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Abstract

We prove that, asymptotically, any cluster of quasimodes close to each other approximates
at least the same number of resonances, counting multiplicities. As a consequence, we get that
the counting function of the number of resonances close to the real axis is bounded from below
essentially by the counting function of the quasimodes.

1 Introduction

The purpose of this paper is to obtain sharp lower bounds of the number of resonances (scattering
poles) close to the real axis. We consider a situation where one can construgtasiatodes.e.,

a sequence of approximate real “resonances” and corresponding approximate solutions supported
in a fixed compact set. Our main result states, loosely speaking, that quasimodes are perturbed
resonances near the real axis and that the number of resonances close to the real axis is at least
equal to that of the quasimodes, counting multiplicities.

Quasimode constructions with polynomially small errors are known for a long time in various
situations, see e.g. [C], [R], [L], [P1], [C-P] (see also [P2] for a construction with an exponentially
small error). It has been an open problem however, for problems in unbounded domains, whether
the mere fact that one can construct quasimodes implies existence of resonances close to them. In
particular, it was not known whether an elliptic periodic trapped ray in obstacle scattering generated
a sequence of resonances converging to the real axis, although a construction of quasimodes in this
case was available. The first result in this direction appeared in [St-V2, Lemma 1] in the study
of resonances caused by Rayleigh surface waves in linear elasticity. It was shown, for general
compactly supported perturbations in odd dimensional spaces, that existence of real quasimodes
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with polynomially small error implied existence of resonances converging to the real axis at the
same rate. An important role in the proof of that lemma played aniori exponential estimate

on the cut-off resolvent, established by Zworski (see the remarks before Lemma 1 in section 3).
The method in [St-V2] however, was not sensitive enough to obtain information on the density
of those resonances, it could only prove their existence. An asymptotic formula for the Rayleigh
resonances for the specific problem studied in [St-V1], [St-V2] for convex obstacle was obtained
in [S]-V].

A major step ahead was made by Tang and Zworski [T-Z], who considered any space dimension
and non necessarily compactly supported perturbations. They observed that one can localize not
only near the real axis as done in [St-V2, Lemma 1], but in fact, one can localize near a quasimode
to obtain that if the quasimode is large enough, then there is always a resonance close to it. This
confirmed the expectation that quasimodes are perturbed resonances. The results in [T-Z] also
imply lower bounds on the number of resonances near the real axis. For any known construction
we get at least linear bound. If quasimodes are “well distributed” in some sense, one could also
obtain finer bounds. However, if quasimodes are distributed in a “unregular” way, more precisely,
if there can be multiple quasimodes or clusters of quasimodes too close to each other, then the
results in [T-Z] could only prove that anyone of those multiple quasimodes or clusters produces one
resonance only. This restricts the possibility of obtaining sharp lower bounds in those situations.

In the present paper we show that such clusters of quasimodes produce (asymptotically) at
least the same number of resonances, see Theorem 1 and Corollary 1. To prove this, we develop
further the ideas in [St-V2], [T-Z]. We then use these ideas to compare the counting function of
guasimodes and resonances, respectively. To this end, using known upper polynomial bounds on
the number of resonances (see (2), (3)), we get similar bounds on the number of quasimodes; then
we group quasimodes in such disjoint clusters, see the proof of Theorem 2. Next, we estimate their
lengths from above and the distance between them from below and then apply the local result of
Corollary 1, obtaining at least as many resonances in some neighborhood of any of those clusters
and proving that those neighborhoods still do not intersect. This implies a lower bound on the
number of resonances asymptotically equal to the number of quasimodes.

The results we prove and especially Theorem 2, reduce the problem of obtaining lower bounds
of the number of resonances to that of estimating the number of quasimodes. It allows us to obtain
the optimal lower bound for any construction of almost orthogonal quasimodes as long as we can
control the density of quasimodes. We would like to make the obvious remark that the lower bound
we obtain is connected with the specific quasimodes we start with, one may have other resonances
close to the real axis having different nature. As a possible application of our results we consider
the classical obstacle problem with an elliptic periodic broken ray (see section 4). In this case we
obtain the lower boundr” suggested by the quasimode construction in [P1].

This paper is organized as follows. In Section 2 we state the main results. The proofs are in
Section 3. In Section 4 we present an application to the case of an elliptic broken ray in obstacle
scattering.
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2 Introduction and Statement of the Main Results

We consider first the “black box scattering” framework as developed in [Sj-Z1], [S]-Z2], [S]] (see
also [T-Z]). We refer to those works for details. For the sake of simplicity and to avoid repeating
the assumptions for noncompactly supported perturbations, we restrict our exposition to the case
of compactly supported perturbations of the Laplacian. Our main results however, hold under the
general assumptions in [T-Z] provided that the polynomial estimates (2), (3) hold either for the
number of the resonances or for the number of quasimodes.

Let H be a complex Hilbert space with

H =Hg, ® L*(R"\ B(0, Ro)),

whereR, > 0 is fixed andB(0, Ry) is the ball with centef and radiusRk,. For each: € (0, /]
we have a unbounded self-adjoint operator

P(h): H— H

with domainD (P (h)) independent of whose projection ontd.?(R” \ B(0, Ry)) coincides with
H?(R"™\ B(0, Ry)). Itis also required that

1gw0,ry)(P(h) + Nl H—-H

is compact, wherdp, g, denotes the orthogonal projector orfttk, and we define similarly
1R\ B(0, Ry)- NEXt, We assume that

IRm\ B(0, Ry) P (M)u = —h* A(u|Rm\ B(0, Ry))-

Having P(/), one constructs a self-adjoint opera®t(z) on H* = Hg, ® L*(M \ B(0, Ro)),
where M = (R\ RZ)" for someR > R,. Denoting byN(P#(h),[—A,A]) the number of
eigenvalues (counting multiplicities) [r-A, A], one also assumes that

N(PHh),[=2, A]) = O((1/B*)"™7%), VA > 1 (1)

with somen* > n.

Then one defines resonances Rés) of P (/) by the method of complex scaling [Sj-Z1], [S]].
They are also the poles of the meromorphic continuation of the cut-off resgiyé@th) — z)~ ! x
from Imz < 0 into a conic neighborhood of the real line in the upper half-plane, where
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Cs* is a cut-off function withy = 1 near B(0, Ry). The poles of that cut-off resolvent and
their multiplicities do not depend on the particular choiceyofNotice that here we accept the
convention that scattering poles are in the upper half-plane. Our interest is in applications to
classical situations, whete is as before, but independent/af Then we only need to verify the
assumptions above far= 1 and setP (h) = h? P. In this case we define resonancesotienoted

by ResP, as the poles of the meromorphic continuation of the cut-off resolyéft— 12)~1x

from the lower half-plane into a conic neighborhood of the real line in the upper half-plane. The
relationship between semi-classical resonanaefsP (4) = h? P and the classical onésof P is

A% = h~2z. SinceP is self-adjoint, resonances @& form a set symmetric about the imaginary
axis. We will be interested in those resonances that lie ih Re). We always include quasimodes
and resonances with their multiplicities. By definition, the multiplicity of a resonanoé P (/)

or aresonancg, of P is the rank of the operator

1 1
— X(P(h) —z)"'xdz, or — X(P =A%)~y AdA,
2708 J|z—zg |1 2701 Jin—rol<1
respectively.
We assume finally that we have a polynomial estimate on the number of resonances in a small
neighborhood of the real axis:

#zeResP(h); 0<a<|zl<b; 0<Imz<hN} < Coph™, 2)
#LeReP; 1<|Al<rm0<Imi<A™} < Cr™, r>1, (3)

for someN > 0. If the powern® is different from that in (1), then we denote by the largest
number of the two. Estimates of this type were proven in [M], [Z1], [Sj-Z1], [S]-Z2] [V], [S]]. We
notice that for the proofs of the results below we need this estimate either for the counting function
of the resonances or for that of the quasimodes.

We are now ready to state our main results.

Theorem 1 Let P(h) be an operator satisfying the hypotheses above and letay < a(h) <
b(h) < by < oo be two functions. Assume that there exists a sequén¢& , C (0, io] with
h; — 0 asl — oo having the following property: For any € {;};2,, there exist an integer

m(h) > 1, finite sets{ E; (h)y™™ < [a(h), b(h)] and{u; (h)}"™ < H, such that

j=1 j=1
{ |i(h), uj ()3 = 8i| < R(h), i, j =1,2,...,m(h),
Supp(an\B(O,Ro)uj(h)) c K cCcc Rn, ] =1,2,... ,Wl(h)
with some functionR(4) = O(h*°). Then, for any positive functio§(4) satisfyingS (k) >
h="*=1R(h) and De~2/" < S(h) = O(h*™) for some constanb > 0, and for any integek > 1,
there existd:(S, k) > 0 such thatforall: < (S, k), h € {h;}72,, the operatorP (1) has at least
m(h) resonances (counting multiplicities) in the set

z € [a(h) — 6h%, b(h) + 6h*] + i[0, 28 (W)™ 1]. (4)
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Remark 1. The constané appearing above is not significant and can be replaced by one. We
keep it however in order to conform with the notation in [T-Z].

Remark 2*. It is enough above to assume thét;(h),u;(h))y — 8;;| < a/m(h), i,j =
1,2,...,m(h), witha < 1.

Remark 3. In the formulation of Theorem 1 we assume thabelongs to a sequendé;}
having in mind applications to the classical setting. However, we would like to note that Theorem 1

remains true if we assume thiabelongs to an intervaD, /). To see that it is enough to observe
that Lemma 2 in Section 3 holds férin an interval as well.

In the classical setting Theorem 1 implies the following.

Corollary 1 Let P be an operator (independenthf satisfying the assumptions above witk= 1.
Assume that there exists a sequenge> 1,/ = 1,2,... with the following property: for any
[ =1,2,...wehaven; numbers,; ; >0, j=1,...,mysuchthaty; <Ai;; <b;,j=1,...,m
withb; > a; /' o0, asl — oo, b;/a; < C and there existy; ; € H, j = 1,...,m; satisfying

(P =27 Dur, il < RO ),

|(ur,i,ur,j)n — 8ij| < R(Ap,),

SUPP(1rn\Bg, %1,j) C K CCR”
foranyi, j = 1,...,m; with some functiolR(A) = O(A~*°). Then, for any functiorb (1) >
2227°+3 R()) satisfyingDe 2 < S(A) = O(A~) with someD > 0 and for any integek > 1
there exista.(S, k) > 0, such that for any;; > A(S, k) the operatorP has at leasin; resonances
(counting multiplicities) in the set

A elar—ay®, by + a;*]1+ [0, S (ap)].

The corollary above enables us to obtain sharp lower bounds on the number of the scattering
poles close to the real axis.

Theorem 2 Let P be an operator (independent bf satisfying the assumptions above witk= 1.
Assume that there exist infinitely many real quasimodeB,ofe., a sequencé;, u;}72,, where
O<)»j /‘oo,uj € 'H and

1P — A)ujlln < R()),

|(ui,uj)n — 8ijl < R(A)),

SUPP(1rm\Bg,uj) C K CC R,
i,j = 1,2,... with a decreasing functioR(A) = O(A~*°). Fix a positive functionS(A) =
O(A~*) such thatS (1) > 4A2"*+3R(1) and—yS < S’ < 0 with somey > 0. Denote

Nedr) = #{AeResP; 1 <Red <r,0<Imi < S(ReA)}.

1due to M. Zworski




Then for anyk > 1 there exists a constaidf; such that
Nee(r) = Nquas(r —r %) = Gy, ¥r > 1. (5)
An immediate application of Theorem 2 yields the following.
Corollary 2 Under the assumptions of Theorem 2, assume that

Nawas(r) =z p(r) +4(r), r=1

with someC! function p(r) — oo asr — oo with polynomially bounded derivative and a
remainder terny(r). Then fork large enough we have

Needr) = p(r) +q(r — r_k) —Cr, Vr>1.

If Nquas(r) has asymptotic expansion or more generally if it can be bounded below by some asymp-
totic expansion like

N
Nauaslr) = Y o™ ™" 4 0(r™*~V),

m=0

asr — ocowith0 < N < n*, then

N
Nies(r) > Z amrnﬁ_m + Ol(rnn_N)a Vr > 1
m=0

with the same coefficienis, and a possibly different remainder term.

Remark 4. The constanCj appearing in the estimates above can be expected because the
guasimode construction is asymptotic and adding or removing a finite number of quasimodes does
not make a difference. However, if we want to estimate the numigfr,) — Nes(r1) of reso-
nances with real parts betweenandr, with 1 < r; < r,, then the proof of Theorem 2 implies
that Nied(r2) — Nres(r1) > Nquas(r2 — 757%) — Nquas(r1 + r;7%) for r; large enough (see also next
remark).

Remark 5. Following a remark in [T-Z] due to Shu Nakamura, one can repléda Lemma 2
in Section 3 by a functiomw (/) = O(h*°) such that
w*(h)
S(hyh—n"-1
Then the results in [T-Z] indicate that férsmall enough there is a resonance near any quasimode
at a distance not greater thariz). We can also replac&:* in the statement of Theorem 1 by
w(h) and claim the same, including the multiplicities. We can do the same thing in Corollary 1.
This implies the following property: Under the assumptions of Theorem 2, dendte; By, and
{re 5>, the quasimodes and resonances, respectively, ordered (by their real parts) and counted
with their multiplicities. Then there exists a subsequence of reson@nggs |, such that

IRe(rx; — Aj)| < w(}j) = OA;®), [Im(rg, —Aj)] < S(A;) = OA;), j>1,
whereS (1) is as in Corollary 1 and (1) can be chosen to he(k) = A"*S1/2(}).

— o0, ash— 0.
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3 Proof of the main results

Before proceeding with the proof of Theorem 1, we will consider first a simpler case — when
resonances are replaced by eigenvalues and we have quasimodes. This example is not necessary
for the proof below, but it illustrates that in this case our results look natural and admit a simple
proof because we can use the spectral theorem. Consider a situation similar to that in Corollary 1.
Let P be a self-adjoint operator (independent:yfwith discrete spectrum in a Hilbert spakge
Suppose that the counting function for the eigenvalueB atimits the boundyr™*. Assume that

in the intervalla,b], 1 < a < b, b —a < 1, we havem quasimode; = AJ?, j=1....,m

similar to those in Corollary 1, more precisely there eyiste [a,b], u; € H, j = 1,...,m such
that[|(P — pj)ujll < R(wj), [(uiuj) — 8ij| < R(uj) with R(n) = O(n=°). We also assume
thatm < 2Cya" which in fact follows from the assumptions already made similarly to the proofs
below. Ther:; admit an orthogonal decomposition = u; +u, with u; := Tljz—s,5+su;, Where
ITi,—s,5+5] IS the spectral projector of the intenfal— 6,5 + 8], § > 0. Clearly,

SlfI* = 1P = ppufI* < 1P = ppull® + 1P = a1
= (P — wp)u;lI*> < R*(u)).

So, if we choosé = a"**' R(a), we getu}|| < a~"~" and
|(7/l/.’u/,) — 51| < R(a) + 2(1 + R(a))l/Za—nn—l + a—znﬁ_z _ O(a_nn_l)_
7 J

Sincem is 0(a"™), we get fora large enough (see Lemma 4) thdt ..., u,, are linearly in-
dependent. Thereford],_s 157 is at leastn-dimensional, which proves that the number of
eigenvalues ifiu — a” ' R(a), b + a"**+! R(a)], counting the multiplicities, is at least. This cor-
responds well to the result in Corollary 1. Those arguments show also that.; + O(a—""1)

with u; € Tlje_s p457H. By choosings = R'/?(a) above, we can make the remaindfa—>).

This shows that:; approximate certain linear combinations of eigenfunctions with eigenvalues in
some small neighborhood @f, ]. It is interesting to note that in case of a multiple quasimode

or cluster of quasimodes, this does not necessarily imply that ®athclose to a single eigen-
function. A typical quasimode construction is a set of functions asymptotically concentrated near
some periodic ray(s). Although we get thgt j = 1,...,m are also concentrated there, this is
not necessarily true for some linearly independent system efgenfunctions, because among

the eigenfunctions spannifg;} we may have for example functions asymptotically concentrated
both near the ray(s) under consideration and near other rays not involved in that quasimode con-
struction. A similar remark applies to the resonance case, see Remark 6 below.

We start the proofs with recalling two lemmas from [T-Z]. The first lemma statess @ori
exponential estimate of the cut-off resolvent outside small neighborhoods of the resonances. An
estimate of this type was first proved by M. Zworski [Z2] for scattering by obstacles using methods
developed by Melrose [M] for obtaining upper bounds on the number of scattering poles. A similar
estimate (kindly suggested to the authors by M. Zworski) was next proved in [St-V1], [St-V2] for
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more general cases and was used for proving existence of infinitely many poles near the real axis
caused by the Rayleigh surface waves. The lemma below, belonging to Tang and Zworski, extends
this estimate to the semiclassical framework of “black-box scattering” and is based on techniques
developed by $strand [S]].

Lemma 1 ([T-Z]) There exist® € (0, ), such that for any simply connected compact@et
{z € C; max(—r,20 —27) < arg < 26} and positive functiog () < 1 defined ord < / < hy,
there exist constantd = A(2) > 0 and/; with0 < & < ho such that

- ~
IX(P(h) = )7 Xllpre < AeH" AW 2 e QN (] D(z g(h)),
zj€ResP (h)N$

whereD(zj, g(h)) =14z € C; |z — z;| < g(h)}.

The numbem is actually connected with the size of a conic neighborhooR"gfwhere one
can extend holomorphically the coefficients Bf/) outside B(0, Ry) in case of non-compact
perturbations (see [S]], [T-Z]).

The next lemma allows us to estimate the growth of the cut-off resolvent under the assumption
that it is holomorphic (there are no resonances) in some region near the real axis. As mentioned
in the Introduction, a lemma of this type appeared first in [St-V2] and was used to prove existence
of infinite number of scattering poles for the elasticity system with Neumann boundary conditions
in the following way. That lemma implied an a priori estimates of the resolvent on the real axis
contradicting the existence of quasimodes. In order to prove the lemma, under the assumption
that there are no resonances near the real axis, we applied the maximum principle for unbounded
domains (the Phragmén-Lindelof principle) in a neighborhood of the real axis bounded by two
curves approaching the real axis polynomially fast. To estimate the resolvent on those curves,
the following observations were crucial: in the lower half-plane one has standard bounds of the
resolvent; while in the upper half-plane one can use the a priori exponential estimate on the cut-
off resolvent similar to that in the lemma above. Multiplying by a suitably chosen holomorphic
function that would compensate for the exponential growth on the upper curve, one is in a position
therefore to apply the maximum principle. Tang and Zworski [T-Z] observed that one can actually
localize those arguments in a rectangle near a fixed quasimode by multiplying by a suitable holo-
morphic “cut-off” function that is exponentially small at the left and right sides of that rectangle
neighborhood and uniformly bounded from below in a smaller set.

Lemma 2 ([T-Z]) Let{n;};2, C R, be a sequence such that — 0, as/ — oo. Suppose that
F(z,h), h € {h;}72, is a holomorphic function of defined in a neighborhood of

Q(h) = [E(h) — Sh¥, E(h) + Sh¥] + i[=S (h), S ()h™"" "]
with E(h) € R, whereS (k) is as in Theorem 1. If°(z, h) satisfies

[FG,h)| < Aett™"n0/ASB) o o),
|[F(z,h)] < 1/|]lmz] onQ)N{lmz < 0},



then there exist8; = h1(S, A,k) > 0, B = B(S, A, k) > 0 such that
|F(z,h)| < B/S(h), ¥z e[E(h)—h* E(h)+h"]
forh < hy, h e {h}72,.

An inspection of the proof of the lemma in [T-Z] shows thatand/, are independent of the
choice of E(h) and F(z, h) as long as the constadtappearing in the exponential estimate above
remains uniform. To see this, it is enough to note that the proof is based on application of the
maximum principle irnk2 () to the product off' and an auxiliary function depending dhandk
only. Then/; and B depend on the properties of that function and on the exponential bound above
used to estimate the maximum Bfon 2 (/). We will apply Lemma 1 tge(P (k) — z)~! x using
Lemma 2. Then the uniformity of will be fulfilled, if [E (i) — 5h*, E(h) + 5h*] C (aq, bo) with
0 < ag < by which will be always true.

We refer to [T-Z] for proof of Lemma 1 and Lemma 2.

Fix a cut-off functiony € C5°(R") with x = 1 nearK. In next lemma we will not indicate the
dependence oh.

Lemma 3 Let  be another cut-off function witf = 1 near K an letz, be a pole ofy (P —z)~ 'y,

i.e.,
N

X(P =27 =Ao(2) + ) (2 —z0)7 4; (6)

j=1
with 4o(z) holomorphic nearz = zp, Ay # 0andN > 1. Lety;, j =1,...,N — 1 be Cg°-

functions such thag; = 1 near K, suppy; C {xj+1 =1}, j=1,...,N —2 andsuppyy—1 C
{x = 1}. Then

Ajx1 =A1(P —z0)xj—1(P —z0) xj—2 ... X2(P —z0)x1, J=2,...,N.

Proof. Let us multiply (6) by(P — z) on the right. We get

XX+ x(P—2)""[X, P]
N

= Ao@)(P—2)+ ) (220 Aj(P — 20—z + 20)
j=1

N
= AP -2+ Y (=207 Aj(P —z0) — (z — z0) '+ 4;)
j=1

N
= Ao()(P —2) = A1+ ) (2 =207 (4j(P = 20) — 4;11)

j=1



with the conventiordy,; = 0. Multiply by x; on the right and equate the singular powers of
z —zo to get
Aj(P=zo)x1 = Ajyixi» Jjl=1,...,N—1

Therefore, forj =2,..., N,
Ajx1 = Aj-1(P —z0)x1 = Aj—1x2(P — z0) X1

Aj_2(P —zo)x2(P —zo)x1 = Aj—2x3(P — z0) x2(P — z0) X1
Aj_3(P —zo)x3(P — z0) x2(P — zo) x1 = Aj—_3xa(P — z0) x3(P — z0) x2(P — z0) X1

Ar(P = zo) xj—1(P —zo) Xj—2 .. x2(P — zo) x1.
This proves the lemma. U

Assume thaf = 1 on suppy in Lemma 3. Then we can chooge = x. Multiply (6) by x on
the right to get

N
X(P(h) = 2)7 = Aoz, ) x + Y (2 = 20() ™/ A1 (h) Q; (h), (7)

j=1

whereQ;(h), j > 2 are unbounded but; (/) Q; (h) are bounded operators. Notice thit(h) is

a finite rank operator, and by definition, Radk (%)) is the multiplicity ofzo(%) and this rank is
independent of the choice of the cut-off functignsy in (6). The above lemma says that the range
of the singular part of the cut-off resolvent is the same as the range of the residue

Proof of Theorem 1. We are going to assume that
m(h) < Ch™", he{h}®,. (8)

At the end of the proof we will show that, in fact, this is always true.

Assume from now on that € {/;}72,. Fix0 < x < 1 asinLemma 3. Let(h), z;(h),...,
zmany (h) be all distinct poles o (P (h) — z)~!x in (4) and denote bylﬁj)(h), j=1,...,M(h)
the corresponding residua. The sum of the ranks oft&l (k) is equal to the total number of
resonances i4). Denote byIl(4) the orthogonal projector ift{ onto Uj]‘i(lh)Aﬁj)(h)H and set
IT'(h) = Id — I1(kh). Then RanK1(#) does not exceed the total number of resonances in (4)
counting multiplicities. Our goal is to prove that the latter is at leagt) and this will be achieved
if we prove that RankI (k) > m(h).

By (7), IT"(h) x (P (h) — z)~! x is holomorphic in(4). ThenIl’(h) x(P(h) —z)~' x is holomor-
phic in

z € Q¢(h) = [a(h) — 6h*, b(h) + 6h*] + i[—S (h),2S (W)h™"""1].
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SetEg(h) = a(h) + s(b(h) — a(h)), s € [0,1]. ThenIT'(h)x(P(h) — z)~'x is holomorphic in a
neighborhood of

Qs o (h) == [Es(h) — Sh*, Eg(h) + 5h*] + i[=S(h), S(h)h ™ ~'] foranys € [0,1]. (9)

We chooseg(#) := hS(h) in Lemma 1. Forh « 1, Q¢(h) is included in a fixed compact set
satisfying the requirements of Lemma 1, thus

_nt
IX(P(h) — 2) " Yllpmre < AePWASB) 2 e Qe | ) D(z,hS(h).  (10)
zjeResP (h)

This implies

_ntt
1TV () x (P (h)—2) " xllpmsry < AeHWASE) 2 e Qe | ) Dz, hS(h). (11)
zjeResP(h)

We would like to prove this estimate in the whabg (/) using the fact thall’ () x (P (h) —z)"!x

is actually holomorphic in the larger domais (/). Notice that (11) holds if25 (/) with the
exclusion of the disk®(z;, 4S5 (h)). Some of those;’s can lie outsides ;(#) and even outside
Qg(h) and some of the disks can overlap. We claim that if some connected union of such disks
has common points witlf2s (%), then it lies entirely inQ2¢(#). This follows easily from the
following. The distance between any pointdfs (%) and the exterior of2¢(%2) in Imz > 0

is at least:—"*~1S(h) for & sufficiently small. On the other hand, because of (8), the diameter
of each maximal connected set having common points Wik (#), which is a union of such
disks centered if2¢(%) , does not exceedt(h)hS (h) < Ch~"**+1S(h). There can be also disks
centered outsid®(/) and intersectin§¢(/2), notincluded in the those considerations but they do
not have common points with those unions of disks becatise” +1S(h) « h="~1S(h). This
proves the claim. The lemma does not guarantee that estimate (11) is fulfilled in the interior of any
such union of disks, but since the latter lie<ig(%), it is fulfilled on the boundary. Applying the
maximum principle in each such set, we get that the estimate holds inside as well (see Figure 1).
Therefore,

#

25h)h " ) e
6
| 8 °
Sh- C J Qs ()
0 k k Q\D k k
a6h’ |Es5h E.+5h b+6h
-§h)
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Figure 1

TV (W) X (P(h) — 2) "l < Ae"0AESB) 2 e Qo by, Wse[0,1].  (12)

Here A is uniformins.
Since P (h) is selfadjoint, for Inz < 0 we have the standard estimate

1T () x (P () = 2) ™" Xl < IX(P(B) = 2)" xllssre < 1/1IM 2.

By this and (12) we conclude from Lemma 2 that
B
1T (W) ) (P(h) = 2)™" Xl < S0 for z € [Es(h) — h*, Es(h) + h¥] (13)

for0 < h < hi(S,A,k)andB = B(S, A,k). Hereh,, B are independent of, thus we get the
estimate above far e [a(h) — h*, b(h) + h*].

We haveu; (i) = yuj(h) = x(P(h) — z)" x(P(h) — z)u;(h) for Imz < 0 and therefore for
z ¢ ResP(h). Let us multiply this by[l’(h) to getIl’ (h)u; (h) = T1'(h) x(P(h) — z) "' x(P(h) —
2)u;(h). Sincell’(h) x(P(h) — z)~! x is holomorphic in (4), we can set= E; (k) above. Hence,
for j = 1,...,m(h) with & as above, we have

TV (hyu; (W)l = TV () x(P(h) — E;j(h))~" x(P(h) — E;j(h))u;(h)llx
< IV ()x(P(h) — E;(h) ™" xllssnll (P (h) — Ej(h))u; (h) I3
R(h) .
< B% < Bh" L, (14)

for 1 small enough. Since; (/) form an orthonormal system up to an er), we get
| (TL()us (), TR () — 85| < 2(1+ R(h)Z BR"' + B*h>"*+2 4 R(h).
Lemma4 Let f1, f2,..., fx be N vectors in the Hilbert spac# with
|(fis [i)u—8ij| <& i,j=1,...,N.
If e < 1/N,thenfi, f2,..., fy are linearly independent.

Proof. Assume that those vectors are linearly dependent. The¢n+ ... + ay fv = 0 with
(ai,...,an) # 0. Without loss of generality we may assume thatt |an| > |aj|, j =
1,...,N — 1. Divide byay to get

IN=cafi+...+eN—1f—1, le;l <1, j=1,...,N—1

12



Multiply this by fx to get

1—e<|lfwl3 =c1(fis fn)n+ -+ en(fvot, fa)n < (N = 1)s,
thusl < Ne, which proves the lemma. (|

From Lemma 4 we therefore get that if
2(1 + R(h))? B 1+ B2 +2 £ R(h) < 1/m(h), (15)

thenII(h)u;(h), j = 1,...,m(h) are linearly independent. Condition (15) is fulfilled for small
h because of (8). Therefore we get RérkK/)) > m(h). This proves the theorem under the
assumption (8).

We will show now that the assumption (8) made at the beginning of the proof is not restrictive.
Assume thatn(hlj)/h,;"” — 00, j = 1,2,... for some subsequengé, } of {/;}72,. We can

remove some quasimodes to make sure thét) < Ch~" ~! and keep the limit above. Then
we get as above that the number of resonance®(b§ in [ao, bo] would not beO(7~"), which
contradicts (2).

This completes the proof of Theorem 1. d

Remark 6. By (14) we get thau;(h) = T1(h)u;(h) + O(h"**1) and by choosings (/) so
that R(h)/S(h) = O(h*°) we can achieve that the remainder is actualy:*). This property is
similar to what we know about the case of eigenfunctions (see the discussion at the beginning of
this section). Namelyy; approximate functions il (#)H, i.e., linear combinations of functions

in Up 4% (h)H, where

1 _
AD () = —f X(P(h) — 2)" xdz
|z—zp | K1

2mi
and as before; are the resonances ¢ (/). But again, ifu;(#) are concentrated around some
set fnicrosupporyasi — 0, this does not necessarily mean that we have functiomé"i}(h)H,
such that each one corresponds to a sikgtather to a combination of severak with the same
property. For example, the functions in eaﬂ’?(h)H may be asymptotically supported both near
the microsupport of this quasimode construction and the microsupport of some:pthgs that
happen to have quasimodes close to those we consider.

Proof of Corollary 1. Seth; := a;', P(h) := h*P = a;*P, h € {h;}2,. In this proof,
denote the functioR from Theorem 1 byR. Then P (/) satisfies the assumptions of Theorem 1
with a(h) = 1, b(h) = bj/aj, Ej(h) = a;?A} ;, m(h) = my, Rr(h) = R(a;) = R(h™),
uj(h) = u;,j. We obtain therefore existence bfSr,k) > 0, such that for > /(Sr,k) the
operatory(a; 2P — z)~!x has at leastn; poles in the set e [I — 6a;*,b%/a? + 6a;*] +
i[O,2ST(aI_1)a7n+1], where St is any function satisfying the assumptions f®rin Theorem 1.
By estimating the square root of that set, we concludettigt> P — u*)~' x has at least:; poles
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in € [1 —4a;7%,a;7'b(1 4 4a;7%)] 4 i[0, 287 (a; a1 for I large enough. Setting = a;p,

we get at least:; resonances oP in [a; — 4a; %1, by + 4(by Jar)a; ¥+ + [0, 287 (a7 a2,
Using the fact that/a; < 1, 4b;/a? < 1 for largel, we get the conclusion of the corollary with
replaced by — 2 and S (1) = 2S7(A~)A" 2. To complete the proof it remains to show that if

S ()) satisfies the assumptions of Corollary 1, tt&n(/z) determined byS (1) = 257 (A~ 1)A"*+2,

A = h~!, satisfies the assumptions of Theorem 1. Indeed, we Bavk) = %S(h—l)h"’“r2 thus
Sr(h) > =" ~'R(h=') = h=""*~'Ry(h) which is one of the hypotheses ¢y in Theorem 1.

The other condition about the exponential bound from below follows from the similar condition in
Corollary 1. O

Proof of Theorem 2. We will assume first that
Nquas(r) = CO(rnﬁ +1) (16)

with someCo > 0. Fix k > n* 4+ 1. For any index/ denotel; := {A;} + 2(-A;%,27%] =
(Aj — 2k;k,kj + 2Aj_k]. Here and below we use the notatidt- B := {a + b; a € A, b € B}
for any two number setd and B, and{A; }]%";1 is the set of quasimodes.
Consider
U ({x,-} +2(=7%, x;k]) . (17)
j=1
We claim that the set above consists of infinitely many disjoint intervals. Indeed, $ix 1. If
we assume that the whole interyal « + 1] is covered by (17), then we get that a + 1] should
contain at leasta* quasimodes. Sinde > n* + 1, we get a contradiction with (16).
Therefore, (17) consists of a sequence of disjoint interydjs B;], / = 1,2,.... Moreover,
the argument above proves thgt — 4; < SCOB,"”””, [ > 1. Each(4,, B;] containsm; > 1

quasimodes\; j, j = 1,...,my, andU}"z’1 ({Al,j}+2(—k_k kl_j) = (A4;, B;]. Denote hy

Lj

(aj, b;] € (A;, B;]the minimal interval containingj;”zl1 ({A,,j} + (—Azf,sz ) ThenB;—b; >

by*, A1 — a; > $a;* and therefore,

0 < by —a; < 5Cob7**", b¥ <apyy—by, VI 1 (18)
(See Figure 2.) Fix a functiof satisfying the assumptions of Theorem 2 and apply Corollary 1

to [a;, b;] with S there replaced by /2. Clearly, S /2 satisfies the assumptions of Corollary 1. We
get that the number of resonances in

(@1, b1+ JT-ap*, a1+ 110, 3 S )] (19)

is at least equal to the numbey of quasimodes itta;, b;] for [ large enough (it is easy to see that
we can put the constany4 there by increasing). By (18), those rectangles do not overlap for
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[ > 1. We claim that this implies that
1 1
Nquas(bl) - Nquas(al) =m; < Nwedb1 + Zal_k) — Nees(a; — Zal_k)- (20)
To prove the latter, in view of (19) and the definition 8k, it is enough to show that
Lk ko L L« L«
(al,bl]—l—z[—a, say; "]+i[0, ES(al)] C {A; a;—Za, < ReA < bl—l-Za, ,0<ImA < S(ReA)}.
Let us first observe-yS < S’ < 0 implies easily thatS(a«) < 25(a + 1/(2y)), Ya. Therefore,

S(a;) < 2S(ReA) for ReA as above provided thag >> 1. This implies the inclusion above which
in turn proves our claim.

r

0 T r
a‘I bI a|+1 \ b|+1
Lt se e se st se e e se s M Npsg o NN
NG O 00 —X7
# #
-k+n -k+n
p o ™) | ofb;") A
>b|'k
Figure 2

Fix a realrg in the gap between two rectangles (19), i.e.,

1 1
by + Za’_k <ro<diy; — Za,‘fl, for somel > 1. (21)

Then, summing up inequalities (20) withthere replaced by, / — 1,...,/(k), we obtain

1
Nres(ro) - Nres(al(k) - Zal_(i)) > Nquas(ro) - Nquas(al(k))a (22)

wherel (k) > 0 is that number for which all statements above hold With /(k). Letr > a;u)
be any number. Denote by the closest numbety, < r such that is of the type considered in
(21) (see Figure 2). Then by (18).< r — ry < 5Cor ~**+"* and by (22),

1
Nie(r) > Niedro) > Nquas(ro) - (Nquas(al(k)) - Nres(al(k) - Zal_(]]z)))

> Nquas(r - 5COr_k-'-nﬁ) — Cx.
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Replacingk by k 4+ n* + 1, we see that we can replag€,r—**"* above by-—* and thus complete
the proof of (5).

It remains to show that (16) is always fulfilled. Assume the opposite, that folany 0 we
haveNquas(rj) > 2M " for a sequence; — oo.

Form = 3,4, ... do the following: first, remove all quasimodes fr@¢i 2]. Then, if Ngyasim)
> Mm"", remove some quasimodes frém — 1, m] until we getNguasim) = Mm"™; if Nquas(m)
< Mm", do nothing. Since by the previous step we have achieved\ihat(m — 1) < M(m —
)" < Mm"", itis possible to arrange the equali¥.s(m) = Mm"* by removing quasimodes
from (m — 1, m] only. We have infinitely many:’s for which we will have to remove quasimodes
because assuming the opposite, we wouldMgls(m) < Mm™ Vm = 2,3, ..., after removing
a finite number of quasimodes, which contradicts our assumption. Thus, weMyaxen;) =
Mm;?ﬁ for a sequencer; — oo and Nyyas(m) < Mm™ ,¥m = 2,3, .... The latter easily implies

Nquas(r) < 2M " for all realr large enough, so (16) is fulfilled. Notice th&lf,as(r) now is the
counting function of the subset of the quasimodes obtained after the procedure above. Let us apply
what we have already proved to this subset of quasimodes. BW(&)n; + 1) > Mm;.’N - C,

which contradicts (3) if we choos¥ large enough. O

Proof of Corollary 2.  Assume thatVquas(r) > p(r) + ¢(r) with p(r) such thatp’(r)| < Cr¥,
Yr > 1 with someN > 0. Then|p(r) — p(r —r=%)| < Cr=%**N — 0, asr — oo, if k > N.
Therefore, the ternp(r — %) in (5) can be replaced by(r) with changing the constay.

4 An Application: Sharp lower bound on the number of the
resonances gener ated by an €lliptic broken ray.

In this section we apply Theorem 2 to the following classical problem.CLet R” be a domain

with a compact complemenblfstacl¢ © = R” \ Q with smooth boundary. LeP = —A in

H := L*(Q) be the self-adjoint realization of the Laplacian with Dirichlet boundary conditions.
Resonances aP can be defined by means of classical scattering theory as the poles of the mero-
morphic continuation of the cut-off resolvent. They are also the poles of the scattering matrix
[L-P]. The (modified) Lax-Phillips Conjecture is that in case of trapped light rays there are in-
finitely many resonances in a strip around the real line. If the trapping is “strong” enough, one
should have a sequence of resonances actually converging to the real axis.

A classical example of a trapped ray which is expected to produce many resonances near the
real axis, is an elliptic broken ray. Quasimodes associated with such a ray were constructed in
[P1] (see also [L]). In [St-V2] it was shown that there exists an infinite sequence of resonances
converging rapidly to the real line as a consequence of the existence of the quasimodes. The results
in [T-Z] provide at least a linear lower bound on the counting function of those resonances but the
possibility of obtaining a sharp bound seems limited without additional arguments. Below we
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apply Theorem 2 to show that we have the optimal bourfd Notice that in this case* = n in
(3) (see [M]).

Next we sketch briefly some results from [P1]. Consider a broken periodic bicharacteristic in
T*Q with verticesp;, j =0, ...,m. Assume that

(H1) po is anelliptic fixed point of the PoincamappP, i.e., all eigenvalues abP(po) lie on the
unit circle and are different front 1.

(H2) The Poincaa’mapP is 5-elementary, i.e., it’%, 0 < |o;| < 7, j = 1,...,n — 1 are the
eigenvalues oDP(py), thenk oy + ...+ ky—1a,—1 # 0 fOr ky,. .., k,_1 integers such that

Then one constructs the Birkhoff normal formBfnearp, = (0, 0) by

PO, 1) = (0 +gradS(7) + O(I|V), I + O(IIINtY), (0,1) e T" ' x RY,
whereS € C*, S(0) = 0, gradS(0) = (1, ...,a,_1). Finally, we require that
(H3) the Birkhoff form is non-degenerate, i.e., d&tS (0) # 0.

Under those assumptions, Popov has constructed quasimodesvith error functionO(A~°°)
associated to that broken ray and has found an asymptotic formula for the counting function. He

proved that

meagG) _
n 0 n—y

naon +0@"™),

wherey > 0 andGpg is a Cantor set with non-zero measure associated with the invariant tori of
the Poinca@'map. We refer to [P1] for the outline of the proof of this (see also [C-P, Sec. 4] for
further details).

A direct application of Theorem 2 yields the following.

Nquas(”) =

Theorem 3 Let P be the Dirichlet Laplacian inL?(2) and assume that there exists an elliptic
periodic broken ray satisfying (H1), (H2) and (H3). Then there exists a positive fun§iibon=
O(A~%), such that for the counting function

Needr) =#A eResP; 1 <ReA <r,0 <Imi < S(Re)A)}

we have
measGkg) ,
n2m)"

with somey > 0, C > 0 andGg as above.

Nres(r) = cr"Y,
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