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Abstract

We study the boundary rigidity problem for domainsRfi: is a Riemannian metric uniquely determined, up to
an action of diffeomorphism fixing the boundary, by the distance functigfx, y) known for all boundary points
x and y? It was conjectured by Michel that this was true for simple metrics. In this paper, we study the linearized
problem first which consists of determining a symmetric 2-tensor, up to a potential term, from its geodesic X-ray
integral transfornfz. We prove that the normal operatd, = I; 1 is a pseudodifferential operator provided tigat
is simple, find its principal symbol, identify its kernel, and construct a microlocal parametrix. We prove hypoelliptic
type of stability estimate related to the linear problem. Next we apply this estimate to show that unique solvability
of the linear problem for a given simple metgc up to potential terms, implies local uniqueness for the non-linear
boundary rigidity problem near thgt

1 Introduction

Let2 C R” be an open bounded set with smooth bound4?yand letg = {g;; } be a Riemannian metric i?. Denote
by p, the boundary distance function which measures the geodesic distance between boundary points. We consider
the inverse problem of whether, (x, ), known for allx, y on 02, determines the metric uniquely. This problem
arose in geophysics in an attempt to determine the inner structure of the Earth by measuring the travel times of seismic
waves. It goes back to Herglotz [H] and Wiechert and Zoeppritz [WZ]. Although the emphasis has been in the case
that the medium is isotropic, the anisotropic case has received recent interest since it has been found that the inner core
of the Earth exhibits anisotropic behavior [Cr]. In differential geometry this inverse problem has been studied because
of rigidity questions and is known as the boundary rigidity problem. It is clear that one cannot determine the metric
uniquely. Any isometry which is the identity at the boundary will give rise to the same measurements. Furthermore
the boundary distance function only takes into account the travel times of the shortest geodesics and it is easy to
find counterexamples to unique determination, so one needs to pose some restrictions on the metric. Michel [Mi],
conjectured that gimplemetric g is uniquely determined, up to an action of a diffeomorphism fixing the boundary,
by the boundary distance functign (x, y) known for allx and y on 0€2. Loosely speaking, the metrig is called
simple inQ, if every two pointsx, y in € can be connected by unique minimizing geodesics that depends smoothly
onx andy, andS is strictly convex w.r.tg. Such a metric can be extended as a simple one in some neighborhood of
Q.

Unique recovery of (up to an action of a diffeomorphism) is known for simple metrics conformal to the Euclidean
one [Mul], [Mu2], [Mu-R], [BG], for flat metrics [Gr] and for metrics with negative curvature in two dimensions, see
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[C1], [O]. In [S-U], the authors proved this for metrics in a small neighborhood of the Euclidean one. This result was
used in [LSU] to prove a semiglobal solvability result.

It is known [Sh1], that a linearization of the boundary rigidity problem near a simple metricgiven by the
following integral geometry problem: show that if for a symmetric tensor of order 2, the geodesic X-ray transform

Ief() = / Ji GO O @) dr

vanishes for all geodesigs in 2, then /' = d*v for some vector fieldb with v|yg = 0, where the symmetric
differential ° is defined below. We will refer to this property asnjectivityof /,. On the other hand, it is easy to

see thatl,d*v = 0 for any suchw. This is the linear version of the fact that tpe does not change o#2? under

an action of diffeomorphism as above. S-injectivitylgfwas proved in [PS] for metrics with negative curvature, in
[Sh1] for metrics with small curvature and in [Sh-U] for Riemannian surfaces with no focal points. A conditional and
non-sharp stability estimate is also established in [Sh1], see (2) in next section. This estimate was used in [CDS], [E]
to get local uniqueness results for the boundary rigidity problem.

In this paper we consider a microlocal approach to the study of the linear geodesic X-ray transform for tensor
fields and the non-linear boundary rigidity problem. The use of microlocal techniques in integral geometry goes
back to Guillemin and Sternberg [GS]. We prove that the normal operdfor= 1,1, wherel; stands for the
transpose of ;, is a pseudo-differential operator of ordet, compute its principal symbol and identify its kernel. As
a consequence, we construct a parametrixNgrthat allows to reconstruct the solenoidal p#rt up to smoothing
operators and in section 6 we derive a stability estimate. The estimate is of hypoelliptic type with loss of one derivative.
As a byproduct of our analysis of the linear problem, we prove sharp estimates about recovery of a/1=fopfiv/x’
and a functionf’ from the associated, / in sections 7 and 8. Finally, in section 9, we apply the results abptd
prove local uniqueness for the boundary rigidity problem near any simple mewith s-injective/,.

2 Preéiminaries

In this section we introduce some notation and recall some facts about integral geometry of tensors [Sh1]. Assume
that g is a smooth Riemannian metric in the dom&nwith smooth boundary. We assume thats simple in<2,
i.e., thatQ is strictly convex w.r.t. the metrig, and for anyx € Q the exponential map exp: exp;l(fz) - Q
is a diffeomorphism. We use the usual convention of raising and lowering indices and we will not make difference
between covariant and contravariant tensors by considering them to be two representations of the same tensor. We will
work with symmetric tensors only and we always consider them extended aR’'0\{®2. Everywhere in this paper,
for (x,£) € T*R", we denotdx|? = g;;x'x/ and|§|? = g &&;.

We are going to work in the spade?(2), and associatefl* spaces, of symmetric tensofs= { f;;} with inner
product

(fh) = / Sijhirjeg" g’ (detg)!2dx = / Jijh" (detg)'/2dx.
Q Q

Given a symmetric 2-tensof = f;;, we define the 1-tensdé? / calleddivergenceof f by

16° f1i = &/ Vi fij

whereV; are the covariant derivatives. Given a 1-tensor (vector fieJdye denote by/*v the 2-tensor called sym-
metric differential ofv:

1
[dsl}]ij = 5 (V,‘Uj + VjUi) .

Operators?® and—§* are formally adjoint to each other ih?(2). Itis easy to see that for each smoottvith v = 0
on a2, we havel,(d°v) = 0. The natural conjecture is that / = 0 implies /* = d*v with somev vanishing oro 2
that we call s-injectivity.

It is known that each symmetric tensgr belonging toL?(2) admits unique orthogonal decompositigh =
/% 4+ d*v into a solenoidal parf f = f* and a potential parP ' = d*v, such that both terms are ib*(2), f*



is solenoidal, i.e.§* f* = 01in 2, andv € HO1 (R2) (i.e.,v = 00ond). In order to construct this decomposition,
introduce the operatoh® = §°d* acting on tensors. This operator is ellipticsy and the Dirichlet problem satisfies
the Lopatinskii condition. Denote bi, the Dirichlet realization ofA® in 2. Then

v=(A) 8 = f—dt(A)TE S 1)
OperatorsS andP are orthogonal projectors. The problem about the s-injectivit§,dhen can be posed as follows:
if I,/ = 0, show that/* = 0, in other words, show thaf, is injective on the subspac®lL? of solenoidal tensors.
As mentioned in the Introduction, s-injectivity df, was proven by V. Sharafutdinov [Sh1] for metrigswith
an explicit upper bound of the curvature which in particular includes metrics with negative curvature, see also [PS].
The method in [Sh1] is based on energy estimates in the spirit of Mukhometov’s result in two dimensions and the
s-injectivity result is a consequence of the following estimate:

1/ Wy = C(WivSlalizogy e/ oy + e /) )- 2)

wherel'_ is defined below and the measureBnis dS; dS,, (see below), i.e., compared &, the factorjw - v| is

not present. The tern, / is defined a§j, /1, = f;jv', wherev is the unit normal td/Q2. The mapl, : H* () —
H?*('-) is bounded for any integer > 0 and even though the estimate above implies s-injectivity, the stability for
f € L*(Q) is of conditional type because it requires an a priori estimate offhenorm of /. One of the goals of
this work is to prove an estimate of more conventional type.

3 Integral representation of N,

Consider the Hamiltoniat, (x, §) = %g"fé,-éj and denote byb, (¢) the corresponding Hamiltonian flow. We will
denote by(x (¢), £(¢)) the corresponding integral curves & (bicharacteristics of the associated Laplace-Beltrami
operator) on the energy levél, = 1/2. We are going to use the following parameterization of those bicharacteristics.
Denote
I :={(z,w) € T*Q; z € 0Q, || =1, w - v(z) <0},
wherev(z) is the outer unit normal td<, |w|?> = g” w;w;, andw - v = w;v’. Introduce the measure
du(z,w) = |w-v(z)|dS;dS, onT_,

wheredS; anddS,, are the surface measures @ft and{w € TQ; |ow| = 1} in the metric, respectively. 1§<2
is given locally byx” = 0, thendS, = (detg)'/?2dx'...dx""!, anddS, = (detg)~'/2dS,,, wheredsS,, is
the Euclidean measure &', Define(x(¢),£(1)) = (x(t:z, ), £(t; z, )) to be the bicharacteristic issued from
(z,w) e I'_.

Let (x, &) be a smooth weight function. We define the X-ray transfdgy of / more generally as weighted
integrals of // ¢;£; over all bicharacteristics off on the levelH = 1/2,i.e.,

I Nz 0) = /“(x(t)aé(f))fij(x(f))éi(f)éj(t) dr, (z,w) €T, ®3)

where((x(¢),£(¢)) = (x(¢; z, w), £(¢; z, w)) as above is the maximal bicharacteristic?rissued from(z, ).
Notice that if we regard (3) as integrals over therojections of the bicharacteristics (the geodesics) itk
gi; X/, then we integrate over each geodesic twice — once in each direction. Moreavére arc-length parameter.
Clearly, I, f € L?(I'—; du) for smoothf. Moreover,I, : L*(2) — L*(I'—; du) is bounded [Sh1]. Below we
find a representation faW, = I, 7,. Recall thafo(x, y) is the distance function.

Proposition 1 For any symmetric 2-tensof € C(£2) we have

1 ST dp dp dp dp | 3*(p*/2)
with
A(x, p) = alx, =Vxp(x, p)a(y, Vyp(x, y)) + alx, Vep(x, y))a(y, =V, p(x, ). (5)



Proof. Pick another smooth tensarsupported irR2. We have

(Ie f. Igh) /F (e /)2 0)Leh) (. 0) du(z. )

[ [ [ewo.cns” corog gaw

x / @(x(5), £ (v ()8 ()81 ()ds | dpa(z, )
Iy +1-, (6)

where

/F / /0 wels £ 0.5 £ 1) /7 (x(s £ 0)Ei (s + 0 (s £ 1)
X @ (x (5), & ())A* (x (5)Ek ()81 ()ee(s) dt ds dju(z, w).

Here the bicharacteristics are parameterizeddyyw) as above and all functions are assumed to be extendéd as
outside2. Notice that for anyw with |o| = 1, (z,s) are global coordinates i€. Herez € 9Q is such that
(z,w) € T_ ands > 0. Next, the Jacobian of the change of variahles) — x is |w - v(z)| on the boundary thus

dx = |w - v(z)|dz ds there. Introduce new variable= t@ on the boundary. Then at the boundary, we can pass to
variables(x, £) anddx dé = t" 'dt ds du(z, w). Since the Hamiltonian flow preserves the measure, we have the
same in the domaig?, i.e. for any(x, £). Setx = x(s), £/|&] = &(s), where|&| is the length of the covectdrin the
metricg. Thens = |&| and(x (s + ), E(s + 1)) = ©(1)(x, &). Thereforex (s +¢) = exp, & =: y. Itis fairly easy to

see that (s +¢) = V, p(x, y). We treat/_ in the same way. We get

i dp dp okl Sk & dE
e 1.1 = [ [ .0 exp, 0037 S o) o )

wherep = p(x, ), y = exp, £ and A4 is given by

A(x, y) = alx,Ha(y, Vyp(x, y)) + alx, =5a(y. =Vyp(x, y)). (8)

Let us perform the change = exp, & in that integral. Sincer € suppf’, y € supph, this map is a diffeomorphism
by assumption. In the same way as before wesg#t| = —V,p(x, y) andé = —%Vx,oz(x, y). Thus, the Jacobian

|det(d&/dy)| is %| det(d?p?/dxdy)| and this completes the proof of the proposition. O

Observe that if we extengd smoothly into a small strictly convex neighborhofd of 2 as a simple metric, and
supp/f C 2, thenN, f remains the same for €  and is defined fox e 2. We will use this in next sections.
From now on we assume that= 1.

4 TheEuclidean case

In this section we explicitly compute the normal operator and the parametrix in the Euclidean case. Several of the
calculations below can be found in [Sh1] o= e = {d;;} and can be easily generalized to consgahy transforming
g into e, for example by the symplectic transform= g'/2x, n = g~1/2¢, thends? = Y (dy")?.
Let g be a constant coefficients metric. Then we parameterize the geodesics (lines) by the directibby the
pointz on the hyperplane’£; = 0 where the line crosses that hyperplane. Then

Iy f(2.8) = / Jii (e + (O)FE d.



Here 1 is viewed as a function on the whoRe, extended a8 outsideQ. Any 1 € L?(R2) can then be orthogonally
decomposed uniquely into a solenoidal and potential part (different from the decomposition above!)

S = fgn +d°vrn INR",
such tha$® /3, = 0in R” and /3., dvgr» are inL2(R™). Similarly to (1), we have
e = (M) 8L fje =S —dS (D)8, ©)

with A% = §°d* acting in the wholR”, and the notatiomgr~ indicates that does not necessarily satisfy boundary
conditions. A more detailed form of this decomposition can be explicitly done by means of Fourier transform. We
have

s = M08 i ©), (10)
where . ;
=i 45) (4~ 15).

It is important to note that in generajly,, anddvg» are not compactly supported anymore. It follows from section 3

that for /' € C§°,
I

ik
(Ne S 06) = 2y e = /et (12)

Taking into account thaF|x|* = (c,/2)(detg)~'/2|&|~*" with ¢, as below, and Fourier transforming the latter, we
get

il R 4 ; qm+1)/2
F(Ne ) = Cnfijmm , Cp = /2 13)2) (13)
and
*1E|° /08080608, = 31E| "o (67 M), €Y (8) = 67 — '€ /1|, (14)

Hereo (7 £¥!) is the symmetrization of/ ¢/, i.e., the mean of all similar products with all possible permutation of
i,j. k.1, see[Shl]. Itis easy to see th&tNV, / = 0 and that/g, can be recovered from¥, /* by the formula

Uielis = (85 =) foa = aira FNe ! = alf FON f ), (15)

whereq; ;i (£) is a rational function, homogeneous of ordesingular only at = 0 with explicit form

aijir = 18] (c18u8j1 + €28 — 1E1726i8)6x1 ) (16)

The coefficients; andc, depend om only [Sh1]. This immediately impliestha f = 0 = fg, = 0= [ =
d’vrn. Moreover, in this case, if’ has compact support, so dogs:, and in particular, iff vanishes outside (the
convex)$2, so doewr~. This proves s-injectivity of ; for g = e.

We would like to explicitly emphasize here that the decompositiory'dfh the wholeR” (in caseg = const.)
described in this section is different than the one?irdescribed in section 2. Even gf = ¢, formulas (1) and (9)
differ by the fact that the latter involves the resolvént)~! in the whole space while (1) involves the solution of a
boundary value problem*v = §°f in Q,v = 0 0ond<.

5 N, asa WDO and construction of parametrix for N,

In this section, we show thaV, is a WDO and construct a parametrix of order 1. In next section, we refine this
parametrix to infinite order.



Lemmal For x close toy we have

PPy = GPE = (=),
902 (x, y) i
I~ 26 -,

9 p*(x, ) 3)
W ZGij (x,»),

WhereGl.(jl), Gl.(jz) Gl.(j” are smooth and on the diagonalwe have

G x) =GP (x.x) = G (x. x) = gi (x).

Proof. Choose the covectdrso thaty = exp, £. Thenp?(x, y) = |£|?> = g~ '& - £. From the Hamiltonian system
we gety — x = g7 (x)€ + O(€]?), thusé = g(x)(y — x) + O(|y — x|?). This yields the first formula. The second
and the third one follow by differentiation. |

We will show now thatV, is awDO of order—1 and we will compute the principal symbol of this operator. Note
that N, is an integral operator with kernél(x, y) having a weak singularity of the kind: — y|™**! at the diagonal.
Therefore, it is alDO of order—1. More precisely,

L6206 =] [6P 0 = 0] [6P 0 = ]G — 0], | detc®)
(GO =) - (x =) T vaets

Kijr =

1

vectorx — y. Denotez := x — y. Then

with Gl.(jz) (x,y) = G.(jz)(y,x) andG(x — y) = G(x, y)(x — y) stands for multiplication of the matri% and the

2 . . detG®|
o W, ..\ 2 @1 1G] [¢® )7 |detG]
Ky = 2(cWz-z) [62,[69:,[69:=],[692], e

= Mijkl(xvyvx_y)
with
) =ntl o
Myaep8) = [ (60 ) an
| detG®|

x [6D2][692], [6P=],[62],~ =

Therefore,N, is a WDO with amplitudeM (x, y, ). Note that the integrand above belongs locally/th Clearly,
M is homogeneous i of order—1 and therefore has singularity &t= 0. This is integrable singularity however,
so we can cufi/ near the origin and this would give rise to a bounded smoothing operatot.inn order to get the
principal symbol ofM, it is enough to sep = x, thus by Lemma 1 we formally replacg, G, G®, G@, G® in
(17) by g(x) to get

op(Ng)iji1 (x,8) = M;jri(x,x,§)
= 2ydeig [ e lgz o lgzllezllezhlecl dz.
Recall thafgz]; = gijz/ = z;. Therefore,
op (N (x.6) = MM (x.x.8)
ZM/e_is'ﬂg(x)z-z|_#zizjzkzl dz.

6



Notice that in the right hand side above, for any fixedve got exactly the symbol a¥, in the case when the metric
g has constant coefficients, see (14). Thus we have proved the following.

Proposition 2 The principal symbol ofV, is given by
op (N7 (x.6) = cn |67 o (e M), 67 =67 — 767 /|,
Let g be a simple metric iif2. Extendg near$2 and let
Qp = Qo U{0 <dist(x, dQ2p) < &}.

Fore > 0 small enough, is strictly convex as well ang is simple neag2,. We will work with f supported irt2.
We assume that they are extended as 0 outRid€Ehoose a smooth functignsupported ir2; such thaty = 1 near
Q. Inspired by (15), we start constructing a parametrix férby the formula

(Bf)ij = xaijki(x, D)x(Ng f)*, (18)

wherea; ;i (x, §) are defined by (16). We will first show below thAif" is a parametrix forfél , the solenoidal part of
fin 24, in the sense that

L*(Q) > [+ f§ — Bf € L*(Q)) is acompact operator. (19)
By (15),ak1,-/j/[ap(Ng)]i/j/ij = A, =: Ao in the case of constagt Therefore, by (18),

Bf = x(Ao(x,D)f + R-1f).
whereR_; is a¥DO of order—1. In view of (1), our compactness claim will be proved, if we show that

xAo(x, D) — (ld - dS(Agl,D)—lé’S) D LA(Q) — L)) (20)

is compact. Abovel?(Q) is considered as a subspacelof(2,), a”dAEI,D stands for the Dirichlet realization of
ASin Q4. To prove that, we are going to use the fact thatis equal to the principal symbol ofl — ds(Aal’D)‘lé’s
inside2y, if_ (Agh,D)_l is replaced by any parametrix n@r Next, replacing{AghsD)‘1 by a parametrix results in
an “error” given by a compact operator when we work wittwith supp/ C Q.

More precisely, note first that the principal symbolsidéfaindd® are given by

1 N\ £ iz 1 S\A 1 ~ ~
F(0p007) =€ f. 7 (op@D); = 5 &+ &idy)
A straightforward calculation shows that

R 1 ' AU 1A 1 EET
~ (@), = 5 (1608] + 887 ) iy, —(opa0710), = o (267 5 )

Therefore, forAy = A;{j, defined originally by (11), we get
Ao = 0, (Id) — 0, (d*)o, (A%) 10, (5°), (21)

which confirms that\  is the principal symbol of the projection onto the subspace of solenoidal tensors (if we replace
(A%)~! by (A%)~!) not only in the Euclidean case . Next, fior= (cr,,(As)‘1 (x, D) — (AEI’D)‘I) 8% f we have

{ ASu = Kf in Q1, (22)

ulpe, = 0p(A%)1(x, D) flaq,.

whereK is of order0. Assume now that supp C Q. Then the mapf — op(A%) 71 (x, D)S* fag, is smoothing
by the pseudolocal property &fDOs. Therefore, iff € L? in (22), thenu € H?. Thus, forf € L?(Q2), we have
Ao(x, D) f — fél € H'(Q;). We can multiply the first term by by the pseudolocal property &fDOs, and this
proves (20) and therefore (19).

We have therefore proved the following.



Theorem 1 Letg be a simple metric i2 and lety be as in (18). Then for any symmetric tengoe L2(Q),
Xaij1 (6, D)x(Ng /) = f§, + K, 23)

whereK : L?(Q) — H'(Q;) is bounded.

6 Stability estimatesfor N,

Theorem 1 gives a formula for the recovery of the most singular paft’diom N, /" in Q, if f vanishes nead2
(then we apply the theorem wit?; = ). In general, it gives a parametrix gf° related to the larger domai; . In
this section, we will construct a parametrix to infinite order and in the same domain. The latter comes with the price
of losing one derivative in the inversion, see Remark 2 at the end of this section.

First, we construct a parametrix of; to infinite order similar toB in (18). Notice thatV, is not elliptic and its
principal symbolo, (Ng) vanishes on the range of,(4*). On the other handy, (N, ) leaves invariant the subspace
of symmetric tensor#;; satisfying&’s;; = 0 (the solenoidal tensors). On this subspagg,N,) is elliptic with
inverse given by;;x;, see (15). Nextg,(d*)o,(A%)~'0,(8%) is the projector onto the orthogonal complement of
this subspace. Having this in mind, we construct first a parametigxif the elliptic (as will become clear below)
operator

M =|D|Ng + d°(Ag, p)~'6°
of order0. Here2, D> Q, is a small strictly convex neighborhood ©f; and the metric is extended there smoothly.
InsideQ,, and therefore o, (A§22’D)‘1 is awDO with full symbol equal to the parametrix @ modulo operators
of order —co. The principal symbob, (M) of M is given byo,(M) = |§|op,(Ng) + Id — Ao, WhereA, =
AZ, = o,(Id — ds(AghsD)_lé’s), see (21). Denote also by = 0(Sgq,) the full symbol of the projectoSq, =
Id — dS(AEZ’D)‘lé’S in L2(2,). Notice thato,(Id) = 8,’{11 Next, Ao and/d — Ao are projectors (onto the principal
parts of Fourier transforms of solenoidal and potential tensors, respectively), [&fil€ N, ) can be “inverted” as in
(15) by €| 7' 4o = || a;jki. We therefore have

(I17" 40 + (1d = Ao)) 0, (M) = Ao + (Id = Ao) = Id.
Thuso, (M) is elliptic. There exists a symbdl of order 0, such that
Loo(M)~1Id
for x € 1, where~ stands for equivalence modulo symbols of ordep. This yields
AoLoog(M)oA ~ A.
On the other handy (M) c A = o(|D|Ng), so
(AoL)oo(|D|Ng) ~ A. (24)

The symbolA o L is the parametrix that we need. Notice that the principal part ofL is [§| ™ a;jx;-

Therefore, there exists afirst ordgDO A in Q2 with principal symbold = a;jx;, suchtha Ng /= f5 +Kf
in Q,, whereK is smoothing acting on functions supportedin. Note thatK / may become singular @2,. As
above we can achieve that

ANg [ = [fo, + Kf inQy, VS e L), (25)

with a modifiedK with kernel inC>(Q; x ). Sincef = 0 outside, this implies that
d°va, = —ANg f + Kf inQ;\ Q. (26)

We will use (26) and the fact thaty, = 0 on 92, to estimatevg, in Q; \ Q.



Fory € Q1 \ € in a small neighborhoofly — yo| < ¢ of a fixed yo € 92, and for a unig such that the geodesic
y() = y(t; y,8) in Q; \ Q issued from(y, £) meetsd2; before it meet92 at a positive time that we denote by
T = 1(y, £), we have

[ve, ()], 7(s) = — / [ va, (r O 7 (07 (0) dr, (27)

(see [Sh1, Ch. 3.3]). Clearlyyg, (x)|* can be estimated bg > 7 _, |[ve, (x)],-gék)|2, with some constant’ if &,
are linearly independent andis close to a fixed point. Using this, we estimatg, first locally and then globally to
get the following Poincarestimate

|| vQ, ||L2(QI\Q) = C”dSUQl ”LZ(QI\Q)‘ (28)
We will estimate next théd! norm ofvg, in € \ 2. We have
E'V; [vgl(y)]j g = [dvq, (»)i; E'E.

To estimaten’V; [UQl(y)]j £/ for n not parallel to&, we differentiate (27). Fix agaim, € 9Q and choose local
coordinatesc’ on 2 neary,. Fix a unité, close to the unit normal td<2 at yo. Each pointinp € Q2 \ Q neary, can
be uniquely expressed as= y (¢; x’, &), where the latter is the geodesic issued from a point@rwith coordinates
x" in the direction&, (a more precise notation would ber; (x’, 0), &)). Choosex, = ¢ as ann-th coordinate. In
those coordinates, we get from (27)

T

[UQI(X/,Xn)]n = —/ [d*va, (x", 0)]un dt.

Xn

Let x be a smooth cut-off function such that= 1 neard2 andy = 0 neard$2; and outside?;. ThenK; : f
(1 — x)d*vq, is a smoothing operator by (26) and therefore,

o0

[vgl(x’, x,,)]n = —/ x[d*va, (X", Olun dt + K> f,

Xn

whereK, is also smoothing. We now differentiate the equality above wf.andx,. Note that in the r.h.s. we will
get only derivatives w.r.tx’. Writing the result in invariant form, we get in some neighborhdodf x:

n—1
I[ve, ] & ||H1(U) =C (Z IXPdSvg, 20, \0) + 1d°va, 2@ \0) + ||K2f||) , (29)
k=1

where the vector fields ® are tangent tdQ and¢ is the tangent vector field tp(z; x’, £). Introduce the space
H'(Q; \ ) with norm equal to the.? norm outside a neighborhood 82 and nea®Q (but outside2) having the
following form in normal local coordinates:

n—1
1/ 12 @ =/Q . (Z|a,-f|2 + X", 12 + |f|2) dx, suppf C U. (30)
1 i=1

HereU is a small neighborhood of a point @2 and the norm i (Q; \ Q) is defined by using partition of unity.
We now repeat the construction above leading to (29) witimearly independent choices &§ and use partition of
unity to get

[vas a1 @i = € (1000, g1 @ gy + 1K2/1) (31)

Of course, this implies
lve: | a1 @\ = € (ld°ve, lm1 @) + 1K2111)



but we need the more precise estimate (31) because it does not involve transversal derivatve810(26), (31),
and the trace theorem,

” v, ||H1/2(3Q) = C”ANgf”[f]l(Ql\Q) + Cs”f”H—S(Ql), Vs. (32)
We are ready now to compavg andvg,. Forw = vq, — v we have

{ Aw =0 in ,

w = ve, O0NniQ. (33)

By standard elliptic estimates we get thab || 1) can be estimated by the r.h.s. of (32). Therefore, fgr =
/&, +d°w we get from this and (25),

|78l 2 = € (14N s gy + 14N fliza@y ) + Coll Sla-s@p. Vs,

Note that a sufficient condition for the norm in the r.h.s. above to be finifg ixtended as 0 outside, to be inH!,
ie, f € HO1 (). Itis not hard to see however that since tHé norm that we use involves tangential derivatives
at 92 only, we can takef € H!(2) above. Indeed, in boundary normal coordinates the commutfitprsi Ne],
k=1,...,n—1,and[x"d,, AN,] are of order 0, andy / € L*(Q),k = 1,...,n—1, andx"d, / € L?(Q) for any
f € H'(Q) (without the assumptionf = 0 on Q).

Introduce the norm

n
INe SN2y = D 18iNe S iy + INe /a1 @))-
i=1
The H! norm above is defined as in (30) with the integral taken in a small two sided neighborh@d&z} bt only
outsideQ as in (30). The norm above defines a Hilbert spaE&2;). We have therefore proved part (a) of the
following theorem. Recall thaf is the projection onto the space of solenoidal tensors.

Theorem 2 Assume thag is simple metric ir2 and extend; as a simple metric iff2; D> Q.
(a) The following estimate holds for each symmetric 2-tenfan H' (Q):

”fé ||L2(Q) = C”Ngf”]f]Z(Ql) + CS”f”H—S(Ql)’ Vs > 0.

(b) Ker I, N SL*() is finite dimensional and included i6°°(Q).
(c) Assume thal, is s-injective in®2, i.e., thatker I, N SL?(Q) = {0}. Then for any symmetric 2-tensgrin
H'(Q) we have
1/% 122 = ClINe S g2gqy- (34)

Remark 1. We would like to note that in fact we actually constructétifrom N, /" up to smoothing operators. The
first step in this is to construct the parametrix/@f as in (24) and with its aid, we construyfg:;l modulo smoothing

operators as in (25). Sincg = 0 outsideS?, this gives us/*vq, = fél in 21\ ©, see (26). Integrating this along
certain geodesics, see (27), we ggf = fél in ; \ . Using the so obtained boundary valuevgf, on 92, we
solve the Dirichlet problem (33) to get = v, — vq in Q. Finally, we construclf = fél + d*w.

Next we prove part (b) of the theorem. Lgt € L*(Q), I,/ = 0 andé*f = 0in Q. ThenN, /' = 0 and
% = f. Part (a) immediately yields the finiteness assertion (see also [Sh2]). By the remark gbsvé; is smooth
in Q (see also [Ch]).

Part (c) of the theorem follows from the following simple lemma (see also [T, Proposition V.3.1], which also
implies the lemma below):

Lemma2 Let X, Y, Z be Banach spaces, let : X — Y be a closed linear operator with domaif(4), and
K : X — Z be a compact linear operator. Let

Ifllx = CUASly +1Kflz). VS €D(A). (35)

Assume thaH is injective. Then
Iflx = C'NASlly. V[ €DA.
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Proof. We show first that one can assume tH&s bounded. Indeed, l¢ft: || p(4) denotes the graph norm. Then (35)
implies

I/ lpey = CUAS Ny + 1K lz). VS €D(A).
Assuming the lemma for bounded operators, we|jgé€fn4) < C||Af|ly and this implies the estimate we want to
prove.

For bounded4, assume the opposite. Then there exists a sequgniceX with || f,||lx = 1 andAf, — 0in Y.
SinceK : X — Z is compact, there exists a subsequence, that we will still denotg, bsuch thatK f,, converges
in Z, therefore is a Cauchy sequencedn Applying (35) to 1, — fm, we get thal| /, — fullx — 0, asn — oo,

m — oo, i.e., f, is a Cauchy sequence iki. Therefore, there exist§ € X such thatf, — f and we must have
|fllx = 1. ThenAf, — Af = 0. This contradicts the injectivity oft thus proving the lemma. ]

To complete the proof of Theorem 2(c), we need to redefigeas a closed operator on a certain space. Let

X = SL3(Q). SetY = H*(Q,) andZ = H*(;) with some fixeds > 0. Consider the unbounded operator
Ng : X — Y an letD be the closure oS H'(2) under the graph norii /o = || fllz2q) + INg Nl g2,y
Given f* € D, there exists a sequendd?! () > f, — f in X such thatN, f, is a Cauchy sequence in, thus
Ng fu = h €Y inY forsomeh € Y. We setN, f = h thus definingV, onD. SinceN, is a¥DO, Ng f, = Ng f

in L2(Q,), so this definition agrees with the action 8% on any element in_2(Q2). We will show thatN,, with
domainD, is closed. Let as abov8H!(Q) > f, — f € X in X andN, f, — h € Y in Y. We saw that this means
that = N, f and by our definition oD, we havef € D. Therefore N, is closed. On the other han¥, /= 0 in

Y for somef € SL*(2) (then f actually has to be smooth by (b)) implié¥, f, /) = ||I, f||*> = 0, thus/ = 0 so

N, is injective. An application of Lemma 2 then yields part (c) of the theorem.

Remark 2. The r.h.s. of the inequality in Theorem 2(a) above can be estimatéd|bf/ || ;1 g, (actually, we need

the derivatives only near the boundary). On the other hand, in the I.h.s. we|lféyg. ). We believe that this is

not only a technical difficulty and is related to the nature of the problem. It remains an open question however to find
other reasonable norms ¢f and N, /" above so that the estimates above are sharp, as in Theorems 3 and 4 below.

Remark 3. It follows from the proof that without assuming s-injectivity 6f, estimate (34) holds for any orthog-
onal to Kerl, N SL*(R).

7 Recovery of afunction from integralsalong geodesics

LetIf(y) = jy [ dt be the geodesic X-ray transform of functiogigx), x € 2, that can be written also as:

Igf(z,a)):/f(y(t;x,a)))dt, (z,w) e T_.

The analysis above applies in this case as well with obvious modificationsVfer 1,1, we get similarly to (4),

_ 1 /() 9 (0*(x, »)/2)
N fx) = Jdetg(x) /Q p(x, yyn=t et dxdy a.
We haveo, (Ng) = |&|7! = (g% &£;)7!/2. Asin Theorem 1, we get
B _ A (0 1)/2
¢ ID|IxNg f=f+Kf InQq, = m (36)

The operatofD| is defined agD| = Op(|¢]). The operatoK is awDO of order—1.

It is known [Mu2], [Mu-R], [BG], [Sh1] that for simple metrics that we consider hefigjs injective onH', i.e.,
I, f = 0forsomef € H!(Q2) implies / = 0 with non-sharp stability estimates. We will use the injectivity to get
sharp estimate foN,.
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Now, (36) implies
1/ < C(INe fllmran) + 1KS IL2@) . VS € LAQ).

If Ny f = 0in Q, with some f € L*(Q), then by (36),/ € H; (), and by the injectivity of/, on H' we get
f = 0. Therefore N, : L2(2) — H'(Q,) is injective (and bounded). By Lemma 2 we get:

Theorem 3 Letg be a simple metric if2 and assume that is extended smoothly as a simple metric near the convex
domain2; ©> . Then for any functiory’ € L?(Q),

I/11/C < INg 1@y = CISI-
Moreover, inQ, f = ¢, !|D|x N f mod H! (Q).

The assumption that is smooth can be relaxed a bit. Sint¥g depends continuously an e C* with some finite
k = k(n), the constan€ in Theorem 3 above can be chosen locally uniform for simple megriesC*.

8 Recovery of adifferential form from the geodesic X-ray transform

Consider the geodesic X-ray transform for one component tengars2. They can be identified with 1-differential
forms /' = fidx'. Thenl, f is defined byl, f(y) = fy f,ie,

Iy f(z, 0) =/ﬁ(y(z,z,w))y"(z,z,w)dz, (z.w) e T_.

As above, it is easy to see that(dy) = 0 for any smooth functiony in  with |3 = 0. Heredy = (3y/0x")dx’
is the differential ofy. As before, we define a divergence operatfrsending 1-forms to functions by the formula
§f = g"V; fi. Any form f € L*(Q2) can be decomposed orthogonally as

S =10y,

wherey = 0 ond<, ¥ is given byy = Af,lé’f and$f* = 0. HereAp is the Laplace-Beltrami operator related to
g with Dirichlet boundary conditions. It is known [AR] thdy, is injective on the space of solenoidal forms satisfying
§f = 0 for simple metricsg with a non-sharp stability estimate. In other worgse H'(Q) andI, f = 0 implies
f*=0,ie., f = dy with somey vanishing ord2. Our goal here is to formulate a sharp stability estimate.

In the caseg is a constant coefficient metric, the symbolMf is given by (compare with Proposition 2)

27 m+1)/2

op(Ne)” = T T2+ 1/

2
NP —1(gij _ gigj /g2
e g, €1 =l (87— '€ /16P) e
As before, we see that this formula remains true (M4 = g (x)&;&; andg’ = g% (x)g;) for metrics with variable
coefficients, then the second equality is to be considered modulo symbols of-c¥d&he expressios’ —£1£/ /|£|?
equals the principal symbol af. Therefore the parametrix ¥, in this case is simply equal tg,!|£| as in the

preceding section. Similarly to Theorem 1 we get

XIDIxNg f = f§, + Kf. suppf C 2, (37)

where2; andy are as before andl is operator of orde+1.
Next we will show how to construcfg following the approach in section 6. In this case however, we will get sharp
estimates. Denotd = x|D|xN,. Thenf —dvyq, + Kf = Af asin (25) and in particulat/yq, = (-4 + K) f
in 2\ Q. Sinceyq, = 00ndQ2;, we haveyq, (x) = jy dyq,, wherey is any curve ir€2; \ @ that connects and
a point ond$2;. Let us choose = y«(s), 0 < s < T'(x) to be the geodesic such that(0) = x, and the maximal
extension ofy in @, \ Q is orthogonal (in the metric) t8<2. In local normal coordinates,
&

Ve, (x) = —/ [dyq,ln(x',s)ds, 0<x" <e,
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where[dyq, |» = 0¥, /0x". Similarly to (28), this easily implies the following Poinesatype of inequality
lva, ||Lz(Ql\Q) < Clld¥ |2 e \9)-

Therefore | yq, ||H1(s21\9) =
in HI/Z(BQ)- We have

Ve, ||H1/2(as2) <ClA—-K) flrz@ne) < C(IAS 2@ e + 1K/ Ir2@))) -

Cl(A = K) fllL2(@,\@) and the trace theorem guarantees that, |as2 is well defined

For¢g = ¥, — Yo with Yo = Aal,Dé’f we haveA¢g = 0in Q, ¢ = Yo, on o2, compare with (33). Therefore,
the H' norm of¢ in  can be estimated by the r.h.s. of the estimate above. This allows us to cofgﬁ)auadfé by
writing fg = fg + d¢ and we get

18] 12 < € (INe Sl oy + 1K z2,y) . SUpPS C 2. (38)

Recall thatV, [ = Ngfél Ve L3(Qy), wherefél is the projection off onto the subspace of solenoidal forms in
Q. LetNy [ = Ng f&, = 0 with some/ € L* with supp/ C Q. Then by (37)/3, € H'(21). By the injectivity
of Ny, we havefél = 0. Thenf = d¢q, with ¢o, = 0 0n a2 and since supy C 2, we get suppe, C 2, thus
/& = 0aswell. ThereforeNg : SL?(2) — H'(2;) is injective.

We apply Lemma 2tol = N, with X = SL?(Q), Y = H'(Q1), Z = L*(Q) to get the following.

Theorem 4 Assume thag is simple metric ir2 and extendgz as a simple metric iff2; 5> Q. Then for any 1-form
f = fidx"in L*(Q) we have

1/ 2@ /C = INg [l @y = C I 2o -
Moreover, inQ, we have/* = ¢, !|D|xNg f mod H! ().

Similarly to section 7, the estimate above is locally uniformgoe C* () with somek > 1.

9 Local uniquenessfor the boundary rigidity problem

In this section we apply the results we obtained for the linear X-ray geodesic trangfamsection 6 to show that s-
injectivity of I, for a fixed simple metrig in Q implies local uniqueness of the non-linear boundary rigidity problem
near the samg. In particular, we get as a corollary the result in [CDS].

Theorem 5 Let g be a simple metric in the domai@. Assume thaf, is s-injective. Then there exists> 0 and
k > 0, such that if for another metri¢ in Q we have||g — g|lcx < & andpz = p, on dQ2?, then there exists a
diffeomorphismy : @ — Q with ¥/ |q = Id, such thatg = V.. g.

Proof. We will first pass to semi-geodesic coordinates.

As above, we can extend the metric in a neighborh@ndof © such thatf2; is strictly convex with smooth
boundary and; is simple inQ2;. Assume now thag andg = g + f are two simple smooth metrics 2 with the
same distance function. By [LSU], we can choose diffeomorphic copigsanfdg, that we will still denote by and
g, such thatf’ = g — g vanishes a2 of any order.

Fix xo € 32, and consider the map eg(p Q2 - exp;o1 (21) that is a diffeomorphism according to our

assumptions. Introduce polar coordinates r6 in exp;o1 (Q1), wherer > 0, g/ (x9)0;0; = 1. Choose a Cartesian
coordinate system in whické, = 0} is the plane tangent to the boundary of §é((fz1) até = 0. Then by the
convexity assumptions, the functidhy has positive lower bound in the closure of gg)kpﬂ). Clearly, so does.
Define new coordinateé)’, y,), wherey’ € R""!, y* > 0, by y = 6'/6,, y» = r. The mapé — (', y»)
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is a diffeomorphism between e§(p(§21) and its image with inverse map given §y= r6 = y,0,()’, 1) with
O = (1 41y 1H)~12

In the coordinate§ = r @, the linesd = const. are geodesics withnatural parameter. Moreover, those geodesics
are perpendicular to the geodesic spheres const. In they—coordinates those geodesics take the form=
const. andy, is an arc-length parameter. Moreover, they are orthogonal to the plgnesconst. This shows that
(Y«g)™" = 8", i = 1,...,n, wheres'" is the Kronecker symbol, wheng is the diffeomorphisny ~ x. We also
have(y*)in = 8in.

We repeat the same construction withFirst, we extend in ; by settingg = g in Q; \ Q. This extension is
smooth becaus¢ = g — g € C(%°)(§2). The so extendeg is simple inQ; as well. Moreover, the exponential map
& — exp, & is the same for both metrics fare €2, \ 2 and has domain and image the same for both metrics as well.
Therefore, for the diffeomorphismr constructed above ang similar to but related tog, we havey (21 \ ) =
Y(R21\ Q). Inparticularyy*g = v*g in (2, \ Q). Therefore, in what follows we may assume that

8.8 €C¥(). supp(g—g) C Q,
gin =6in fori =1,...,n. (39)
In particular, for f = g — g we have
feC®Qy), suppf C Q. fin=fui=0, i=1,...n (40)
Let g, g be as in the theorem, in particulgrjs also simple provided that<« 1. Linearizing neag, we get as in
[E],
pg(x,y) — pg(x.y) = %Igf(x, »)+ Re()(x, ), V(x,y) €dQ?, (41)

where, with some abuse of notatioh, /(x, y) stands forl, f(x, ) with & = exp,! y/| exp;! y|. The remainder
term Rz (/) is non-linear and satisfies the estimate [E]

[Re (/) )] = Clx =3l %1 g V¥, ) € 902 (42)
with C > 0 uniforming if 0 < ¢ <« 1. By the assumptions of the theorem, the I.h.s. of (41) vanishes, thus
g fGe | = Clx =yl f 1121, Y(x,3) € 0Q2 (43)

Apply I'* to both sides and use the estim@ife u|| L (q,) < C||u| L~(q) to get

INe Sz < Clf 12 q)- (44)

Since /" extends smoothly as zero into the wh&&, we will denote|| /|1y = [ fllc1, and similarly for the other
norms of /' below. Note that/* does not need to vanish &f2. On the other hand, sincg vanishes o2 with all
derivatives, andV, is anwDO of order—1, we have

INg fllgr+1@,y < Crll S, VE. (45)
Applying the interpolation inequalityf f |la, s, +ass, < | S5t I /1152, 01 + @2 = 1,0 > 0, with s, = 0, we get
INe Fll a2y < CINe SNl 20 INe S 1351 @,) < CALLAIE, (46)
by (44), provided that, > 2. By (45), A, is such thall|f||2/§l‘_l < A;. Applying Theorem 2, we get
1/ 2@y < CALFIZ*5 @7
We use the fact next that for tensors satisfying (40), we have the inequalities [E]
ld*vlza@) < CA f 5%, = Iflle2 < CA) 153 g, (48)
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for anyag € (0, 1) and with 4, depending on an upper bound [of || 750, Whereso = (1 — /ap)~!. The proof of
(48) is based on the observation thiav, = [d*v],, = — /5, for such tensors and this allows us to estimate\We
use interpolation estimates to estimate the first derivatives oNext, we estimate; and its derivatives in the same
way for j = 1,....n— 1 by writing V,v; = =2/}, — V;v,. Using interpolation estimates again, we get with the aid
of (48)

1fllcr < ClSNgnzsire < CUANGN S s < CAs| fN52 < CASA3) 15y (49)

withae =1—®/24+ 1+ €)/s2,€ > 0, ands, > 0 such thatr > 0. Here4; > ||f||;;§'. Combine (47), (49) to get

2—4 2—4
1/ 2@y < CIAIG ™ < ClL GG Y.

The conditions imposed af}, j = 0, 1,2 are satisfied fos; large enough andoa — 1, ass, — oo, 59 — 0.
Therefore, there exists a choice of those three constants suchth@ — 4/s;) > 1. By the equality above then

we get that for/* small enough inZ2, we havef* = 0, and by (48) we conclude thgt = 0. For this to be true,

it is enoughl| /||, to be small and4,, 4,, A2, A3 above to be finite. This is satisfied jf is small enough irC*

with some finitek > 0. This is equivalent to the closeness@fo g in C* in semigeodesic coordinates. On the other
hand, if|g — gllcx+2 < 1 in the original coordinates, this implies the same for their pull-backs in the semigeodesic
coordinates [S-U]. Notice thdt can be estimated explicitly by optimizing the choicesplabove. This completes the
proof of the theorem. |

Remark 4. As itis clear from the proof, Theorem 5 admits the following more general formuladeons 0 such
that for anyK > 0 there ise = ¢(K) > 0 with the property thaf g| s < K and||g — g||;.2 < ¢ implies uniqueness,
i.e., the smallness is needed onlyZiA if we have an a priori bound in somi®.

Remark 5. The same method can be used to proveotddr type stability estimate.
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