(û,w, û) û ∈ Ĥ, w ∈W 1,2(D,R3).

By Hölder’s inequality, we have the estimate

|b(û, û,w)| . ||û||2L4 |w|1,D. (3.2)

For any u ∈ H and w ∈ Ĥ, replacing u by û + g we get

b(u,u,w) = b(û, û,w) + b(g, û,w) + b(û,g,w) + b(g,g,w).

Hence,

|b(u,u,w)| . (||û||2L4 + ||û||1,D + 1)||w||1,D. (3.3)

Let
X = closure of Ĥ in L2(D,R3), Y = closure of V in L2(S).

Then we have the continuous imbeddings

Ĥ ⊂ X ⊂ Ĥ′, V ⊂ Y ⊂ V ′,

where M ′ denotes the dual space of a function space M .

Lemma 2. If u ∈ L2(0, T ; H) and c ∈ L2(0, T ;V ) satisfy (2.15), then ∂û
∂t ∈

L1(0, T ; Ĥ′), û ∈ C(0, T ; Ĥ′), ∂c
∂t ∈ L

1(0, T ;V ′), and c ∈ C(0, T ;V ′).

Proof. Using (3.1), (3.3), and Hölder’s inequality, we obtain∫ T

0

||(u · ∇)u||Ĥ′ dt .
∫ T

0

(||û||21,D + 1) dt <∞. (3.4)

Similarly, we also get∫ T

0

||∆u||Ĥ′ dt .
∫ T

0

(||û||21,D + ||c||21,S + 1) dt <∞. (3.5)

This implies that ∂û
∂t ∈ L

1(0, T ; Ĥ′) and consequently û ∈ C(0, T ; Ĥ′) [21, p. 276].
For any f ∈ V , by the Sobolev imbedding H

1
2 (S) ⊂ L4(S), the trace theorem,

Hölder inequality, and (3.1), we have∣∣∣∣∫
S
∇s · (cus)f

∣∣∣∣ =
∣∣∣∣∫
S
cus · ∇sf

∣∣∣∣ ≤ ||c||L4(S)||us||L4(S)||∇f ||L2(S)

. ||u|| 1
2 ,∂D
||c||1,S ||f ||1,S

. ||u||1,D||c||1,S ||f ||1,S ,∫ T

0

||∇s · (cus)||V ′dt .
∫ T

0

(||u||21,D + ||c||21,S) dt <∞.

Thus ∂c
∂t ∈ L

1(0, T ;V ′) and c ∈ C(0, T ;V ′).
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In order to prove the global existence of a weak solution, we need to make a
reasonable assumption on the equation of state σ(c). We shall assume that the
equation of state takes the following form:

σ = σ(c) = −α
2
c2 + κ(c) with α > 0, ‖κ′‖2L∞ ≤

4αCa
[C(D, S)]2Pes

(3.6)

where α can be any positive constant, and C(D, S) is the constant related to the
trace theorem in the following inequality:

‖u‖S ≤ C(D, S)‖u‖1,D, (3.7)

and κ is continuously differentiable with respect to c, i.e., κ ∈ C1. We note that
the assumption (3.6) is physically relevant. More precisely, we show in Section 5
that the equation of state used both in [9, 11] and in our simulations is consistent
with this assumption.

Theorem 3. Let (u, c) be a solution pair of (2.15). If the equation of state σ(c)
satisfies (3.6), then for any T > 0

max

{∫ T

0

(
||û(t)||21,D + ||c(t)||21,S

)
dt, sup

0≤t≤T
{||û(t)||D, ||c(t)||S}

}
≤ K, (3.8)

where û = u− g and K is a constant depending only on u0, c0, and T .

Proof. By taking v = û in equation (2.15), we obtain

d

dt
‖û‖2D + b(u, û, û) +

1
Re
|û|1,D =

1
ReCa

(∇sσ, ûs)S − b(u,g, û)

− 1
Re

(∇g,∇û)D. (3.9)

Since σ = −α2 c
2 + κ(c) and κ ∈ C1,

1
ReCa

(∇sσ, ûs)S = − α

ReCa
(c∇sc, ûs)S +

1
ReCa

(∇sκ, ûs)S . (3.10)

Applying Hölder’s inequality, Young’s inequality and trace theorem, we estimate
the second term on the right-hand side of equation (3.10) as

|(∇sκ, ûs)S | ≤ |κ̂′|∞‖∇sc‖S‖ûs‖S ≤ ‖κ′‖∞|c|1,S‖û‖1,D

≤ K1

(
η|c|21,S +

1
η
‖û‖21,D

)
, (3.11)

where K1 = ‖κ′‖L∞C(D,S)/2 with C(D,S) being the constant in (3.7), and η > 0
is a constant to be determined. Similarly, we obtain estimates for the second and
third terms (3.9) as

|b(u,g, û)| ≤ ‖∇g‖∞,D‖u‖D‖û‖D . ‖û‖2D + ‖g‖2D,

and ∣∣(∇g,∇û)D
∣∣ ≤ |g|1,D|û|1,D ≤ ε|û|21,D + C(ε), (3.12)

with ε > 0 to be determined. Thanks to (2.14), we have b(u, û, û) = 0. Hence

d

dt
‖û‖2D +

1
Re

(
1− ε− K1

ηCa

)
|û|21,D ≤ −

α

ReCa
(c∇sc, ûs)S +

K1η

ReCa
|c|21,S

+ C1‖û‖2D + C2. (3.13)
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On the other hand, replacing f by c in equation (2.15), we get

d

dt
‖c‖2S +

1
Pes
|c|21,S = (cus,∇sc)S = (cûs,∇sc)S + (cgs,∇sc)S . (3.14)

The last term in (3.14) can be estimated by

(cgs,∇sc)S ≤
||g||L∞

2

(
ε̃|c|21,S +

1
ε̃
||c||2S

)
, (3.15)

with ε̃ > 0 to be determined. Multiplying (3.14) by α
ReCa and summing up with

(3.13), we obtain

d

dt

(
||û||2D +

α

ReCa
||c||2S

)
+

1
Re

(
1− ε− K1

ηCa

)
|û|21,D

+
1

ReCa

(
α

Pes
−K1η −

α|g|L∞
2

ε̃

)
|c|21,S ≤ C1||û||2D + C2||c||2S + C3. (3.16)

Under the condition (3.6), we have K2
1 <

αCa
Pes . Then there exists ε > 0 satisfying

K2
1 <

αCa

Pes
(1− ε).

Choose η > 0 such that
K1

Ca(1− ε)
< η <

α

PesK1
.

Then

1− ε− K1

ηCa
> 0,

α

Pes
−K1η > 0.

By taking ε̃ > 0 satisfying

α

Pes
−K1η −

α|g|L∞
2

ε̃ > 0,

we obtain
d

dt

(
||û||2D + ||c||2S

)
+
(
|û|21,D + |c|21,S

)
≤ C1(||û||2D + ||c||2S) + C2. (3.17)

Applying Grönwall’s inequality yields

||û(t)||2D + ||c(t)||2S ≤
(
||û0||2D + ||c0||2S

)
eC1t +

C2

C1

(
eC1t − 1

)
. (3.18)

Integrating (3.17) from 0 to T , we have∫ T

0

(
||û(t)||21,D + ||c(t)||21,S

)
dt ≤ K(u0, c0, T ).

This completes the proof.

As a consequence, we have the following corollary.

Corollary 4. If (u, c) is a solution pair of (2.15) for T > 0, then

û ∈ L2(0, T ; Ĥ) ∩ L∞(0, T ; X), c ∈ L2(0, T ;V ) ∩ L∞(0, T ;Y ),

and moreover,

û ∈ L 8
3 (0, T ;L4(D)) ∩ L 10

3 ((0, T )×D), c ∈ L4(0, T ;L4(S)) = L4((0, T )× S).
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Proof. It follows from Theorem 3 that

û ∈ L2(0, T ; Ĥ) ∩ L∞(0, T ; X), c ∈ L2(0, T ;V ) ∩ L∞(0, T ;Y ). (3.19)

By inequality (3.1) and ||û||D <∞, we obtain∫ T

0

||û||pL4(D) dt .
∫ T

0

(
|û|

3
4
1,D + 1

)p
dt .

∫ T

0

|û|
3p
4

1,D dt+ 1.

Take p = 8/3. Then from (3.19),∫ T

0

|û|
3p
4

1,D dt <∞.

Hence û ∈ L
8
3 (0, T ;L4(D)). The same argument yields c ∈ L4(0, T ;L4(S)) =

L4((0, T ) × S). Applying Hölder’s inequality and Poincaré inequality, we obtain
that for p1 = n

2 , p2 = n
n−2 ,∫ T

0

∫
D
|û|

2(n+2)
n dx dt ≤

∫ T

0

(∫
D
|û|

4p1
n dx

) 1
p1
(∫
D
|û|2p2 dx

) 1
p2

dt

≤
(

sup
0≤t≤T

||û(t)||
4
n

D

)∫ T

0

(∫
D
|û|

2n
n−2 dx

)n−2
n

dt

.

(
sup

0≤t≤T
||û(t)||

4
n

D

)∫ T

0

(∫
D
|∇û|2 dx

)
dt <∞.

Since D ⊂ R3, û ∈ L 10
3 ((0, T )×D) with n = 3.

3.2. Existence of a weak solution. Having the above results in hand, we are in
a position to prove the existence of a weak solution.

Theorem 5. For any T > 0, there exist u ∈ L2(0, T ; Ĥ) and c ∈ L2(0, T ;V )
satisfying (2.15).

Proof. In order to obtain a weak solution, we use the Galerkin method to ap-
proximate (2.15) by a finite-dimensional problem. Let {Wm}m∈N be an increasing
sequence of finite dimensional subspaces of Ĥ, ∪m∈NWm = Ĥ, and let {w1,w2, . . . ,
wm} be an orthonormal basis for Wm. Likewise, we let {Zm}m∈N be an increasing
sequence of finite dimensional subspaces of V , ∪m∈NZm = V , and {z1, z2, · · · , zm}
be an orthonormal basis for Zm. We now look for an approximate solution to (2.15)
in the form

um(t) =
m∑
j=1

amj (t)wj ∈Wm, cm(t) =
m∑
k=1

bmk (t)zk ∈ Zm. (3.20)

Plugging um and cm into (2.15), and taking v = wi and f = zj(i, j = 1, 2, . . . ,m),
we obtain an initial value problem for a nonlinear system of ODEs for {amj , bmj }mj=1.
By the standard theory of ODEs, there exists a unique solution on a short interval
for each m. We apply the same arguments in Theorem 3 to obtain

max

{∫ T

0

(
||um(t)||21,D + ||cm(t)||21,S

)
dt, sup

0≤t≤T
{||um(t)||D, ||cm(t)||S}

}
≤ K,

with a constant K depending only on u0, c0, and T . By continuation method, this
enables us to extend the solution (um, cm) on [0, T ).
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From Corollary 4, {um}∞m=1 is a bounded sequence in L2(0, T ; Ĥ)∩L∞(0, T ; X)
and {cm}∞m=1 is a bounded sequence in L2(0, T ;V ) ∩ L∞(0, T ;Y ). Moreover, it
also follows from the Gagliardo-Nirenberg inequality (3.1) that {∂u

m

∂t } is bounded
in L

4
3 (0, T ; Ĥ′) and {∂c

m

∂t } is bounded in L
4
3 (0, T ;V ′). In fact, using (3.3) and

Corollary 4 we have∫ T

0

||((um)s + g) · ∇)((um)s + g)||
4
3

Ĥ′
dt .

∫ T

0

(||um||
8
3
L4 + ||um||

4
3
1,D + 1) dt <∞.

The second integral is finite due to the Gagliardo-Nirenberg inequality (3.1) as in
the proof of Corollary 4.

Since
∫ T
0
||∆(um + g)||2

Ĥ′
dt < ∞, {∂u

m

∂t } is bounded in L
4
3 (0, T ; Ĥ′). Since

sup0≤t≤T ||cm(t)||S <∞ and um ∈ L2(0, T ; Ĥ), as in lemma 2 the Hölder inequality
and the inequality (3.1) yield∫ T

0

||∇s · (cm((um)s + g))||
4
3
V ′ dt ≤

∫ T

0

[
||cm||L4(S)||(um)s + g||L4(S)

] 4
3 dt

.
∫ T

0

[(
||∇cm||

1
2
L2 + 1

)
||(um)s + g||1,D

] 4
3
dt .

∫ T

0

||(um)s||
4
3
1,D||∇

scm||
2
3
S dt+ 1

≤

(∫ T

0

||um||21,D dt

) 2
3
(∫ T

0

||∇scm||2S dt

) 1
3

+ 1 <∞.

Hence {∂c
m

∂t } is bounded in L
4
3 (0, T ;V ′).

Passing to subsequences if necessary, as m→∞ we have

um ⇀ u weakly in L2(0, T ; Ĥ),

um ⇀ u weak* in L∞(0, T ; X),

cm ⇀ c weakly in L2(0, T ;V ),

cm ⇀ c weak* in L∞(0, T ;Y ),
∂um

∂t
⇀

∂u
∂t

weakly in L
4
3 (0, T ; Ĥ′),

∂cm

∂t
⇀

∂c

∂t
weakly in L

4
3 (0, T ;V ′).

By Aubin’s compactness lemma (see [22, p. 363] and references therein), we have

um → u strongly in L2(0, T ; X) as m→∞,
cm → c strongly in L2(0, T ;Y ) as m→∞.

Together with Corollary 4, it is standard to show that (u, c) is a weak solution pair
(see [21, p. 334] or [32]). This completes the proof.

4. Numerical schemes. In this section, we shall construct numerical schemes for
the system (2.15). To simplify the presentation, we start with a first-order pressure-
correction (semi-discretized in time) scheme and prove its stability. The proof can be
carried over to second-order pressure-correction schemes, albeit technically tedious.
Then, we describe in some detail the full discretization scheme which is based on
the second-order rotational pressure-correction scheme [8] in time and a spectral-
Galerkin method [26] in space.



INCOMPRESSIBLE FLOW WITH A SURFACTANT MONOLAYER 11

4.1. Stability of a time discretization. We consider the following first-order
pressure-correction semi-implicit Euler scheme: Given u0 ∈ H, c0 ∈ V and p0 ∈
L2(D), define recursively ũn ∈W, cn ∈ V and (pn,un) by

1
∆t

(ũn − un−1,v)D + b(un−1, ũn,v) +
1
Re

(∇ũn,∇v)D − (pn−1,∇ · v)D

+
α

ReCa
(cn−1∇scn,vs)S −

1
ReCa

(∇sκn−1,vs)S = 0, ∀v ∈ Ŵ, (4.1a)

1
∆t

(cn − cn−1, f)S − (cn−1usn,∇sf)S = − 1
Pes

(∇scn,∇sf), ∀f ∈ V, (4.1b)

1
∆t

(un − ũn−1) +∇(pn − pn−1) = 0, ∇ · un = 0, un · n|∂D = 0. (4.1c)

We note that in the above scheme, (4.1a)-(4.1b) forms a coupled linear elliptic
system for (ũn, cn), while (pn,un) can be obtained from (4.1c), which is a usual
projection step, by solving a Poisson equation. Moreover, we show below that
this scheme is essentially unconditionally stable. Hence, the above scheme is very
efficient when coupled with a spacial discretization with efficient elliptic solvers.

Theorem 6. Let ({ũn}, {un}, {cn}, {pn}) be the solutions of the scheme (4.1).
Under the assumption (3.6), there exists C > 0 such that for all ∆t ≤ C, we have

‖ûN‖2D+‖cN‖2S+∆t‖∇pN‖2+∆t
N∑
n=0

(
|ˆ̃un|21,D + |cn|21,S

)
≤ K(u0, c0, p0), ∀N ≤ T

∆t
,

where ûn = un−g, ˆ̃un = ũn−g and K is a constant depending only on u0, c0 and
p0.

Proof. Replacing v by ˆ̃un = ũn − g in equation (4.1a) yields

1
2∆t

(
‖ˆ̃un‖2D − ‖ûn−1‖2D + ‖ˆ̃un − ûn−1‖2D

)
+

1
Re
|ˆ̃un|21,D − (pn−1,∇ · ˆ̃un)D

+
α

ReCa
(cn−1∇scn, ˆ̃usn)S =

1
ReCa

(∇sκn−1, ˆ̃usn)S − b(un−1,g, ˆ̃un)

− 1
Re

(∇g,∇ˆ̃un)D. (4.2)

The second term on the right-hand side can be estimated by using Cauchy-Schwarz
and Poincaré inequalities as follows:

|b(un−1,g, ˆ̃un)| ≤ ‖∇g‖∞,D‖un−1‖D‖ˆ̃un‖D ≤ C0‖ûn−1‖2D + ε1|ˆ̃un|21,D.

The other terms on the right-hand side can be bounded as in equations (3.11)
and (3.12) to obtain

1
2∆t

(
‖ˆ̃un‖2D − ‖ûn−1‖2D + ‖ˆ̃un − ûn−1‖2D

)
+

1
Re

(
1− ε1 − ε−

K1

ηCa

)
|ˆ̃un|21,D

− (pn−1,∇ · ˆ̃un)D +
α

ReCa
(cn−1∇scn, ˆ̃usn)S

≤ K1η

ReCa
|cn|21,S + C1‖ûn−1‖2D + C2. (4.3)

Next, we rearrange (4.1c) into

1√
∆t

ûn +
√

∆t∇pn =
1√
∆t

ˆ̃un +
√

∆t∇pn−1
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and taking the inner product of the above equation with itself on both sides, we
obtain

1
∆t
‖ûn‖2D + ∆t‖∇pn‖2D =

1
∆t
‖ˆ̃un‖2D + ∆t‖∇pn−1‖2D − 2(pn−1,∇ · ˆ̃un)D. (4.4)

On the other hand, taking f by cn in (4.1b) yields

1
2∆t

(
δ‖cn‖2S + ‖δcn‖2S

)
+

1
Pes
|cn|21,S = (cn−1usn,∇scn)S

= (cn−1ûsn,∇scn)S + (cn−1gs,∇scn)S , (4.5)

where we have used the short-hand notation: δvn = vn − vn−1 for any sequence
{vk}. The right-hand side can be bounded similar to equation (3.15).

Multiplying equation (4.5) by α
ReCa , equation (4.4) by 1

2 and summing up with
equation (4.3), and taking η, ε and ε̃ as in Theorem 3, we obtain

1
2∆t

δ
(
‖ûn‖2D +

α

ReCa
‖cn‖2S

)
+ C3

(
|ˆ̃un|21,D +

α

ReCa
|cn|21,S

)
+

1
2

∆t δ‖∇pn‖2D
≤ C4(‖ûn−1‖2D + ‖cn−1‖2S + ‖cn‖2S + 1). (4.6)

We can then conclude by applying the discrete Grönwall lemma.

4.2. A second-order time discretization. The scheme (4.1) can be easily ex-
tended to second-order in time. We now describe a second-order version, which is
based on the second-order rotational pressure-correction scheme, that we use in our
simulation.

1
2∆t

(3ũn − 4un−1 + un−2,v)D + b(u∗n, ũn,v) +
1
Re

(∇ũn,∇v)D − (pn−1,∇ · v)D

+
α

ReCa
(c∗n∇scn,vs)S −

1
ReCa

(∇sκ∗n,vs)S = 0, ∀v ∈ Ŵ, (4.7a)

1
2∆t

(3cn − 4cn−1 + cn−2, f)S − (c∗nusn,∇sf)S = − 1
Pes

(∇scn,∇sf), ∀f ∈ V,
(4.7b)

3
2∆t

(un − ũn−1) +∇(pn − pn−1 +
1
Re
∇ · ũn) = 0, ∇ · un = 0, un · n|∂D = 0,

(4.7c)

where u∗n = 2un−1 − un−2 is a second-order approximation to un, and c∗n, κ∗n are
defined similarly. The stability of the above scheme can be established by using
essentially the same procedure as in the last subsection. However, it does involve
tedious technical detail that we shall leave to interested readers.

4.3. Spectral-Galerkin method in space. In practice the coupled linear elliptic
system for (ũn, cn) in (4.7) is solved by either an iterative solver with a block
diagonal preconditioner or by a decoupled approach, with approximations to all
nonlinear terms are treated explicitly. Therefore, at each time step, we need to
solve a sequence of vector and scalar Poisson-type equations for ũn, cn and pn.

We shall use a spectral-Galerkin method [26, 17, 20] for solving these Poisson-
type equations. More precisely, the equations are first decoupled into scalar Poisson-
type equations for each Fourier mode in the azimuthal direction (see [14, 20]). The
decoupling of the vector Poisson-type equation is non-trivial and is explained in
more details here. The first two components of the vector Poisson-type equation



INCOMPRESSIBLE FLOW WITH A SURFACTANT MONOLAYER 13

reads:

αur −
(

∆u− 1
r2
ur −

2
r2
∂uθ
∂θ

)
= fr,

αuθ −
(

∆uθ −
1
r2
uθ +

2
r2
∂ur
∂θ

)
= fθ,

(4.8)

where α is a non-negative constant. Define the complex variables

u = ur + iuθ, f = fr + ifθ.

Then the vector Poisson-type equation (4.8) becomes

αu−
(

∆− 1
r2

+
2i

r2
∂

∂θ

)
u = f. (4.9)

Express the functions as Fourier series:

u(r, θ, z) =
∞∑

m=−∞
ûm(r, z)eimθ, (4.10)

and similarly for f. Substituting the Fourier expansions into equation (4.9) and
collecting the terms for each Fourier mode m, we find that ûm(r, z) satisfies the
following equations for m ≥ 0:

αû±m −∆±m+1û±m = f̂±m,

where ∆m is the reduced Laplace operator:

∆mu :=
1
r

∂

∂r

(
r
∂u

∂r

)
− m2

r2
u+

∂2u

∂z2
.

The boundary conditions of the Fourier coefficients ûm can be derived from equa-
tions (2.10) and (2.13) as follows:

On r = 1 : û±m = ûz,±m = 0, ∀m,
On z = 0 : û0 = i g(r),

û±m = ûz,±m = 0, m > 0,

On z = Γ : û±m = ĥ±m, ûz,±m = 0, ∀m,

where ĥm is the m-th Fourier coefficient of

h =
1

Ca

(
∂σ

∂r
+

i

r

∂σ

∂θ

)
.

5. Numerical results. The nonlinear equation of state σ = σ(c) used in the
computations is a fit to the experimentally measured surface tension of vitamin K1

on a water substrate [9]. The fit has the form

σ(c) =
a2 + a3c+ a4c

2

1 + exp(a0a1 − a1c)
+

a5 + a6c
2

1 + exp(a1c− a0a1)
,

where a0 = 1.108, a1 = 32.37, a2 = 20.11, a3 = 97.04, a4 = −45.9, a5 = 72.4 and
a6 = −0.15. In Figure 2, we plot the equation of state σ(c).

Note that the Taylor expansion of σ at 0 is

σ(c) ∼ 72.4−4.2×10−13c−0.15c2−6.5×10−11c3−4.95×10−10c4−3×10−9c5+· · · .
In this case, we can take α = 0.15/2 in (3.6). Thanks to the maximum principle
satisfied by the concentration equation and that the range of interested values for
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Figure 2. Surface tension as a function of surfactant concentration.

c is [0, 1], we find that the condition (3.6) is satisfied by a large range of values of
interest for Pes and Ca, including in particular the following parameters used in
all our simulations:

Pes = 1000, Ca = 0.001.

Other modeling and computational parameters are ε = 0.005, γ = 10−6, ∆t = 0.001
with resolution (128, 32, 32) in the r- and z- and θ- directions, respectively.

5.1. Base flow. Note that the system is SO(2) invariant, i.e., invariant under
arbitrary rotations about the axis. As such, the base flow is axisymmetric and
steady. Figure 3 shows the surfactant concentration and radial velocity on the free
surface for c0 = 0.4 mg m−2 and Re = 1000. The results are similar to those in
Lopez and Hirsa [18] and Hirsa et al. [9], though the flow in an annular region was
considered in these two studies. Note that the surfactant is driven towards the
axis, resulting in a region free of surfactant near the boundary. Figure 4 shows
the streamlines and vortex lines (contours of ruθ) in the meridional plane (r, z) ∈
[0, 1]× [0,Γ], where the axis is located on the left. The Stokes stream function ψ is
defined through

ur = −1
r

∂ψ

∂z
, uz =

1
r

∂ψ

∂r
.

The streamlines and vortex lines show that the flow is essentially in solid-body
rotation (i.e., uθ ∼ r) for r < 0.3, with zero meridional motion (ψ ∼ 0). The
discontinuities between the stationary cylinder and the rotating bottom disk result
in all the vortex lines that originate on the rotating bottom disk for r > 0.6 termi-
nating at the discontinuities. This results in significant vortex line bending which
induces the secondary meridional flow, as indicated by the streamlines.

5.2. Primary instabilities. For c0 = 0.4 mg m−2, the basic state remains stable
up to about Re = 1050, at which point it loses stability via a supercritical Hopf
bifurcation to an azimuthal mode with wavenumber m = 3. Contours of the sur-
factant concentration and the z-vorticity on the interface for Re = 2000 are shown
in Figure 5, where the z-vorticity is defined as

∇× u · ẑ =
∂uθ
∂r
− 1
r

(
∂ur
∂θ
− uθ

)
.
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Figure 3. Results for c0 = 0.4 mg m−2 and Re = 1000: surfactant
concentration (left) and radial velocity (right) on the free surface.

Figure 4. Results for c0 = 0.4 mg m−2 and Re = 1000. Stream-
lines (left) and vortex lines (right) in the meridional plane. Contour
levels of vertex lines are spaced quadratically.

Note that clearing of surfactant occurs near the boundary. This mode is a rotating
wave with non-dimensional period t = 3.334, which agrees well with the experimen-
tal result of Vogel et al. [33].

Figure 5. Results for c0 = 0.4 mg m−2 and Re = 2000. Left: con-
tours of surfactant concentration at 0.05, 0.4, 0.5, 0.6, 0.65
(mg m−2). Right: contours of z-vorticity at −2, −1, 0, 0.5, 1, 1.5.

6. Concluding remarks. We have studied a mathematical model for a system
of an incompressible flow with an insoluble surfactant on the top of a cylinder
when the flow is driven by the constant rotation of the bottom wall. By making
a reasonable assumption on the equation of state, we have established existence
of a global weak solution for the coupled nonlinear system for the fluid velocity,
pressure and surfactant concentration. We have also constructed efficient time-
discretization scheme, that leads to a coupled linear elliptic equation for the velocity
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and concentration and a Poisson equation for the pressure at each time step, and
proved that the scheme is essentially unconditionally stable..

We have implemented a numerical scheme which consists of a second-order rota-
tional pressure correction scheme in time and spectral-Galerkin methods in space,
and use it to simulated the monolayer dynamics with equation of the state for
the surface tension compatible with the experiment done by Hirsa et al. [9]. We
investigated the dependence of Reynolds number Re on the stability of the base
flow. From numerical results, we found that there exists a series of symmetry
breaking into several azimuthal modes and some of these modes are unstable with
respect to three-dimensional perturbations. With a low surfactant concentration
c0 = 0.4 mg m−2, numerical simulations showed clearing of surfactant near the
boundary wall. The three-dimensional results are in agreement with the experi-
mental result of Vogel et al. [33].
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