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A SPECTRAL-TAU APPROXIMATION FOR THE STOKES
AND NAVIER-STOKES EQUATIONS (*)

by JIE SHEN Q)

Communicated by R* TEMAM

Abstract. — A new spectral-Tau formulation for Stokes problem is introduced and analyzed.
The pressure approximation o f the resulting system does not contain any spurious modes.
Moreover, the scheme is easy to impîement numerically, The spectral convergence o f the scheme
is proved and is affirmed by numerical results.

Resumé. — Une nouvelle formulation de type spectrale-Tau pour les équations de Stokes est
introduite et analysée. L'approximation de la pression du nouveau schéma ne contient aucun
mode parasite, De plus, le schéma est facile à implémenter numériquement. La convergence
spectrale est démontrée et confirmée par des résultats numériques.

1. INTRODUCTION

The aim of this paper is to study, both theoretically and numerically, a
spectral-Tau method for the Stokes problem with Dirichlet boundary
conditions.

Let Cl be an open set in Rd (d integer ^ 2). The Stokes équations in the
velocity-pressure formulation are

(1.1) div u = 0, x e fi

where v is the coefficient of kinematic viscosity, and ƒ an external force
field.

(*) Received in November 1987.
O Department of Mathematics, Indiana University, Bloomington, In. 47405 (USA).

M2 AN Modélisation mathématique et Analyse numérique 0399-0516/88/04/677/17/$ 3.70
Mathematical Modelling and Numerical Analysis © AFCET Gauthier-Villars



678 J. SHEN

In the recent years, a number of algorithms using spectral methods have
been successfully implemented for solving the Stokes and Navier-Stokes
équations. Meanwhile, various theoretical results dealing with spectral-
Galerkin and spectral-collocation methods have been established (cf [3],
[4]5 [5] and the références therein). However, to the author's knowledge,
the spectral-Tau method seems to be less studied, although it is frequently
used in practice because of its efficiency in solving Helmholtz type équations
(cf. [11], [10] for the f ast Helmholtz solver by Chebychev-Tau method),
Recently, Sacchi Landeriani analyzed in [13] a usual Legendre-Tau formu-
lation which has a large number of spurious modes, consequently, this
formulation is difficult to implement numerically. Moreover, the method he
used is restricted to two dimensional case and the error estimâtes he
obtained are somewhat unsatisfactory. We propose in this paper a new
spectral-Tau formulation for the Stokes problem which does not contain any
spurious modes and for which a better error estimate, though might not be
optimal, is achieved for arbitrary dimensional case.

A great problem in solving the Stokes problem with Dirichlet boundary
condition numerically is the treatment of the pressure. The pressure
p in (1.1) can be considered as a Lagrange multiplier which ensures
satisfaction of the incompressibüity condition « div u = 0 », and its calcu-
lation is then coupled with that of the velocity. One of the efficient methods
for separating the calculation of u from that of p is using the Uzawa
algorithm (cf [1]). It is found that our new scheme is well adapted to the
Uzawa algorithm.

We analyze the spectral-Tau method for the Helmholtz équations in
section 2 where an optimal error estimate is given. In section 3, we
introducé and analyze a new spectral-Tau formulation for the Stokes
problem. Finally, in section 4, we adapt an Uzawa type algorithm to the new
system and the algorithm is implemented to solve the 2-D Stokes problem as
well as the 2-D Navier-Stokes problem.

Notations

Let / = ( - 1, 1 ), we consider the parrallelepiped O = Idm Rd. Through-
out the paper, we shall use the weighted Sobolev spaces H^fl) and
Wo,»(^) with the standard weighted norm ||- \\s a where o> is either the
Chebychev weight function

or the Legendre weight function
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A SPECTRAL-TAU APPROXIMATION FOR THE STOKES EQUATIONS 679

In the later case, co will be omitted in the notations. We set

î

If a>= 1, we dérive from the Poincaré inequality that ||* || = ÛW(* , • ) 2 is a
norm equivalent to || • || x w. It is also proved in [6] that the same resuit is true
for then Chebychev weight function. We shall then dénote the norm in
X (resp. in L2{VL)) by ||- ||w (resp. |- |w) . Throughout the paper, we shall
use c and ct to dénote constants which can vary from one équation to
another.

The following finite dimensional spaces will be used ;
SN : the set of polynomials such that the order of each variable is less than or
equal to N ;

XN = {feSN:f(x)\dù = Q} .

2. HELMHOLTZ EQUATIONS

We consider in this section the Helmholtz équations with homogeneous
boundary condition :

lau-àu^f in O
U\BÙ — u

where a > 0 is a constant. Since the term au does not introducé any
difficulty, we study only the case a = 0 :

{ v m

which is indeed a Poisson équation.
The Tau method applied to the System (2.2) is :

ffind uN e XN such that
(2.3) I v ) = ( f v) V v e S

where (ƒ, u)w = (ƒ, v<o) is the scalar product of ƒ and v in I
In the Chebychev case, the System (2.3) can be solved efficiently by the

diagonalization method proposed by D. B. Haidvogel and T. Zang (cf.
tu]).

Let Fjv_2 be the orthogonal projection operator in Ll(ft) onto
Sjv_2- We define :

vol. 22, n° 4, 1988



680 J. SHEN

By noting that :

(2.5) PN_2 XN = SN _2

we can rewrite the system (2.3) in a symmetrie form :

[find uN e XN such that

Let us prove first a preliminary lemma.

LEMMA 1 : The bilinear form aN(a(- , - ) is continuons and coercive on
XN x XN, more precisely :

( « * , . ( « > » ) * ll« I L - I N . . *u,veXN

Proof: We shall only prove the two dimensional Chebychev case. The
result can be easily established for the Legendre case and extended for any
integer d s= 2 by similar argument.

We consider first one variable function : <|> G XN(I). By définition, we
have :

(2.7) - ( ^ P N - 2 4>)« = - (4>x*>4>)« ^

Then Vw e XN(I2), we can expand it in the Chebychev series :

u= £ unmTn(x)Tm(y)eXN
n,m = 0

where r„(x) is the Chebychev polynomial which possesses the following
orthogonal property :

(2.8) f Tn(x) Tm(x) U(jc) dx = cn bnm , Vn, m ** 0

(where c0 = 2 and c„ = 1, Vn ss 1 ).
We can also write u as :

" = £ UH(y) Tn(x) , with Un(y) = J w„m rm(y) € XN(I) or
n = 0

« = £ ^«(*)rm(y), with LTm(

m = 0

m = 0

M2AN Modélisation mathématique et Analyse numérique
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A SPECTRAL-TAU APPROXIMATION FOR THE STOKES EQUATIONS 681

Hence

Lu = £ Ü%\x) Tm(y) + £ U?\y) Tn(x)

where Ûffi(x) and U^\y) are respectively the second derivative of

Ùm{x) and Un(y).

It follows that :

£ „(*), £ un(y) Tn(x)
n = 0 n = 0

Then by using successively (2.8) and (2.7), we get :

(2.9) - {Au, ^ . 2 « ) » =

C> W), Um(y)

m = 0

We dénote from now on the last sum by || jfN _2 u||*. The next step is then
to majorize ||w||w in term of

Since u\dù = 0, we have :

u(±l,y)= £ f/mC
m=0 m=0

which imply :

2 2 " 1

m = 0 m = 0

Hence

Similarly

(2.11) | | ^ ( ^

vol. 22, na 4, 1988



682 J. SHEN

On the other hand

(2.12) \\u\\l = -{^u^N_2u)^ £ {\\Üm(x)\l+ \\Um(y)\\l)
m = Q

It then follows that

(2-13) \\JrN-2u\\l* ( y +

which also means that

One can readily check that in arbitrary dimensional case the last two
inequalities become :

and
d~l

The second inequality of this lemma can be established by using the same
argument as bef ore. Namely

(2.14) - (AM, ^ N _ 2 Ü ) W =
JV-2

m = 0

The proof is complete. 1T
We can now prove the following theorem.

THEOREM 1 : There exists an unique solution uN for the system (2.6).
Moreover, if the solution u of (2.1) belongs to H£(ft), we have the following
error estimate :

d + l

ÏVPAN Modélisation mathématique et Analyse numérique
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A SPECTRAL-TAU APPROXIMATION FOR THE STOKES EQUATIONS 683

Proof: The existence and uniqueness of the solution for the System (2.6)
follows immediately from Lemma 1 and the classical Lax-Milgram theorem.

By subtracting (2.1) from (2.3), we find :

«*,«("*-"»«) = 0 , VveXN

thus

(2.15) fljv,w(MN-<M) = «]*,»(«-<M)> V D ^ e l ^ .

We replace v by uN - <}> in (2.15), by using (2.9) and (2.14), we find :

We then dérive from (2.136w) that

d-1

2

2

Hence

K - « | | * inf

d-1
2 inf

d-1
2

The last inequality follows from an approximation resuit in [7]. 1T

Remark 1 : We note that the Tau method does not yield the best error
estimate among the class of polynomials as the Galerkin and collocation
methods do (cf. [3], [5]). However, the results in Lemma 1 and Theorem 1
are optimal since the only critical points in the proof are those of (2.10) and
(2.11) which are not improvable.

3. STOKES EQUATIONS

We analyze in this section a spectral-Tau approximation for the Stokes
problem. In the sequel, we shall use the calligraphie letter sf to dénote
vector space Ad.

vol. 22, n° 4, 1988



684 J* SHEN

A usual spectral-Tau formulation for this problem is :

find (uN,pN) e 3CN x MN such that :

N, V)m = (ƒ, V)a , Vl7 € 5

where MN is to be determined.
As for the continuous problem (1.1), the constant in the pressure space

should be filtered out, so it is necessary for the discrete problem to choose a
space MN which does not contain any spurious mode whose discrete
gradient vanishes. The compatibility problem between 2£N and MN is
extensively investigated for finite éléments methods (cf. e.g. [9]) as well as
for the spectral methods (cf. [3], [5]). At first view, the most natural choice
for MN seems to be the space SN. But unfortunately, the resulting System is
not well posed because SN contains spurious modes, It is found that the
number of such modes in 2-D case is 8 and it seems in 3-D case the number
will be increased to be proportional to N (cf. [5] for Galerkin and
collocation case). The présence of spurious modes introduces a significant
difficulty for the theoretical study of the System, it also increases consider-
ably the numerical complexity since a large number of spurious modes
should be filtered out.

We propose hère a new spectral-Tau formulation for the Stokes problem
which enjoys the following properties.

(i) no spurious mode is present ;

(ii) the resulting System can be easily solved by using an Uzawa type
algorithm.

The scheme we propose is the following :

find (uN,pN) € 2£N x MN such that :

K }

where MN = it? e SN _2 : v dx = 0 >.
1 Jn J

We observe first there is no spurious modes in MN. In f act, it is easy to
check that

{q e MN : (Vq, i?)w = 0 , Vu e $fN_2} = <ï> (the empty set) .

The price we pay? compared to the usual formulation (3.1)? is that the
divergence of solution uN of (3.2) is not identically zero. We wül show late
that this particularity does not alter the précision of the scheme.

M2AN Modélisation mathématique et Analyse numérique
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A SPECTRAL-TAU APPROXIMATION FOR THE STOKES EQUATIONS 685

In the rest of this section, we will only consider the Legendre case.
Numerical expériences suggest that similar results should hold for the
Chebychev case.

As well as in case of the Helmholtz équations, it is préférable to transform
the discrete Stokes System to a symmetrie one. Since PN _2 XN = SN _2 , we
can then rewrite (3.2) under the form :

find (uN,pN) e 3CN x MN such that :

= {f,v)N , VüGfjv
( 3 3 ) [b(uN,q) = 0, VqeMN

where we have set

b(v,q)= (Vq,v) = - (divv,q), V (v, q) e SC N x MN .

The System (3.3) is now well suited to apply the saddle point theory
developed by Brezzi (cf,[2]).

We can now prove our main resuit.

THEOREM 2 : The System (3.3) admits a unique solution (uN,pN).
Moreover, if the solution (u,p) of problem (2.1) belongs to HS(Q) x

\ ) , then:

(3.4) \\u-uN\\^cNd-s(\\u\\s+ \\pl_J

(3.5) \\p-PN\\^c

Proof: We dérive from (2.5) that V# e MN, there exists qu e XN such that
^N-2QU = ^(1* By using the same technique as in Lemma 1, one can
prove :

rf-i

\\qu\\*cN 2 \\Vq\\ .

Therefore

VqeMN, sup ^ 2

Then by using the following inverse inequality (cf. [7]) :

(3.6) \\u\\t.»*

vol. 22, n° 4, 1988



686 J. SHEN

we obtain

(3.7) VqeMN, sup J^f-^cN 2 \Vq\ ̂  cN 2 \q\ .
f Pil

We dérive also from Lemma 1 that

(3.8) V . . J T , :

(3.7) and (3.8) are the well known inf-sup conditions for the bilinear forms
aN(- , • ) and &(• , • ). It then follows from Corollary 4.1, Ch. 1 in [9] that the
system (3.3) admits an unique solution.

In order to dérive an error estimate, we need the following approximation
resuit (cf. [7] and [13]) :

inf WP-^W^CN'
4>eSN

inf l | i> -4> | | r ^cAr '

where Y = {ƒ e 3E : div ƒ = 0} and ̂  = 'T" n Sf N.
Consequently, there exist UN e VN and qN e SN_2 such that :

(3.9) | w - %

(3.10) ||p-

We now subtract (1.1) from (3.3) :

(3.11) aN(u-uN,v) + b(vyp

Hence

(3.12) a N (% - uN, v) = a A r (% - w5 ü) - b(v,p -pN) , Vu € ^ ^ .

We then replace y by % — uN in (3.12) and we majorize the terms on the
right hand side as follows ;

Using Lemma 1 and (3.9) :

aN(UN ~u,UN- uN) ̂  | |% ~ uN\\ • \\üN -u\\

Modélisation mathématique et Analyse numérique
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Since

b(UN-uN,pN) = 0 and PN_2di\uN = 0

we find

b(UN -uN,pN-p) =

= (Yp, UN - uN) = (p, div (uN - % ) )

^ inf (p-<J>, div ( w N - û N ) ) ^ c N

By combining these inequalities into (3.12) and taking into account
Lemma 1, we obtain :

^ - uN ||2 ̂  fl^(wN - uN, UN - uN)

Hence

(3.4) then follows from this inequality and (3.9).
By using the inverse inequality (3.6), we also have :

(3.13) \\uN-u\\2^c3,

Finally, we deduce from (3.11), (3.13) and (3.9) that :

b(P,PN-?N)
PN~<1N\\^C sup

b(v,pN-p) + b(v,p- qN)
; C . SUp

; c • sup

M
aN(u - uN,v)H

<?{||«-K*||2+ IP-QN

The proof is complete by combining this inequality and (3.10). 1T

vol. 22, n° 4, 1988
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4. NUMERICAL ALGORITHM AND RESULTS

4,1. Uzawa algorithm

We proved in the previous section that the scheme (3.2) converges
exponentially to (1.1) provided that the solution of (1.1) is infinitely
differentiable. However, the numerical calculation of (3.2) is still very
difficult since uN and the pN are coupled by the condition
« PN-2 div uN = 0 ». One way to overcome this difficulty is to use the so
called influence matrix method (cf. [12]). It consists of solving a cascade of
Helmholtz équations for the velocity as well as for the pressure subjected to
an implicit boundary condition « div uN = 0 ». This method requires a large
number of preliminary opérations and memories for the construction and
storage of the influence matrix. It is then préférable only in the 2-D case and
when there is a large number of Stokes-like équations to be calculated.
Another strategy is to use an itérative procedure, for example the Uzawa
algorithm (cf [1] and [14]), to separate the calculation of u from that of
p. For our discrete System (3.2), the Uzawa algorithm takes the following
form :

find («£,/?&) e &N xMN such that :

(4.1a) vaN(MN>v)=(f-VPN>v)> Vi;e5%_2

(4.lfe) PN+1=PN ~ ?PN-2&™N

with PN arbitrary given in MN.
At each itération step, only a spectral-Tau System of the Poisson équation

(4.1a) is to be solved. In the Chebychev case, this can be done by using the
efficient diagonalization method.

We establish in the following a convergence resuit for the Legendre case.

LEMMA 2 : The solution (u^,p^) of scheme (4.1) converge to that of (3.2)
under the condition 0 < p < v. More precisely, we have :

-p)JV1-' £ \\u"N-uN\\2^\p°N-pN\2.
n = Q

Proof: We set

We dérive from (3.2) and (4.1) that :

(4.2a) vaN(en, v) = (- Vq\ v)N ,

(4.2b) qn + i = qn-pPN_2diven.

M2AN Modélisation mathématique et Analyse numérique
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We replace v by en in (4.2a) and integrate (4.26) multiplied by 2 qn, by
taking into account (2.12), we get :

(4.3a) v|| JTW_2 e
nf « ( - S/q", 0>N_2 e")

(4.36) \q" + 1\2- \q"\2= \qn+ ! - qn\2 - 2 p(PN_2 div e", q") .

It follows from (4.26) that :

(4.4) \q"
 + i-qn\2 = p2\PN_2diven\2.

We deduce from intégration by parts :

(PN _2 div e", qn) = (div «", q») = - (e", V*") = - (0>N _2 e", V*") .

We now add (4.36) with (4.3a) multiplied by 2 p, by using (4.4) and the last
equality, we obtain :

(4.5) \qn + 1\2- |^"|2 + 2 pv || JTW_2 e"|[2 ^ P
2 | J P N _ 2 div e"|

one can readily check that :

By summing (4.5) for n = 0, ..., m, we arrive to :

The proof is complete by using (2.13bis). 1T

Remark 1 : For the usual spectral-Tau approximation (3.1), a similar
Uzawa algorithm will lead to a very restrictive convergence condition,
namely, p < v/N. As a conséquence, the resulting scheme converges very
slowly, especially when Â  is large.

4.2. Numerical results

The schemes (4.1) in its Chebychev form are used to solve 2-D steady
Stokes équations. In order to test our algorithm, we calculated the problem
(1.1) with following exact solution :

,* ^ [U = (w, v ) = (cos TU; . cos iry, sin irx . sin tvy )
[p = cos 7TX , cos iry, v = 1 .

vol. 22, n° 4, 1988
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One of the nice properties of the scheme (4.1) is that the convergence
speed does not depend on the number of discretization modes as we proved
in Lemma 2. We observe in practice that the convergence speeds for
different numbers « N » of discretization modes are almost identical. This
property is particularly interesting when N is large.

The convergence speed of the scheme (4.1) varies drastically with the
value of parameter p. In all cases, the condition « 0 < p -< v » ensures
stability as we proved in Lemma 2. However, the optimal value of p usually
does not lie in this interval. In fact? for each concrete problem, there exists a
constant pmax e [v,2v) such that instability phenomena occurs for all
p ;> pmax and the fastest convergence is achieved for a p near pmax but not
equal to it. Our expériences suggest that the optimal value usual Hes in
(1.2 v, 1.6 v). We traced in figure 1 the number of itérations, required to get
a relative l2 residue less than « 10 e — 6»5 in function of p for our test
problem. We also implemented the Uzawa algorithm using a collocation-
Chebychev formulation. It is carried out that its convergence speed is much
slower then our tau-Chebychev formulation. The high convergence speed of
Uzawa algorithm applied to the new tau-Chebychev formulation may be
explained by the fact that the last two rows and columns of high frequency
modes are filtered out.

2 8 .

2 5 .

2 2 .

18 .

15 .

No. of itérâtic

.80 1.00 1.2 1.4 1 .6

Fig. 1. — Convergence rate of Uzawa algorithm.

The relative l2 errors at the collocation points with different N are
presented in table 1. We observe that the spectral convergence is achieved
for both velocity and pressure.
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TABLE 1

Relative l2 errors for the test problem

e ( / ) = max | /ex(*) — /ap(*)| » where D is the set of collocation points in O ;
xeD

N> M : number of modes in each direction.

e(«) =

B(P) =

8

3.416 E-4

5.398 £-3

10

1.836 £-7

3.844 £-6

16

2.686 £-11

7.294 £-10

20

4.085 £-14

5.242 £-13

TABLE 2
Driven cavity

ƒ max = max | *|# | , where D is the set of 65 x 65 equidistant points in O.
X€D

PV (— ƒ max) : value in the center of principal vortex ;
LV (resp. RV) : value in the center of left (resp. right) secondary vortex.

16

24

16

24

24

R

100

100

400

400

1000

PV (= f max)

0.08369
(0.63, 0.77)

0.08366
(0.63, 0.77)

0.08569
(0.59, 0.64)

0.08573
(0.59, 0.63)

0.08691
(0.53, 0.55)

LV

- 2.692 £-8
(0.01, 0.13)

-1.266 £-6
(0.05, 0.05)

- 6.881 £-6
(0.08, 0.05)

- 2.591 £-6
(0.05, 0.06)

- 3.249 £-4
(0.078, 0.093)

RV

- 5.530 £-6
(0.97, 0.06)

- 4.907 £-6
(0.97, 0.06)

- 2.562 £-4
(0.91, 0.13)

- 2.563 £-4
(0.92, 0.13)

- 1,564 £-3
(0.86, 0.19)

For the steady Navier-Stokes équations» we can adapt a similar algorithm ;

(4.7)

n + 1 =pn-p.PN_2di\un.

vol. 22, n" 4, 1988



692 J. SHEN

The scheme (4.7) is nothing more than the artificial compressibility
method if we replace p by kc2 (cf for instance [14]). The stability of this
scheme can be determined numerically.

We applied this scheme to the classical driven cavity problem. The
boundary condition for the velocity is modified as shown in figure 2 such
that the solution will meet the regularity requirement of the spectral
methods.

^ 0

o
II

u = v = 0

Fig. 2. — Driven cavity.

For Reynold number up to 400, we compared our result with that of U.
Ehrenstein (cf [8]) who used an influence matrix method applied to the
collocation Chebychev approximation of the Navier-Stokes équations under
the streamlinevortex formulation. The results are also compared with that
of L. B. Zhang (cf [15]) who used a second order multi-grids method on
128 x 128 points for Reynold number up to 1 000. The différences between
these results obtained by totally different methods are within 0.5 %.
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