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Abstract

We study resonances near the real afim¢| = O(hY), N > 1) and the corresponding resonant states for
semiclassical long range operatd?¢/). Without a priori assumptions on the distribution or on the multiplicities of
the resonances, we show that the truncated resonant states form a family of quasimode sPitles &able under
small perturbations. As a consequence, they form also a family of quasimode states for any suitably defined (self-
adjoint) reference operatdt” (), therefore, those resonances are perturbed eigenvalug§ bf. Next we show that
the semiclassical wave front set of the resonant states is contained in the set of trapped difecthémsonstruct a
suitable reference operator frof/) by imposing a microlocal barrier outside to show that the counting function
for those resonances admits an upper bound of Weyl's type connected with the medsui&®fjive an example of
system for which this bound is optimal and also prove similar bound in case of classical scattering by obstacle.

1 Introduction

This paper is devoted to a detailed study of the behavior of the resonances and resonant states near the real axis. We
work mainly in the semi-classical setting but most results can be easily translated into the classical one. By resonances
near the real axis we mean resonances in a “0oK}) = [ao, bo] + i[—S (h), 0], where0 < S(h) = O(hX), K > 1.
Such resonances may exist only for trapping geometries. We accept the convention here that resonances lie in the
lower half-plane.

For simplicity of the exposition, we consider compact perturbati{h) of the long range Schrodinger operator
—h%A + V(x). Our results however hold for general long range perturbations of the Laplacian (see section 8), i.e.,
when the long range perturbation is in the second and first order part as well. The basic properties are established
in the abstract “black box scattering” setting introduced bgs8gind and Zworski [SjZ] (see next section). It is
well known that ifz(%) is a resonance, then there exists(a)-outgoing resonant statg1) satisfying the equation
(P(h) — z(h))u(h) = 0. By [B1], [St3], if —Imz = O(h™), and if P(h) = —h?*A for largex, then

u(h) = O(h™®) for Ry < |x| < R, (1.1)

whereRy < Ry < R, are such that the scatterer is included in the B4l), Ry). For simplicity, in this introduction

we willassumeS () = O(h*°). This does not immediately imply that the same is true for the generalized “eigenfunc-
tions”, i.e., for the solutions of P (1) — z(h))*u(h) = 0 with somek > 1. We call those generalized “eigenfunctions”
(with infinite energy) resonant states as well. Sirden z = O(4°°), one can expect that

(P(h) — z(h))u(h) = O(h*™) for any resonant state. 1.2)

The estimate above has to be considered in the following sengeis-rormalized inB(0, R), R > 1 and then the
r.h.s. has to be&(4*°) in the same ball. If one tries to carry out some recursive procedure for proving those two
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estimates, it is quite likely to get exponentially big (with respect t&) terms , because for the number of stéps

we havek = O(h—"#), n* > n, wheren > 2 is the dimension. However obtaining such estimates even under the
assumption thatu (%) is uniformly bounded does not follow easily from known results. The third question we are
trying to answer is about the degree of linear independence of resonant states corresponding to resonances too close
to each other, for example two resonanee8:) andz; (k) in Q(h) with z,(h) — z2(h) = O(h*°). In other words,

can we control how small is the angle between two (or more) resonant stateys u,(#) corresponding to such
resonances? If we could, then we would know that a linear combination @, «» () satisfying (1.1) would also

satisfy (1.1) for any (/) that isO(4°°) close toz; (h) andzz(4). This is also related to the stability of the property of

linear independence of such resonant states and is crucial for providing link between resonances and eigenvalues of a
reference operator below.

Instead of working with single resonances, we work with clusters of resonances. We exploit the following argu-
ment: since the number of resonancefih) is O(h—”#), we can always group the resonances in clusters of diameter
d(h) = O(h*) with distance between two clusters at Ieals't#d(h) with somec > 0. Then we prove (see Proposi-
tion 3.3 and the remark at the end of section 4) estimates (1.1) and (1.2) for any linear combination of resonant states
corresponding to resonances in such cluster. For technical reasons we work with the complex scaled By@nator
In Proposition 3.4 we give an affirmative answer to the third question above for resonant states associated with dif-
ferent clusters. Within a single cluster, we still cannot control the angle between resonant states corresponding to two
different resonances in this cluster, but we can simply choose an orthonormal basis and our results show that we still
get states satisfying (1.1) and (1.2). Note that in particular, even though we work with clusters, we get those estimates
for a resonant state corresponding to any single resongihge

In Theorem 3.1 and the proof of Theorem 3.2 we show that existence of resonareé¢s)imear the real axis
implies existence of at least the same number of real quasimodes on an interval slightly wider than the projection
of Q (/) on the real axis. The corresponding quasimode states are linearly independent in a stable way under small
perturbation and this allows us to prove in Theorem 3.2 that they generate at least the same number of eigenvalues
of a suitably chosen reference operaftit(s). This generalizes the result in [St4], where the number of quasimodes
is not estimated. In some sense, this is a result converse to that in [St1], that says that existence of asymptotically
orthogonal real quasimodes implies existence of at least the same number of resonances nearby. It is implicit in [St1]
that the asymptotic orthogonality can be replaced by the condition of linear independence stable under certain small
perturbations. By quasimodes states we mean approximate solutions witlD¢idy, N > 1 or N = oo supported
in a fixed compact.

In sections 4—-6 we study a differential elliptic second order oper&i@r) that is a compact perturbation of the
long range Saidinger operator-42A + V(x) as before and satisfies the black box assumptions. Using (1.1) and
propagation of singularities arguments, we show that the wave front set of any linear combination of resonant states
as above is contained in the sEtof trapped bicharacteristics df(%). In particular, this is true for any resonant state
related to a single resonancé), ash — 0. The upper bound foN (2 (%)) established in Theorem 3.2 in terms of
upper spectral bound for a self-adjoint reference oper&tt:) says that the number of eigenvaluesiif() in a
small neighborhood dflzg, bo] is at least the same as the number of resonana&s(/)) in Q (k). This provides us
with effective ways to get sharp upper bounds of the counting funati¢f (/2)) by using suitably chosen reference
operators. One obvious choice 8 (/) is the Dirichlet realization ofP (/) in the ball B(0, R), R > R but it does
not provide sharp bounds. We choaB&(/1) to be P(h) plus additional-wDO with principal symbol that vanishes
near the trapped rays and increases quickly outside some small neighborhood of them. This allows us to use known
spectral asymptotics faP* (/) to get a Weyl type upper bound

N(Q(h) < @rh)™ (meayT N py '[ao, bol) + o(1)), (1.3)

where py is the principal symbol ofP (), andS(h) = hX, K > 1 (see Theorem 5.1). In section 6 we give an
example of a semi-classical system that admiksveer boundof the type (1.3). In one special case we can actually
prove an asymptotic formula fav (2 (k)). Let P(h) be a second order elliptic semi-classical differential operator
with principal symbolpy and assume that for some enerfgy > 0, the set{po < b9} Cc T*R" has a bounded
component. Then this component consists of trapped points onlyad, &ty be non-critical values opy. The we
have a lower bound oV (€2 (%)) in terms of the volume of this component restricted to the energy levels akove
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If we assume also that the unbounded one is non-trapping, then the inequality above turns into asymptotics, in this
case actually7 N po‘l[ao,bo] is the volume of the union of the compact component%)f [ao, bo]. To prove the
asymptotic formula, we use the bound (1.3) and the fact that the eigenfunctions of a suitable reference operator serve
as quasimodes foP (%), therefore we get a sharp lower bound f8(<2 (%)) as well using the results in [St1]. We

also prove that under the assumption that the unbounded component is non-trapping, there is a resonance free strip
Oh*®)=Sh)<—-Imz<Mh VM > 0,0 <h <h(M),ayp < Rez < by. Thisis done in Theorem 6.1.

In section 7, we prove an upper bound on the number of resonances in classical scattering in a neighborhood of
the real line of the kind < —ImA < S(A) = O(A~*°), ReA > 1 in terms of the measure of the trapped set similar
to Theorem 5.1. We consider a compactly supported metric perturbation of the Laplacian in the exterior of a bounded
obstacle with Dirichlet boundary conditions.

We notice that the idea that the counting function of the resonances (not only near the real line) is essentially
bounded by the spectral counting function of certain reference operator, whiethis modified for|x| > Ry, has
been used implicitly or explicitly [Z1], [SjZ], [V], [Sj2] in the proof of the polynomial bound of this function (see
(2.2), (2.3) in next section). 8strand [Sj1], under certain assumptions involving analyticity and hyperbolicity of the
bicharacteristic flow, showed that the resonances in a box of h&jgh: < § < 1/Cy is O(8¢~¢h™"), ¢ > 0, where
d is the Minkowski codimension of the set of the trapped rays. Numerical study of this and other phenomena can
be found in [Li], [LiZ]. M. Zerzeri [Ze] obtained in the classical case an upper bound in a sector@lated to the
measure of the trapped rays but the notion of trapped rays that he uses is weaker than the common one, in particular,
—A + V(x)with 0 # V e Cg®° can be trapping, also a non-trapping kidney-shaped domain is trapping according to
that definition. Lower bounds of the typé:—" near the real axis can be obtained any time we have asymptotically
orthogonal quasimodes with the same density [St1]. Such bound in terms of the measure of the periodic trajectories is
proven in [PeZ] with different methods. In obstacle classical scattering under the assumption of existence of elliptic
degenerate periodic ray, one has lower bountlwith ¢ equal to the measure of invariant tori up to a constant factor.

One can interpret this measure as the measure of a subset of the trapped rays near the elliptic one and this well
corresponds to the classical version of (1.3).

Resonances connected to potential well for the Schrodinger operditoh + V(x), which is included in the
situation considered in section 6 have been studied extensively, see e.g. [HS]j]. There is a full asymptotic expansion
of the resonances near the energy level equal to a non-degenerate local minintigr)ofif the Hamiltonian is
real analytic, quasimodes with exponentially small error have been constructed in [Po2], which makes possible to
get expansions with exponentially small error. In section 6 we consider more general second order semiclassical
differential operators and energy levels not necessarily close to the bottom of the well.

Acknowledgments. The author wants to thank V. Petkov and G. Popov for the numerous email exchanges and
discussions during the preparation of this paper. Thanks are also due to A. Martinez who attracted author’s attention
to the results in [HS]].

2 Assumptions, Black-Box Scattering and preliminaries

We work in the general framework dflack-box scatteringproposed by Sjstrand and Zworski [SjZ] (see also [S)2],
[TZ1]). For simplicity of the exposition, we consider only compactly supported perturbations of the long range
Schrodinger operatorh2A + V(x), i.e., only the zero order term is allowed to be long range. The general long
range case is discussed in section 8. Hdbte a complex Hilbert space of the form

H = Mg, ® L*(R"\ B(0, Ro)),

where Ry > 0 is fixed andB(0, Ry) is the ball centered at the origin with radiug. We consider a family of
self-adjoint unbounded operato() in H with common domairD, whose projection ontd.?(R" \ B(0, Ro)) is
H?*(R" \ B(0, Ro)). Denote bylp,g, the orthogonal projector ontb( g, and similarly, we definélrn\ g(o, ry)-
Then we assume that

1po,ky) (P +)7' :H —>H
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is compact. Outsid&tg,, P (/) is assumed to coincide with the semiclassical Schrodinger operator, i.e.,

1rm\ B0, Rp) P(Mu = (—h*A + V(x, h)) (ulre\ B0, Ro)) »

where (for|x| > Ry),
V(x,h)| < Clx|™#, B >0, 2.1)

uniformly in 2 € (0,hol, ho > 0, and V(x) extends analytically inc in the domain{ro € C x C", [r| >
Ry, dist(w, S"') < do, r € C,argr) € (—bo,0)} with somefy, > 0, dy > 0. Finally, we assume that
P(h) > —Cy, Cy > 0. Under those assumptions, one can define (the semi-classical) resonan®és)R&sP (/1)
in a conic neighborhood of the real axis by the method of complex scaling (see [SjZ], [Sj2]). An outline of the com-
plex scaling technique is given below. Resonances are also poles of the meromorphic continuation of the resolvent
(P(h)—z)"1: Heomp — Hioc from Imz > 0 into a conic neighborhood of the real line. We will denote the so contin-
ued resolvent byR(z, /). In this paper we adopt the convention that resonances lie in the lower half-plane fn In
classical scattering, we considBras above independent bfoy formally assuming thai = 1. Then P has classical
resonances Résdefined as the poles of the meromorphic continuation of the resofvent A2)~! : Heomp = Hioc
from ImA > 0 to a neighborhood of the real line. For suBhwe then setP (1) = h? P and define resonancegh) as
above. Then the semi-classical resonances and the classical ones are reldted by>:.

As in [SjZ], [Sj2], we construct a reference selfadjoint operafti(z) from P(h) on H* = Hg, & L2(M \
B(0, Ro)), whereM = (R/RZ)" for someR > R,. Then for the number of eigenvalues Bf in a given interval
[—A, A], we assume

#z € SpecP*(h); —h <z <A }<COR/hH"?, A>1,

with somen” > n. This implies (see [SjZ] and [S]2]) that

#z c ResP(h); 0 <ag <Rez <bg; 0 < —Imz <co} < Clao,bo,co)h™, (2.2)
#iecReP; <A <r,0<—-ImA<1} < Cr", r>1. (2.3)

Polynomial estimates of this type have been proved also in [Me], [Z1], [SjZ], [V], [Sj2].

In this paper we will often omit the dependence/on.e., we will write P instead of P(%), zo instead ofzy (/)
where it is clear from the context that we work withdependent objects. We denote @yvarious positive constants,
that may change from line to line.

For any resonance() there is an outgoing solutiom(%) to (P (h) — z(h))u(h) = 0 and possibly “generalized
eigenvectors'v(h) satisfying(P (h) — z(h))*™v(h) = 0. We will call ¥ andv resonant statesGiven Q2 (h) c C,
N(2(h)) will denote the number of resonancesS{/) counted with their multiplicities defined as the rank of the
residue of the cut-off resolvent at any resonance. Given a self-adgigrence operatoP” () (this notion is defined
later) with point spectrumN¥([a, b]) denotes the number of eigenvalues, counting multiplicitiesPdh) in the
interval [a, b]. With some abuse of notation and terminology, givere Cg°(R"), we will denote the operator
1B0,Ry) © XIR"\B(O,R) by x. If Squan\B(o,Ro)f) C K,whereK D B(0, Ry), we will say that supg” C K. By
H(R™),s =0,1,..., we denote the Sobolev space with semiclassical ripfrm}{s = Z|a|5s (hD)* £

We will work with pseudodifferential operatorg{DOs) with small parametek. The class that we use is
equivalent to thelDOs with large parametér (see e.g. [G]) by setting = 1/A. Given two open sety’, Y in R”,
for m,k € R, we consider the clas$”* (X x Y) to be the set of alb(x, y, &, h) € C®(X x Y x R"), such that for
any compacK cCc X x Y, alla, B,y € Z", h € (0, ho], ho > 0 fixed, we have

1029807 al < Copy.ch™F (1 + |E)™ . (2.4)

If X =Y, we setS"™k(X)=S"k (X x X). Givena € S™*(X x Y), denote by Ofx) the operator

1
Qrh)"

(OP(@)) (x.h) = f f I Ry, h) dy dE. (2.5)

The class of operators corresponding3#-* will be denoted byL™*. The “negligible operators” are those in
L~=%=%_ We will work mostly with operators with symbols supported in a compadt fiR”. In this case, the class
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considered here coincides wiff (m) (see e.g. [DS]]), where the “order function? can be chosen to be = 1. In
this case also the order with respect t& does not matter and we will denote the corresponding classé& and
L*, respectively, and we will calt order of the corresponding class.

We refer to [G], [SjV], [DS]], [I] for more details. Below we would only like to recall the formula for the symbol
of the composition of twa-WDOs. Giveru(x, y, &, h) € S™*(X), one can find a symbel(4)(x, &, h) € S™k(X),
where4 = Op(a), depending only on, &, / such that4 and Ofo(A)) differ by a negligible operator. In this case
we write A = o(A)(x,hD, h). If 4; € L™ki(X), j =1,2,thend; 4, € L™ *m2ki+k2(x) and

1
0(A142) ~0(A)oo(dy) ==Y ah‘“‘aga(A1)1);'50(Az).

l|=0

3 Basic estimates

In this section we obtain estimates on the resonant states in the semiclassical case corresponding to refonances
aboxQ (h) = [a(h), b(h)] + i[—c(h), 0], where0 < b(h) —a(h) = O(hN), 0 < c(h) = O(h™), N > 1. Our goal is

to prove that the resonant states are essentially supported near the scatterer afll satyg/ = O(h™"1) with zo €
[a(h),b(h)], whereN; < N depends orV. As explained in the Introduction, instead of studying single resonances,

we study clusters of them close to each other and the resonances in domains of ¢/iypéll be considered later

as such clusters. We prove those estimates for each linear combination of resonant states corresponding to resonances
in Q(A). In particular, this allows us to choose orthogonal system of such linear combinations that form quasimode
states forP (k) with quasimodezy (/) of multiplicity equal to the total multiplicity of ReB(/#) N (/). Next, we

study wider domains wher@(h) = ag, b(h) = by are independent of by grouping them in clusters contained in
“small” domains2, () as above. We show that resonant states, cut-off for largare still asymptotic solutions

to the equation(P — zp)u = 0. We also prove an estimate in Proposition 3.4 that allows us to control the angle
between two resonant states corresponding to different clusters. This allows us in Theorem 3.2 to estimate the number
N(2(h)) of resonances if (#) by the number of eigenvalues of some reference operators in an interval a bit larger
that[a(h), b(h)].

3.1 Brief review of Complex Scaling
We follow here [SjZ] and [Sj2]. Fix4 < B, such that
Ro+1<A<B-—1.

Note that in Proposition 3.1 we impose the condition tRat B, for someB, depending ori” and throughout this
paper we assume that this is fulfilled. We will perform complex scalingrfoe |x| > B. Choose a real-valued
increasingC *°- functionk (r), r > 0, with the properties:

() k(r)=0for0 <r < B,

(i) k(ry=1forr > B+1/2,

(i) 0 <k(r) <1,

(V) k(r) = e~ /=B for B < r < B + €o With someeq < 1.
We would like to note that another choicexfr) in (iv) nearr = B might influence the exponential term in Proposi-
tion 3.1 below. Se® = 0(r) := Aok (r), whered < 6y < 6, will be chosen later. Defingy (r) := re’?). We chose
0o < 1 sothatdfy/dr # 0. Asin [SjZ], [Sj2], we perform the analytic dilation by considering the map

R'sx=rw+— fa(NweC", weS" (3.1)

Under the action of the map (3.1), the operafbis transformed into an operatd onHg, @ L>(Ty \ B(0, Ro)),
whereTy is the image of (3.1). We refer to the above mentioned papers for details. We will idéitifyith R”
(in other words, we parameteridg by r andw). Then inside the balB(0, B) := {x; |x| < B} the operatorPy
coincides withP, while outside that ball in polar coordinates we have

Py = P(fo(r), (f5(r)~' Dr, Do), 3-2)
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where P(r, D,, D,,) is the semiclassical symbol @ in polar coordinates. SincB = —h2A + V(x) for |x| > Ry,
equation (3.2) implies that

1 > -1, 1 ;
Pylr>ry = (TéhDr) — he—félhDr + f_gz(th)z +V(re 0)- (3-3)

The operatorPy is elliptic, closed inHg, @ L?(Ty \ B(0, Ro)) which we identify with{ with domainDj that is
actually the same as the domain Bfafter that identification. It is known that for a fixed > 0 andz # 0 with
arg(z) # —26,, the operatorPy — z is Fredholm with index 0. Moreover, far # 0 with —argz) < 26,, we have
thatz is a resonance aP if and only if z is an eigenvalue oy and the multiplicities coincide. Since we are going to
work with resonances with Im = o(1), for & small enough those resonances will be always eigenvalugg.of

3.2 An absorption estimate, after N. Burq [B2]

Next proposition is a refinement of [B2, Prop. 6.1]. L#t) be a smooth function equal to 1 for< A4 — 1/2 and
equal tor™=1D/2 for r > A. SetP := pPp~!'. ThenP is self-adjoint for the measuré := p~2r"~'drdew and we
denote byH = pH the corresponding Hilbert space. Furthermore,

By | (1=1)(n=3)

P|r>A = hz( - 83 - V_2 472 + V(reiewsh))5 dily>q4 = drdw.

Let Py be the operator obtained froth by analytic dilation forr > B and denote byD its domain. In fact,Py =

o(fo)Pop~'(f). Here, forn even, the branch oj’@]/2 is chosen in an obvious way. Fii > 0. Note that in the

proposition above we require th&t > By, where By has to be large enough. It is not difficult to see that Byethat
we choose guarantees that the Hamiltoréian- V (x) is non-trapping foitx| > By for energy levels abovey.

Proposition 3.1 ]‘here existsBy > 0, such thatifB > By, for i > 0 andfy > 0 small enoughRez > ap, Imz <0,
and for anyu € Dy we have

c/((e + 70N hd,ul® + 0(lhr ="' Vyul?® + [u?))drdw (3.4)
< —Im (eie(Pe - z)u,u)ﬂ + (—Imz + e ull,

whereC = min(a, 1)/2 and the inner product and the norm are takerti

Remark. It follows from the proof thag—"""* ||u||% can be replaced be;/"f”3

e~""'"* can be replaced by "*** ¢ > 0, by choosinge(r) nearr = B in a different way.

Jp<r<preniss lu|2drde and that

Proof. As mentioned earlier, we follow the proof of [B2, Prop. 6.1]. Write

—Im (eie(f’g — z)u,u)ﬁ —Im (eie(f’g - Rez)u,u)ﬁ — (=Imz)(cosOu,u)x

v

—Im (e“’(ﬁg - Rez)u,u)ﬂ — (—Im )%, (3.5)

Therefore, it is enough to prove the proposition foreal. So, letz > a¢. Note next that one can assume thas
supported inr > A, where in particulardu = drdw. Indeed, choose a smooth cut-off functiorc x < 1 such that
x(x) = 0 for |x| < 4 andx(x) = 1 for |x| > 4 4+ 1/2. Sincee’? (P, — z) is symmetric on supf — x), writing
u = xu + (1 — y)u we can see as in [B2] th&l — y)u contributes nothing to Ine’? (Py — z)u,u)y, SO we may
replaceu by xu there.
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Fore'® P, we have

0 5 1 e o h? A 0, =DM —3) o
i6 —if w i672 i0 i0
e P9=—1+ir9/h8,1+”9/h8,—e r—2+e h T+e V(irtrw,h). (3.6)
Integrating by parts we get
9,5 e’ 2 | o -1 2
—Im (e (Py— z)u,u)ﬁ - f m (= gy 1hrl® + sindlir = Voul® )drde 3.7)
. , —D(n-3 . .
+ / Im (e’ez — e_’ehzw — e’eV(rlerw,h)) lul*drdw
r
— him (g(r)ho,u,u) (3.8)
= L+ DL+1;
with » »
d 1 e’ —i(r0" 4+ 60")e™!
= = . 3.9
gr) dr(l—i—ir@/)l—i-ire’ (1 +ir6)? (39)
Itis easy to see that #fy > 0 is small enough we have
3
hz7 f (0 +2r0")|hd,ul?® + 0lhr ' Vyul?) drdw. (3.10)
To estimate/,, we use the fact that (see [B2])
Vre!®) = V() +r (e“" - 1) 9, V(), zel(rre?), (3.11)

as a consequence of the fact that the derivativds atimit a symbol-like estimates because of the analyticity assump-
tion, and thatrd, V(z)| = O(r—#), asr — oo. Therefore, for > B, B > 1,

im (ei"V(rf"rw,h)) | <0V +COr* <cor? < %"e(r).

Therefore, forl, we get forkz small enough,

3
b > / (zsine - %"9) u|Pdrde — Ch2/9|u|2drda) > Zao/9|u|2drdw, (3.12)
provided that)y « 1. For I3 we obtain
h h? , h? ,
I3 = —;((Reg)haru,u)ﬂ — E(Reg u,u)g + T(Img u,u)g. (3.13)
Sincel; is real, we have
h? M @
Iy = —im h((Reg)hdyu,u)y; + = (Im guu)y =1V + 1. (3.14)
The functiong admits the following estimates
IRegl < C(0'1+10"D(101+16']) < C|6], (3.15)
lg'l < CUO'1+16"1+10")), (3.16)

The second estimate (3.16) and the first part of (3.15) follow directly from (3.9). The second part of (3.15) holds
trivially for A < r < B, wheref = 0 and forB + ¢y < r, where|x| > 1/C, and is also true foB < r < B + &y,
wheref = fpe~'/¢~B)_ Now (3.15) implies that {" in (3.13) can be estimated by

1Y) < Ch/9(|ha,u|2+|u|2)drdw (3.17)
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and fori « 1 this can be absorbed by the r.h.s. of (3.10) and (3.12). Next, to estiféate/ve will show that for
h<«1

g/l <e™ ' 4 h329, forB <. (3.18)
Sett = r — B > 0. Then, sinced = fpe=V/** for 0 < ¢ <« 1, (3.16) implies that fo < 2 < #'/3/2 we
have|g’| < Ct=%e~1/"* < =1/ < ¢=h"'* for j « 1. On the other hand, fok!/3/2 < 12 < €2 we have
lg’| < Ct=%~V"* < Ch=3/2¢. Since (3.18) is trivially true for > B + o, this proves it for all- > B. Therefore,

D) < e )2, + 112 / 0lu2drde (3.19)

and the integral above can be absorbed by the r.h.s. of (3.12). Combining (3.7) with (3.10), (3.12), (3.13), (3.17) and
(3.19), we complete the proof. a

Remark. Estimate (3.4) remains true for Im> 0 if we replace—Im z there by— costplm z (see (3.5)). In partic-
ular, this implies that fofy « 1 and anyu € D

1 _—1/3 g~ ~
5 (Imz =) JullZ, < —im (e (P = 2yuu) = 1Py = Dulllully

gl

and after replacing by pu, we get

I(Pg —2)7 1| < m Imz > e """, (3.20)
3.3 Estimates on the resonant states
Fix 0 < ap < bg. Choose some(h), b(h) andc (k) such that
0 <ao <a(h) <bh) <bo, b(h)—alh)=o(1), 207" <c(h) <o(1)hr"+D/2, (3.21)
and let
Q(h) = [a(h), b(h)] + i[—c(h),0]. (3.22)

Letzi(h),...,z,(h) be all distinct resonances fa(/) with multiplicitiesm (), ..., m,(h). Setm(h) == m+...+
mp, = N(2(h)). Assume that there are no resonancesifn Consider the spectral projector associated with the
eigenvalues ofPy in Q
1
Mai= - b (- Plda
2mi IQ
whered(2 is assumed to be positively oriented. Dendtg := Rarllg. Then it is well known (see e.qg. [K]) thaky
acts invariantly orf{g, that is the span of all eigenvectors and generalized eigenvectdig with eigenvalues irf2.
Generalized eigenvectors corresponding to distinct eigenvalyes, . . . z, in  are linearly independent because for
the corresponding spectral projectors we h&ligIl,, = §;;I1,. The dimensiom:(/) of H, is finite, bounded by

ch—", and equal to the sum of the multiplicities of € Q. SetPq := Pyln,. Then Pq is a finite rank operator
(matrix) and we denote by - ||+, the operator norm ifl{g. The spectrum ofPg consists offzy, . .., z,} with the
same multiplicities. The following estimate is due to Zworski [Z22] (in this generality, see the proof of Lemma 1 in
[TZz1)])

_at .

Iz — Pg)~ || < CeCh" 1000/8)  for z e Qo, dist(z, ResP(h)) > g(h), g(h) < 1,
whereQy is any simply connected precompact subset-af < —argz < 26, (independent of:). In our analysis
we always work in domains included in the b&¢ := [ao/2,2bo] + i[—co, co] With fixed 0 < a9 < by and fixed

0 < ¢o < 1, therefore the constart above will be uniform. As a consequence, the resolvenPgfsatisfies the
following estimate

Iz = Pa) M ng < CeCH100019) for - e Q, dist(z, ResP(h)) > g(h), g(h) < 1. (3.23)



P. Stefanov/Sharp upper bounds 9

This allows us to apply the “semiclassical maximum principle” ([TZ1], [TZ2]) as in [St3, Lemma 2] to get the follow-
ing.

Proposition 3.2 Assume that (k) < S(h) < hG" D2y (h), w(h) = o(1), ash — 0, wherea(h), b(h) and c(h)
are asin (3.21). Then

Iz — Pa)~ onag,

1|| < L
TS0
whereQ = [a(h) — w(h), b(h) + w(h)] + [~h~"" S (h), S(h)]
Proof: We follow closely the proof of [St3, Lemma 2]. Let
Zi(h)y :==zj(hy+2iS(h), j=1...p,

where the bar denotes complex conjugate. Theandz; are symmetric about the line Im= S (/) and on that line
we have|(z — Pq)~!xg < 4/S(h) by (3.21) and (3.20) . Set

— mi — m
Ge ) = G2 (G2 2™
(z=zZ)m ... (z—=Zp)™
We observe first that
|G(z,h)| <1 forlmz < S(h). (3.24)

The functionF := G(z — Pq)~! is holomorphic below the line Im = S (%), and in particular ir2 (4). Our goal is to

apply the “semiclassical maximum principle” [TZ1] in the form presented in [St3, Lemma 1] to the funktiarthe
domainQ; := [a(h)—Sw(h), b(h)+5w(h)]+i[—S (h)h=2""=1, S (h)]. To this end, we need to modify (/) andS (k)

to be sure tha¥ satisfies an exponential estimate in this region with a constant independent of the region. The only
obstacle to that would be existence of resonances too close to the boundary. To this end w&exigrathifting the

sides, staying in the fixed-independent neighborhodd, of 2 (%), such that the closest resonance stays at distance
at leastg (h) = A"+ This is possible in view of (2.2). Then we apply (3.23) with {bgg) = (n* + 1) log(1/ k) and

using (3.24), we see th§tF|| = O(exp(Ch~"logh~—!)) on the boundary of the extended domain. By the maximum
principle, this is true inside it, and in particular f2;. Now we are in position to apply [St3, Lemma 1]. Since by
(3.20),|| F|| < 4/S(h) on the upper part of?2{, we deduce that fok small enough

1G(2)(z — PQ) lng <2¢3/S(h), VzeQh). (3.25)

Next step is to show that .
1/C < |G(z,h)] onda2(h). (3.26)

Itis enough to estimaté — %;)/(z — z;) ondQ(h). Observe first thalz; — Z;| < 4S(h), Vj. Next, the distance from
eachz; from the three sides Im= —S(h)h‘”#, Rez = a —w, Rez = b+ w of Q is bounded below bﬁ(h)h‘”#/z
for h « 1. Therefore,

2T ‘ S ot e’ N O 48(}’)# — 8", VzedQ)\ {Imz = S(h)}.
z—zj z—2zj S(h)h=7"/2
This yields
_ oz M -
ETELT <8k, vz e a0\ {imz = S(h)}. (3.27)
z — Zj

On the fourth side Inm = S(h) of Q2 we have|(z — Z;)/(z — z;)| = 1, thus (3.27) is trivially true there. Since
(1+x)/* <e,0 <x < 0o, we get

117Gz h)| < (1+ 81" ym+=+mp — (1 4 81"y < (1 + 8h"")Ch ™" < o8€
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This proves (3.26). Estimates (3.25) and (3.26) together imply the proof of the proposition. ]

This proposition allows us to estimaffe’q — zo |1, for zo € [a(h), b(h)]. We have

1 1
z0 — Pq = o yf (zo — Po)(z — Po) 'dz = — fN(zo —2)(z — Po) " Ydz,
i Jag 2ri Jys

therefore,
Q2 _ b—a+w 1 b —a+w)?
lzo — Pallng < |2—7T|I20 —z|l(z = Pa) Mg < CT(b —a+ w)§ = C%- (3.28)
Choosingw(h) = h=6"*+D/25 (1), estimate (3.28) implies the following
b(h) — a(h))?
I(Ps — z0) /1l < C (% + h—S"#—IS(h)) I/, Vf eRarlg. (3.29)

If ¢(h)h=Cr"+D/2 < p(h) — a(h) = o(1), then we choos& (h) = K" +D/2(b(h) — a(h)) (thenS(h) > c(h) as
required). Ifb(h) — a(h) < c(h)h—(S"#“)/z, then we sefS (%) = c(h). This choice ofS (%) implies the following.

Proposition 3.3 Let Q2 andIlg be as above. Then fap € [a(h), b(h)] we have
I(Po = 20) /1| = Ch= "+ D2 max{b(h) — a(h), A= D2 | 1, Y/ eRanllg.  (3.30)

In particular, we get the following.

Corollary 3.1 Letzo(h) be a resonance with < ag < Rezo(h) < by < 0o, —Imzo(h) = o(1)hS"*+D/2 and let
f = f(h) be any generalized eigenfunction 6§ (/) corresponding to the eigenvalug (/) (a function such that
(Py — z0)* f = 0 for somek > 0). Then

1(Pa(h) — zo()) f1I < Ch=" " max(—Im zo(h),e ™"} /1.

Note that the r.h.s. in (3.30), measuring the “error”, is “small” only if the widthofk) does not exceed”,
N > (50" 4+ 1)/2. This does not allow us to control the linear independence of the generalized eigenfunctions
under small perturbation by integration by parts as in Proposition 3.5 below in wider domains, for exampte, if
and b(h) are independent oi. Next proposition plays a crucial role in proving that resonances in “wide” boxes
generate at least as many eigenvalues of the reference operator nearby. It states that the spectral frgjesities]
to suitably chosen clusters of resonances contained in those boxes are polynomially bounded when restricted to the
generalized eigenfunctions corresponding to eigenvalues in the “wide” box, see (3.34) below. Under the additional
assumption of “well separated” resonances [TZ2] or, more generally, if we assume the existence of a resonance-free
stripe(h) < —Imz < h—z"#‘lc(h) below 2 (/) [St3], then the spectral projectof$g are polynomially bounded on
the whole spac#{. In general, however, we do not know whether this is true, but fortunately, the proposition below is
all we need for our purposes later.

3.4 Decomposition into clusters

Let

ao < a(h) < b(h) < bo, 27" < c(h) < 0(1)RTWHD/2 (3.31)
(without the requirement that(h) — a(h) = O(hYN), N > 1). Let Q(h) be as in (3.22). Assume that there are
no resonances o#2(4). A direct consequence of (2.2) is that one can group the resonanéegzininto clusters
contained in the interiors of the boxes

Qi (h) = lax(h), b (h)] +i[—c(h),0], k=1,...,K(h), K= O(h_”#), (3.32)
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where (/) do not intersect, moreover, fér #£ m,
dist{Qp, 2} > dw(h), width(Qy) = by —ag < Ch‘”#w(h), (3.33)

where0 < w(h) = o(l)h”# is fixed in advance. There are no resonances ioutsideQ2;'s. Denote as before bl g,
the spectral projectors related to the eigenvalueBgin 2; and letPg, Hg be as before.

We know that the subspaces Rap(/) are linearly independent. The following proposition basically gives us
control over the lower bound of the angles between them.

Proposition 3.4 Under the assumptions aboveyith) = A= +D/2¢(ph), then there exists a constatt= A (ao, bo),
such that .
Mg, g < AR~T"FV20 =1, . K. (3.34)

For any f; € Ram2x(h),k = 1,..., K, and for anyko, we have

_ #
I fkoll < AR=T"FD2N fi 4 i,
Proof. Following the proof of Proposition 3.2, we get that

Iz = Po) g < on dQ (h), ¥k, (3.35)

C
c(h)
whereQy (h) := [ax(h) — w(h), be(h) + w(h)] + i[=h~""c(h), c(h)]. Note that{ (k) have the same properties
(3.33) as®2, (1) concerning the distance between two such domains and their widthsuxdithreplaced byw (%) /2.

To justify (3.35), it is enough to note that in the proof of Proposition 3.2 we used the fact that there are no poles of
(z — Pg)~! below—Imz = ¢(h) only, and the fact that there might be poles to the left or righgfdoes not play
any role as far as those poles are separated by distéingé) (see also [St3]). Notice also that the const&nin
(3.35) is independent df. Since there are no eigenvalueskyj in 2 \ Q, one can defin€lg, |~ as integrals of
(z — Po)~! overdS2y. A direct estimation of that integral, using (3.35), yields the proof of the first part.
To prove the second part, write
Jko =T, (1 +...+ fk)

and use the estimate d_lflgko. O

3.5 From resonances to quasimodes

We are ready now to formulate and prove some consequences of the estimates proven so far. The first one, roughly
speaking, says that iP hasm resonances 2, then P hasm real quasimodes; in [a(h), b(h)] with compactly
supported asymptotically orthogonal quasimode states. Note that this theorem is in some sense converse to [St1,
Theorem 1] that states that locally existence of quasimodes implies existence of resonances nearby.

Define the smooth cut-off functioh < xg(x) < 1 as follows:

xp(x)=1for|x| < B+3/4, xp(x)=0for|x|> B+ 1. (3.36)
Theorem 3.1 Let
0 < ag < a(h) < b(h) < bo, b(h) —a(h) = o(HYRSFD2 2= < () = o(1)RGH+D/2,

and set
Qh) = [a(h),b(h)] + i[—c(h),0].

Suppose thaP (h) hasm(h) = N(S2(h)) resonances (counting multiplicities) fa(). Fix zo(h) € [a(h),b(h)]. Then
zo IS a quasimode of multiplicity: (%) for P (%), in the following sense: The spaggRanlg has dimensiom: (/)
and for anyyr € xpRanllg with ||| = 1 we have
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(a) suppy C B(0, B + 1),
O I(P(h) — zo(M)Y |l < Ce(h),

wheree() = h=Gn*+D/4 max{(b(h) —a(h)'2, h‘(-"”#“)/“cl/z(h)}.
Moreover, ifyy = xp f with f € xpRanllq, and|y| = I, then

IV — fllgr < Ce(h). (3.37)

Remark. It follows from the propagation of singularities arguments in section 4 and from the theorem above, that
one can cut offf for By < |x| < B, beforethe complex scaling is performed,dth) = O(hN), N > (5n* +1)/2

or N = oo, see the remark at the end of section 4. In other words, one can refilabeve bynon-scaledesonant

states. Our approach however allows us to do this only after we prove the theorem above for the scaled resonant states,
not directly.

Proof of Theorem 3.1. Without loss of generality we can assume that there are no resonandés. dgaiven f €
Ranllg, set
Vv =xsf (3.38)

Theny is supported inB(0, B+ 1). Lete(h) be as above (compare with (3.30)). First, observe that by Proposition 3.1
and Proposition 3.3,

‘/GWNfF+LﬂﬂdxSC(JM%HTWUUWNZSCJMMﬂﬁ V/eRallp  (339)

with C > 0 independent off’ (and/). Since for|x| > B + 1/2 we haved = 6y, we get
Iy — fllg < CeISI. (3.40)

Normalizeyr so that||y || = 1. Our assumptions guarantee th@t) — 0, ash — 0, so|| f|| = 1 4+o0(1). In particular,
this proves (3.37).
Next, (Py — zo)¥ = [Po, x81/ + xB(Po — z0) f and by (3.39),

1/2
I[Pg, xBl /Il < C(fB+3/4<| . (IKV f12+111%) dX) < C(e*(h)/60)' 2.

Since||(Py — zo) f || < €%(h), we therefore have
(Py — zo)¥ Il = Ce(h). (3.41)

To pass fromPy to P, itis enough to estimati( Py — P)y||. As in Proposition 3.1, we will work withy = pyr
and the corresponding operataPs = pPyp~!, P = pPp~!. Note that on supp we havep = r*~1/2 Observe
that the coefficients oy — P are bounded bf(@ + 6’ +16"]). More precisely, by (3.6) and (3.11),

I(Ps — P)¥ i

IA

(M@+9m%wwﬁ+me+@+WHmawm+w0 2¢wﬁ+wwm0
= L+ 1+ I3+ 14. (3.42)

Here we used the fact that< 6 < C6’. We want to estimate eadh in terms ofe using Proposition 3.1 and (3.39).
Sinced < 6,/%6'/2, we get immediately by (3.39),

I4 < Ce. (3.43)

In the same way we can trepto + 9’)h8,1/~/||ﬁ. To estimatel,, we need to bound;le”hf),lﬁnﬁ. Using the explicit
form of 6(r) nearr = B, we get easily thalty”’| < C#'/2. Therefore,

I < Ce+ Cl0"ho V|l < Ce + Cl16"29,9||5; < Ce. (3.44)
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To estimatel,, introduce the smooth function(r) as follows. Lety(r) = 0 for r < B andn” = #'/2. Then
n+n +n" <COY2(r)for B <r < B+ 1, and the integrands ify are supported there. Als6,+ 6’ + |0”| < Cn.
Therefore,

A

L<ClO+03Yyllg < Clnh*3 g < C (1R2320)lg + hlln hde ¥ llg + B2 10" ¥ llz)
C (1R )Nl + R0 2hd, vl + W20 )1 7)
C (1232 m¥)llz + €) (3.45)

IA

IA

To estimatdz||h8,(mﬁ)||ﬁ, we use elliptic estimates (note that actuaﬂiﬁbf(mﬁ) is compactly supported) to get

IR7mllg < C(1(Pg — 20) )l + In¥lliz) < C (I[P, nl¥r ll; + €)

C (W21l + hn'hd ¥l + €)

C (K10 2|l + 7110 2hd, |l 7 + €)

Ce. (3.46)

IA

IATA

In the same way we tredt. Combining this with (3.42), (3.43), (3.44), (3.45) and (3.46), we get
I(Pg — P)Yllg < Ce.

This, together with (3.41), implies that
(Pg —zo)¥ |l < Ce.

It remains to prove thag pRanlo has the same dimensiam(/z) as Railg. To show that, it is enough to prove
that for any0 # f € Rarllg, ¥ = xp f # 0. Assume thakp f = 0. Then f is real analytic fofx| > Aand f =0
for |x| < B + 1/2. Therefore,f = 0. ]

Theorem 3.1 implies immediately the following fact. LRt (/) be equal taP (h) in Hg, @ L?(B(0, R)\ B(0, Ro))
with Dirichlet boundary conditions 0AB(0, R), R > B. Then P#(h) has at leastz(h) = N((h)) eigenvalues
(counting multiplicities) in the intervdl: (i) — 8(h), a(h) + §(h)], with () = Ch™""e(h), C > 1, if e(h)h™" <« 1
(see [La, Proposition 32.4]). This is useful, only if the widith) —a(h) of () is O(hN), N > 1. We will generalize
this in two directions. First, we will consider more geneafierence operatorthan the Dirichlet realization of (/)
in a large ball, and secondly, we will prove this property for larger domains of width that can be indepenégefurof
example.

Let Q2 (h) andQ2 (/) be as in Proposition 3.4. Apply Theorem 3.1 to e&zh In view of the upper bound (3.33)
of by (h) — ax (h) that we have, we see that we can repla@® with the function

e(h) = Ch=Gr™ 1/ 112y, (3.47)

whereC depends only on the consta@tao, bo, co) in (2.2). This gives us a family of linear spacggRanlg, ,
k =1,...,K(h), such that for each, (a), (b), (c) of Theorem 3.1 are satisfied wit§(/2) there replaced by (#) €
[ax (h), bi (h)] ande(h) as above.

Definition 3.1 Let * be a Hilbert space that can be expressedt&s = Hg, ® L?(B(0, R) \ B(0, Ro)) ® Hext,
R > B + 1, with Hey another Hilbert space, and assume that () is a selfadjoint operator ir{# with discrete
spectrum in a-independent neighborhood of the interyal’), b(h)], whereao < a(h) < b(h) < by. We call P*(h)

a reference operator foP (/) in () with discrepancy (), if for some decomposition &t (%) as above such that
ResP N Q = ResP N (Ur Q) one has|(P*(h) — zx (h)yx (h)|| < 8(h) — 0, ash — 0 for anyyy € xpRarlg,,
Vil = 1, wherezy (h) € Qi (h) NR.

The notion reference operator depends on the choice of the discrepancy fuiiétioihe Dirichlet realization of
P(h) in alarge ball, considered above, is an example of a reference operator with discrepancy féotionc (/).
Clearly, we have a lot of freedom to choose the reference opeRitofor example one can impose other type of
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selfadjoint boundary conditions @B(0, R), or to extendP (%) on a perturbed torus as in [SjZ]. The more complicated
definition of reference operator that we give is justified by our desire later to oBtafrom P not only by modifying
it for large x but also by modifying it outside the wave front set of the resonant states.

Next theorem is a “global” version of Theorem 3.1, i.e., it applies to resonances in wider dafdins

Theorem 3.2 Let —1/3 4
0 <ag <a(h) <b(h) <bo, 2e7""* <c(h) < CH'""+3,

and set
Q(h) = [a(h), b(h)] + i[—c(h), O].

Let P*(h) be a reference operator if® (h) with discrepancy (i) < #°""/2+1. Then

(a)

N(Q(h)) < N¥{[a(h) — 81 (h),b(h) + 81 (W]} forh < 1,

wheres; (h) = h=""12=1§(h).

(b) If 81(h) = h=°""12=18(h), then eachf € Ranllg with || /|| = 1 is a linear combination of eigenfunctions of
P# with eigenvalues ifia(h) — 81 (h), b(h) + 81(h)] up to an error that in any compact does not exceed

Ch—On*+1)/2 (h—(3n#+1/2)c1/2(h) + 8(h)/81(h))
for 0 < h < hy, with C and /o uniform with respect to the choice ¢t

Proof. The basic argument in the proof is that the property that the resonant states corresponding to resonances in
different clusters irf2 (1) are linearly independent is stable under small perturbations as guaranteed by Proposition 3.4.

Let v be as in Definition 3.1. Thew, = xpf, fi € Ranllg, asin (3.38). By 3.37)| fk — ¥l < e(h) =
Ch=Gn™+1/2) p(A5n™+3)/2 < pon*/2+1 for | « 1 (see (3.47)). LeflT#(h){[a, b]} be the spectral projector aP¥(/r)
corresponding to the intervit, b]. Set

vk (h) = T () {lak (h) = 81 (h), br(h) + 81 (W yk (h), k= 1,...,K(h). (3.48)

Note thaty, = 0 outsideB(0, B + 1), therefore they can be considered as functiorgfras well and the projection
above is well-defined. We claim that (%) are linearly independent which would imply part (a) of the theorem because
eachy;, can be chosen freely in the spaggRanllg, and therefore, we would get that sgag; v € xpRanllg, }

has dimensior} ", Rankilg, = Ranklg. Assume the opposite. Then

oav; +...+agvg =0 (3.49)

with at least one coefficient non-zero. Recall thjgt are normalized angl(P#(h) — ax (h)vi || < §(h). We have
as above| fx — Vi |l < e(h). Since|(P*(h) — ax(h)v« |l < §(h), using the spectral theorem, we get thjat, —
Village < 8(h)/81(h) = ho""/2+1 as in [Stl, sec. 3]. Leb < x < 1 be a smooth cut-off function equal to 1 in
B(0, B + 3/4) and vanishing outsid&@(0, R). Setv, = xvx. Then we have alsyy — v} || < #*""/>+1 Therefore,
Ific = v Il < 2h%""/2+1,

Denote byv; the orthogonal projections af, onto the space Rdig. Multiplying (3.49) by x and projecting
(3.49) onto the latter space, we get

v +... +agvg =0 (3.50)

and as before| fi, — v/|| < 21" /2+1 since £ already belongs to Rdfig. In particular,[v][l = 1 + o(h). We may
assume that the largest coefficient in (3.50) by absolute value. iBividing by it, we get

v = Bavy + ...+ Brvk, 1Bl < 1. (3.51)
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Let us apply the projectadilg, to both sides of (3.51). Applying Proposition 3.4, we get

I fill = CH AN < Mg o) < ChT max|Tlg, of |
>2
< Ch™ max||Tlg, (v — fio)l
k>2
< Ch "= n* D25 907 241 _ ~p1/2

This contradicts the fact thdtf, || = 1 + o(1), ash — 0.
(b) Choosef € Rarllg, with || /|| = 1. Thenf = Y fi, where f; € Ranllg, and| fy|| < Ch=7"+D/2
by Proposition 3.4. The proof of (a) implies thigfy — v [| < e(h) + §(h) /81 (M) Iy || with e(h) as in (3.47). Here
v, = xv are cut-off linear combinations of eigenfunctions of the reference operator with eigenvalues in the desired
interval. Definev’ = ) v;.. Then

1 =Vl < Yk = vill < Ch™" (elh) + 8(h) /81 () maxilug Il < Ch™ " +D72 (e(h) + 8(h) /81 (k) .

This completes the proof of (b). a

3.6 Asymptotic orthogonality of resonant/quasimode states

Theorem 3.1 shows that one can choesg) orthogonal quasimodes; (i) = N(2(h)) being the total multiplicity
of resonances if, provided that the size &® is “small”. However, those quasimode states are not necessarily cut-off
single resonant states, in fact they are cut-off linear combinations of such resonant states. This result is non-trivial, as
explained in the Introduction, since we do not know how to control the angles between resonant states corresponding
to resonances too close to each other ¢ z;| < min{—Imzy, —Imz,}).

As mentioned in the Introduction, we do not know whether one can construct “almost orthogonal” quasimodes
corresponding t&2 (%) with larger size (for examplé(h) — a(h) = O(1)) by keeping their number the same as the
total multiplicity of resonances if. A simple argument based on integration by parts however, shows that resonant
states or quasimode states, respectively, correspondiigy (b) and Q2,(h) with dis{2y, 22} > dian€2;, are
“almost orthogonal”. We are not going to use the proposition below in our analysis, its purpose is actually to stress
on the fact that for domainQ (%), 2, (4) too close to each other, integration by parts argument does not provide
asymptotic orthogonality. Note that the control (3.33) that we have on the lower bound (Rgjs2,,} for the
domains (3.32) is not enough to guarantee asymptotic orthogonality.

Proposition 3.5 Let (/) and 2, (/) be two domains as in Theorem 3.1 andh), €, (h) be related to2;, 2, as
in Theorem 3.1. Leyy, € xpRanllg,, k = 1,2 be two quasimode states as in Theorem 3.1 correspondifuy (d),
k=1,2. Thenforh « 1,
e1(h) + e2(h)
dist{€21(h), Q2(h)}

(Y1, ¥2) <2

Proof. We have(P — zox)¥r = gx With || gx |l < ex(h), k = 1,2. Therefore,

z01(¥1,V2) = (PY1 — g1,¥2) = (Y1, PY2) — (g1, ¥2) = z02(¥1, ¥2) + (Y1, &2) — (g1, ¥2).

4 Trapped geodesics and wave front set of the resonant states

In this section we will show that in some important situations the wave front set of the resonant states is contained
in the union of the trapped rays (see also [CdV] for quasimodes related to eigenfunctions on compact Riemannian
manifolds).
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We consider self-adjoint differential operators of the form

P(h) =Y hDyaij(x)hDx; + Y bj(x)hDx; + V(x) + P1(h) (4.1)
i,j=1 j=1

with smooth real-valued coefficients;, b;, V', such thaf{a;;(x)} is a symmetric positively definite matrix for any
x € R" anda;; — 8;; = b; = 0 for |x| > Ry with someR, > 0 while V(x) is a long range potential satisfying
(2.1) and the analyticity condition after it fox| > Ro. HerePi(h) = >_ 15]- (x,h)h Dy, + V (x,h) is assumed to be a
differential operator of first order with coefficients supportedsi(o, Ro), such thatP; (k) € L'~ considered as an
h-¥DO (note thatP (1) € L>°). The operatoP (h) is self-adjoint inL?(R") and satisfies the black-box assumptions.
Resonances aP () are the poles of the meromorphic extensior( B{4) — z)~! : Lgomp — Lﬁ)c formimz > 0 to

C, if nis odd, and to the logarithmic plane sifis even. We are interested in the resonances near the real axis only.

We will use propagation of singularities results to get microlocal estimat&kpf/||I1g /|| away from the trap-
ping trajectories.

One can define the semi-classical wave front\(¥#F and WKu) of a tempered: as in [G] (see also [SjV], [I]).
The wave front set lives in the spa@&R” U S*R", whereS*R" is associated with the “infinite points”. We note
that here we will work with finite points of the semiclassical wave front set only, because we study operators with
characteristic variety bounded in ti§evariable. Consider the bicharacteristics Bfi) related to its semi-classical
principal symbolpo(x,§) = > a;; (x)&:& + Zj bj&; + V(x). They are the integral curves of the Hamiltonian vector
field H,, = (0¢ po)dx — (0x po)de. We call a bicharacteristic— y (¢) non-trappedlif for any R > 0, there exists
(positive or negative), such thair) lies outsideT* B(0, R). We call all other bicharacteristiteapped Denote byl
the trapped subset gf*R", i.e, (x, &) € 7 if and only if the bicharacteristic passing through &) is trapped.

Theorem 4.1 Let
0 <ap<a(h) <b(h) <by, bh)—a(h)<h™, M>Gn+1)/2,

and set
Qh) = [a(h),b(W)] +i[-hN,0], N > M + (5n+1)/2.

Let P(h) be the operator defined above and lét= f(h) € Rallg, and|| f|| = 1. Thenfors = M /2 — (5n+1)/4,
WF (f) is supported in the set of trapped bicharacteristicsRifz) on energy levels irpgl[ao,bo] uniformly with
respect to the choice of. More precisely, for any zeroth order symhplx, £) with support disjoint fromZ N
g Hao, bo] there exist<C > 0 such thatg(x, hD) /|| < Ch* for any f(h) as above.

If Q(h) is as above wit® < ap < a(h) < b(h) < bo, N > (7n + 1)/2 but without smallness assumptions on
b(h) — a(h), then the statement of the theorem is true wita N /2 — (151 + 2)/2.

The proof of Theorem 4.1 is based on a propagation of singularities argument. The following lemma follows
directly from [1], if the energy levek (%) is independent ok.

Lemma 4.1 (propagation of singularities) Let (P (k) — zo(h))u(h) = g(h) in B(0, R) with 0 < a¢ < zo(h) <
bo < 00, Ro < R, and |lu(h)ll 2(po,ryy < C. Let(xo,50) € T*B(0, R). Assume thatxi,§1) € T*B(0, R)
can be connected witlxg, &) by a bicharacteristic (of finite length) lying if* B(0, R) \ WF*!(g). Then, if
(x0,%0) &€ WF’(u), we also havex,&1) & WF (u) (and therefore, if(xg, &) € WF (1), then(x1,£&1) € WF (u)).

The estimates that those inclusions imply are uniform with respect to the chai¢g)of

Proof. Let[0,T] > ¢ — y(t) C T*B(0,R) \ WF**!(g) be the bicharacteristic such that0) = (xo,&o) and
y(T) = (x1,&1). Denote by®’ the bicharacteristic flow. Lejo(x,/2D) be such thayo(x,2D)u(h) = O(h*),
qo(x,&) = 1 near(xo,&0), and supgo C 7*B(0, R). We will construct a symbaoy, (x, £) such thaty, = ¢o for

t = 0, for eachr € [0, T], the principal symbol o, (x, &) is equal to 1 nea®’ (x¢, &) andg; has support contained
in a small neighborhood b’ (x, £), such that supp; ¢ T*B(0, R) \ WF*T!(g).
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Set
a(t) = lIq: (x, hD)ull.

We know thatx(0) = O(4*). Our goal is to construat, such thate(z) = O(h*), vVt € [0, T]. We have

d o2(t)
dt 2

d
Re (Eq,(x,hD)u,qt(x,hD)u) .
SetQ; = ¢q;(x,h D). We will choosey; so that

d
ihEQt =[P,0/]+ R:, O:tlt=0 = Qo, (4.2)
with R; is of order—s — 1. Suppose that we haw@; with those properties. Then

2
%O{ 2([) = h'Im (([P — 20, Qs]1 + Ry)u, Osu)
= —h7'mM(Q/(P — zo)u, Q;u) + h~'Im (Ryu, Q,u)

—/’l_llm (th, Q,u) + h_llm (Rl‘ua Ql‘u)

Since supp; is disjoint from WE+!(g), we get
d K —1 d K —1
a(I)Ea(Z) <Cha(t)+ Ch | Riulla(t) — Ea(l) <Ch*+Ch ||Rsul.

Since||R;|| = O(h*t1),
d
Ea([) <Ch = a@t)<Ch® foro<t<T.

It remains to solve (4.2). Notice th&;, is a finite expansion of the exact solutien’’?/# Qqe?**/* of (4.2) with
R; =0, see e.g., [DS], Ch. 11]. We look fat; (x, §) of the formg, = qfo) +hqfl) +... +hs_1q,(s_1). The principal

symbolqt(o) of 0, must solve the equation

0 0
(3, + HP()) Qt( ) =0, 61,( )|t=0 = {qo.

Therefore, we definq,(o) (x,8) = qo(®7"(x,&)), which is also confirmed by Egorov’s theorem. This implies that

L d
ih—-01” =[P.0i"1+ R{”. 01 l1=0 = Qo.

WhereRﬁo) is of order—2. Note that the symbol oREO) is included in the sel’ = Up<;<7 @’ (suppgo). We next

solve

d _
i 01" =[P. Q"1 = 17" R, 0{limo =0 (4.3)

on principal symbol level, which gives us the equation

(3 + Hpo) gt =ir(”,  q"li=o =0,
wherehzr,«’) is the principal symbol ofRﬁo). This is an ODE along the bicharacteristics paf and the solution is

again supported ifi'. Then le) = hq,(”(x,hD) solves (4.3)upto a remaindé?rgl) of order—3. We complete the
construction of the solution to (4.2) by induction. a
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Proof of Theorem 4.1. Let v be related tof as in (3.38). By Theorem 3.3 solves(P (k) — a(h))y(h) = O(h*)
withs = M /2 — (5n+1)/4,andy = 0 for |x| > B+ 1. We haves > 0 because// > 5n/2+ 3. We getimmediately
that WF (v) is contained irya(j1 [ao, bo] becauseP (h) — a(h) is elliptic outside any neighborhood of this set.

Fix (x,&) € po—l[ao,bo] \ 7. Then¢ # 0 and lety (z) be the bicharacteristic passing through &) for ¢ = 0.
Then for some (positive or negative), the-projection ofy (¢) lies outsideB(0, B+ 1), wherey = 0. By Lemma 4.1,
(x,&) ¢ WF (). This shows that WRy) C 7. By (3.37) (and the ellipticity ofP (%)), those statements remain true
if we replacey by f. This proves the first part of the theorem.

To prove the second part, let us group all resonance® in subdomaing2y (/) of width O(h™), whereM =
N — (7n + 1)/2 asin (3.32). Then we have the conclusion of the theorem for each normafizedRanllq, . Let
f € Rallg. Thenf = fi +...+ fxk., K = O(h™"). Therefore, forg(x, 2 D) as in the theorem, we have by
Proposition 3.4,

lqCe, kD) f1 < € Y llg(x, kD) fi1l < ChEh~" max]| /| < Ch=Om D72 7
withs = M/2— (5n+1)/4=N/2—3n—1/2. O

Remark. Lemma 4.1 allows us to estimate the resonant stgtes Ranllg, in the abstract black box setting
considered in section Beforethe complex scaling but outside the ball where the Hamiltonian might be trapping.
More precisely, letf, ¢ ande(h) be as in Theorem 3.1 (note that theeis a “small” domain, so we apply this
theorem toQ2, actually). LetBy be as in Proposition 3.1 and I8t > By. Estimate (3.37) implies that = O(e(h))

for |x| > B + 1, wheref(r) = 6. We also havé€ P — zo)yy = O(e(h)) andy = 0 for |x| > B + 1. Pick a point

(x,§) € po_l[a(),bo] with By < |x| < B. Then (see the remark right before Proposition 3(1)£) can be connected

with some(xy, &) with |xo| > B+ 1 with a bicharacteristic of this Hamiltonian whictr-projection does not intersect

the black box. Then Lemma 4.1, localized near this geodesics, impliegteaO (e (/)) microlocally near(xo, &), if

c(h)y = O(hN), N > (5n* 4+ 1)/2. By a compactness argument, we have this estimate infBhgorm in the annulus

By +¢€ < |x|] < B,0 < € « 1. Therefore, we can cuf off in the annulus abovbeforethe complex scaling is
performed ifc(i) = O(h™). This shows that theon-scaledesonant states are “small” for larggel even in the black

box setting, and that in Theorem 3.1, one can work with cut off non-scaled resonant states instead with scaled ones.
This argument works it (h) = O(h™), N > (51" + 1)/2, or N = oo but is not sensible enough to express the decay
of the non-scaled resonant states (i) = O(1)e~¢""", for example, then it just give®(h>°). Another argument
based on application of Green’s formula for black boxes then can treat the latter case but we will not go into details.

5 Upper bounds on the number of resonances close to the real axis

Let P(h) be the operator (4.1). In this section we are going to establish an upper bound of the resonah@es of
in a box of width independent df and height:V, N > 1 in terms of the measure of the trapped $etwhere the
measure is considered ii*R”. To this end we choose a suitable reference operAfigh) that imposes a barrier
outside a small neighborhood of the trapped ety modifying P (%) there. Since the resonant states are “small”
there, the resonant states will be quasimodes for the new operator. An application of Theorem 3.2 then will imply an
upper bound and the well-known asymptotics for the eigenvalues of selfadjoiidOs will relate this bound with
meas?7).

Fix0 <ag < by, N > 15n+ 3 and let

Q(h) = [ao, bo] + i[—h",0].

The resonances if2 (%) are contained imfz(’;)fzk(h), whereQy (k) are as in (3.32) witlw (/) as in Proposition 3.4.
Then by (3.33)px — ax < W=D/ distQy,, Qx,} > 4hN-6r+D/2 EachQ, satisfies the assumptions of
Theorem 3.1. The corresponding discrepancy function (see (3.47)) is given by

6(/’1) — C/’ZN/Z_(3n+1/2).
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Denote
T" =T 0 py'lao—v.bo+v], T} ={{ e T*R"; dist(, 7"} < u}, (5.1)

wherev > 0, u > 0 are small parameters. Fix> 0. Clearly,7" is a closed set. Assume that it is non-empty (but
it may have zero measure). On the other hafifl,is an open set of positive measure. We claim that(¥g) —
meag7"’), asu — 0. Indeed Ve > 0, there exists an open sét O 7, such that VolU,) < meag7") + ¢. Then
T*R" \ U, is at positive distance frord™” and therefore fop. = (e) <« 1 we haveT” C 7, C U, which implies
that mea6Z”) < Vol(7) < meas7") + . This proves our claim.

Denote—Cy = min po(x, &) and letg, (x,§) be a smooth function such that, = 0 on7}, g, = 2bo + Co
outsideTz"M, ando < g, < 2by + Co. Set

P (h) = P(h) +q}; (x,hD).
The principal symbol ofPﬁ(h) is pu(x,8) = po(x,&) + qu(x,§). The self-adjoint operatoP;f(h) has discrete

spectrum in(—oo, 2bg), becausd p,(x,§) < M} is compact for anyM < 2by. Moreover, we have the following
estimate for the numbe¥;[ao, bo] of eigenvalues of; (1) (see [DS]])

1 1
(Qrh)y (Vf([ao, bo)) + 0(1)) = Nﬁ[ao, bo] < W (V_f([ao, bo)) + 0(1)) > (5.2)
where
# _ .
Vi (ao.bo) = Jim, /,, P (5.3)

If o andby are not critical values fop,, (x, §), thenV*([ao, bo]) = Vf([ao, bo]) and the remainder is actualty (/).
In particular,

Nji(lao — v/2,bo + v/2]) < (Vol (py,'[ao — v,bo + v]) +o(1)), ash — 0. (5.4)

1
Qmh)"
Since7’ C p;l[ao —v,bp+v]C TZVM we obtain that V(ﬂp;l[ao —v,by +v]) > meag7”), asu — 0.

We claim thatPfj(h) is a reference operator if2 (%) with discrepancy (). Indeed, fixk and a normalized
Jr € Rari(h). Let ¢y (h) be the corresponding cut-off resonant state given by (3.38). Then by Theorem 3.1,
(P(h) — ar(h))yx = O(e(h)) and by Theorem 4.1, Wiy,) ¢ T°, wheres = N/2 — 3n — 1/2. The latter
implies that replacing® (/) by P;f(h) would keep the estimaﬂe(Pﬁ(h) —ar(M)Yk| < Ce(h) = Ch® with different
constantC. This constant depends gnandv but is independent of and on the choice ofy. Therefore,Pj(h)
is a reference operator with discrepanCy,,e(#). We can therefore apply Theorem 3.25it> 9n/2 + 1, which is
fulfilled in our case, to conclude that the number of eigenvaludgfc(h) in the intervalao — 81 (h), bo 481 (h)], where
81(h) = hN/2=15n/2=3/2 5 gt least equal to the number of resonanceR.in particular,

N(Q(h) < Nfi(lao — v/2,bo +v/2]) for0 < h < ho(i,v). (5.5)
Relations (5.4) and (5.5) imply
N(Q(h)) < (27r1h)" (Vol (p;I[ao —v,bo+v]) +o(1)) for0 <h < ho(u,v). (5.6)

Therefore, limsup_, o(27h)" N(Q (h)) < Vol (p;; '[ao — v, bo + v]) and taking the limitx — 0, v > 0 fixed, we get
by the remark after (5.4) that lim syp ,(27h)" N(Q2 (7)) < meag7"). Taking the limitv — 0, we get that the latter
converges to megd N pg'lao — 0, bo + 0]}, wherepg [ag — 0, bo + 0] := Ny py '[ao — v, b + v]. Sincepy is a
guadratic form o€ for eachx, the limit is actually mea{;]’ N pgl[ao,bo]}. We have therefore proved the following.

Theorem 5.1 Let0 < E; < E; be fixed andV > 151 + 3. Let P(h) be as in (4.1) and set

Q(h) = [E1, Es] + i[-hY,0].
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Then

N(Q(h)) < (meas{T N py'[E1, Eal} +o0(1)), ash— 0,

1
Qrh)"
where7 is the trapped set related tB (/).

In the formulation of this theorem we passed to the commonly used notAtion the energy levels.

6 Example of sharp lower bounds, generalized potential well

In this section we study again the resonances of the operator (4.1) under the assumption that for some non-critical
energy levelE,, the Setpo_l[—oo, E>] has at least one compact connected component. Then we get lower bound
in terms of the volume of the compact component. If in addition we assume that the unbounded component is non-
trapping, we also get an asymptotic formula for the resonances near the real line and a resonance free zone. This
situation can be considered as a generalized potential well. Similar situation was studied by Shu Nakamura in [N],
where he obtains asymptotic for the spectral shift function. His results, combined with existence of a resonance free
zone (see the theorem below) and the techniques developed by V. Petkov and M. Zworski [PeZ] provide different
approach to proving the asymptotic in the theorem below.

Fix two energy level® < E; < E; < maXpo(x,£&)}. Assume thatF, and E, are non-critical values opy.
Assume also tha;bo—1 (—o0, E,] is not connected, i.e., it has a non-empty compact component (this component then
must have non-empty interior becauBe is non-critical value ofpg). Then

26 ' [E1, E2] = Wint U Wex,

is a unbounded closed set with smooth boundary, where we dendi&pthe unbounded connected component and
the union of the bounded ones, that is non-empty according to our assumptions, is dendigd hen Wiy is a
compact with smooth boundary and consists of trapped points only. ThE.ggtontains non-trapped points and may
contain trapped ones as well.

Theorem 6.1
(a) For some functiold < S(h) = O(h*°) we have as — 0

L (VOl(Win) — O()) = N(E, Ea] +i[-S(h), 0)
Qrh)"
< N(E1, E2]+i[-h""3,0))
< L VOl (Win) + Meas$T N Weg + o(1)).

2mh)"

(b) If Weyt is non-trapping, i.e., iWex N 7 = @, then there exists a functidn < So(h) = O(h*°) such that for
any S (#) such thatSo (1) < S(h) = O(h*°),

NAEL Ea]+ 11500, 0) = = (1) + OC1) . ash = 0.

Moreover, if P(h) = —h?A for |x| > R with someR > 0, thenYM > 0 the functionS () above can be chosen so
that for soméeiy = ho(M) > 0, there are no resonances in

[E1, Ea] + i[-Mh,—S(h)] for0 < h < ho.

Proof. We will show first that thex-projections ofWi,; and Wy do not intersect. This will allow us to use cut-off
functions depending om only.
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Sincepy(x, &) is a quadratic form with respect g we get
2
po(x,§) = |A(x)'/?E + %A‘”z(x)b(x) +V(x), V(x) =V - %A(X)_lb(X) -b(x) (6.1)

whereA(x) := {a;;(x)}, b(x) = {b;(x)}. We claim that our assumption thpgl(—oo, E,] c T*R"is not connected
implies the same fofV (x) < E,} c R". Assume the opposite. Then for any, x; from this set, there exists a
continuous pathy = x(r), 0 < ¢ < 1 such thatx(0) = xp, x(1) = x; and V(x(r)) < E,, 0 <t < 1. Fix
(x0,80) and (x1,&1) in py l(—o0, E;2]. We will show that we can connect those two points by a path lying on or
under the energy IeveEz Let So be the value of that m|n|m|ze3p(x0,§) ie., 50 = —A~ l(xo)b(xo)/z and
let no() = & + z(go — &) be the line segment that conneet,sandéo We thus connectxy, &) and (XO,SO) by
[0,1] 3 ¢ — (x0,7n(2)). Itis easy to see thaiy(xo, no(¢)) decreases asincreases fromm = 0 to s = 1 and therefore,
it stays on or under the energy levehb. We next connec(xo,éo) and (xl,él) Where§1 = — A" (x1)b(x1)/2
by the patf[O 113t (x(t),—A~1(x())b(x(¢))/2. On this path, the quadratic part in (6.1) vanishes, therefore
Po = V(x(t)) < E; there. And finally, we connec(bcl,sl) with (x1,&;) as in the first step such thpt) increases
on this path with maximum value &k, &1) still not exceedingE; by assumption. This shows thpg (—o0, Er]is
connected, contrary to our assumption.

Denote byXey the (unique) unbounded component{(ff(x) < E,} and let Xj,; be the union of the connected
ones. The distance betweéfy; and Xex: is positive. Letyint + xext = 1 be a partition of unity associated with those
two closed sets, i.eint = 1 in a neighborhood ofi;, and xext = 1 in a neighborhood of ey Define

Pint(h) = P(h) + Vim(x), Vint(x) := o xext(X),
Pexi(h) = P(h) + Vex(x), Vext(x) := axint(x),

wherea > E, —inf V. ThenE; and E, are not critical values for neither symbp) = po(x, £) + Vi(x), i = int, ext,
and Piﬁtl [E1, E2] = Wint, p;(% [E1, E2] = Wext. Moreover, Pii(h) and Pexi(h) are selfadjoint,Pii(h) has discrete
spectrum i Ey, E»], while Pey(h) is non-trapping for energy levels [, E>].

To prove (a), note that the upper bound there follows from Theorem 5.1. It remains to prove the lower bound. To
this end, we will use the eigenfunctions Bf:(#) as quasimodes a? (k). Letv;(h), j = 1,...,m(h) be afull system
of orthonormal eigenfunctions d®n:(/) corresponding to all eigenvalues(h) of P (h) in[E1 + §(h), E; — 8(h)],
where0 < § = O(hX), K > 1, will be chosen later. For small, we have an asymptotics for(/2) as in (b) because
in intervals of lengths(/2) near a non-critical energy, there are o' ~") resonances. NexP, is elliptic outside
Wine and in particular, fore outsideXiy. Thereforey; = O(h*°) outside a neighborhood dfj, in eachH* norm
uniformly in j. Therefore, ifyin is as above, thew; := xinrv; form quasimodes foP (%), i.e.,(P(h) —ej(h))w; =
O(h*™®), (wi,w;) = §;j + O(h*), and suppw; C B(0, R) for any j with someR > 0. By [Stl, Theorem 1], for
0 < h <« 1, P(h) has at least:(h) resonances i®s(h) := [E1 — §(h) + hK, E; + 8(h) + hK] + i[—S (h), 0] with
some positiveS (h) = O(h*) andK > 1. Choose now (/) so thats(#) = 1, then we have

N Q) =

(2;}1),, (VoI (Win) + O(h)),  Q(h) := [Ey, E2]+ i[-S(h).0]. (6.2)
This proves (a).

To prove the first part of (b), fiX2 (%) as in (6.2) with som® < S(h) = O(h*). We will first prove an upper
bound forN (2) with remainderO (/). Observe thaPi,: (/) is a reference operator fdt (/) with discrepancyO(4°°).
Indeed, let2 (/) be as in (3.32). Since(h) = O(h*°) in our case, we get that the error in Theorem 3.1, applied
to eachQy, is e(h) = O(h™). Given fi(h) € Ranllg, with || fi|| = 1, we have WE f) C Wiy (uniformly in k)
by Theorem 4.1, thu$Pini(h) — zx (h)) fx = O(h*>°), wherezi (h) € Qi (h) N R. According to Definition 3.1, this
means thatPy,:(4) is a reference operator @ (1) with §(h) = O(h*°). By Theorem 3.2, fon « 1, N((h)) <
N*(E1=81(h), E2+81(h)]) < N*(E1, E2])+ O(h'™"), with §; (h) = §/2(h) = O(h*), whereN* is the counting
function of the eigenvalues dPy:(%). Here we used the fact that the number of eigenvalue’pfz) in an interval
of lengthO(h) is O(h'~") [DS]]. Using (5.2) and the remark after it, we get

N(Q(h) =

G (01 + O, 6.3)
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where the functior$ () that defines2 (%) is any function with the propert§ (z) = O(h*°). If we denote bySy (%) the
function S () for which (6.2) holds, then both (6.2) and (6.3) are true for &it¥) with 0 < So(h) < S(h) = O(h*™).

To prove the second part of (b), fi¥ > 0 and assume that{) is aresonance in the domdifi;, E>]+i[—Mh, 0].
Then there exists an outgoimg/) belonging locally to the domain aP (%) such that{ P(h) — z(h))u(h) = 0. Let us
normalizeu (k) by requiring that|u| 12, gy) = 1 With a fixed R > Ro. Notice thatP () — z(h) is elliptic for x ¢
Xint U Xex. This yields WRu| g0, ry)) C T*(Xint U Xeq). TO prove the latter, choose a cut-off function< x(x) < 1
equal to 1 in a neighborhood & (0, Ry) and having support iB(0, R). Then(P(h) — z(h)) yu(h) = w(h), where
w(h) = [P(h), xJu(h) is supported inB(0, R) \ B(0, Ro) and||xu(h)|| < 1. Now, (P(h) — z(h))xu(h) = 0ina
neighborhood oR" \ (Xint N Xext) C B(0, Rg), moreoverP (h) — z(h) is elliptic in R” \ (Xjnt N Xext), and therefore
for the wave front set of the compactly suppored /1) we get WR xu) C T*(Xint U Xext). This implies the same for
WF(u|B(0, Ro))-

Choose the smooth cut-off functigyl,; So thatyex: = 1 0N SUPPxLy @Ndxa,: = 1 in @ neighborhood oiey:. Then
(P(h) — z(h)) Xt (h) = v(h), wherev = [P(h), xadu(h) = O(h*) is supported inB(0, R) and WK ) C
T* Xext. Then(P (h) — z(h)) xaxtt (h) = (Pext(h) — z(h)) gt (h) = v(h). SinceyLw(h) = u(h) for large|x|, we get
that x,.u(h) is z(h)-outgoing. Thereforey,,u(h) = Rex(z(h), h)v(h), whereRex(z, 1) is the outgoing resolvent of
Pexi(h). SincePey is non-trapping for energy levels betwegn and E,, by [B3, Theorem 2]l xgu (M) | L2(B0, ) =<
(C/h)|lv(h)|| = O(h*). By the ellipticity of P(h) we have similar estimate for th&#? norm ofu () neardB(0, R)
and by the trace theorem, t&' norm ofu (k) ondB(0, R) is O(h™) as well. An application of the Green’s formula
in the ball B(0, R) then yields—Im z = O(h*°). This proves part (b) of the theorem. |

An example of operator satisfying the assumptions above is the Schrodinger opiatee —h> A+V (x), where
V (x) has strong local minimum, or more generally{if, V(x) < E,} is not connected. In this case, the construction
of the quasimodes above yields exponentially small error of the kirfd”, for anyd less than the Agmon distance
betweenXi and Xex. Therefore, there are resonances with exponentially small imaginary part with asymptotic
number as in (a). Our proof does not exclude the existence of other resonances in {i& stkig]+i[— S (1), —e =/ "]
with somesS (4) = O(h*™) but their number does not exce@dh'~"). This case has been studied in much more detail
in [HS]j] under some analyticity assumptions Bnwhere other precise results are obtained. In particular, it is shown in
[HS]] that the resonances exponentially close to the real line are exponentially small perturbations of the eigenvalues
of certain self-adjoint operator.

We would like to note also that the condition thBt%) is a compact perturbation of the Laplacian is imposed in
order to ensure the estimalg R(z, 1) x| < Car/h for any such non-trappind (%) for energy levels betwee#f';
and E,, and forz € [Ey, E2] +i[-Mh,0], VM > 0. As M. Zworski pointed out, such estimate for the long-range
Schrodinger operataP (h) = —h%* A4V (x) is implicit in a recent work [Ma] by A. Martinez and then this assumption
can be removed in this case.

The existence of the resonance free zone in (b) together with the results in [St3] makes it possible to get polynomial
estimates on the spectral projectdiig;, as in Proposition 3.4 acting on the whole spateather than on a space
spanned by resonant states. This implies a resonance expansion of the solution of the corresponding wave equation
as in [TZ2] and [St3]. Moreover, the wave front set of the spectral projectors are included in the trapped set and that
gives us good control over the terms in that expansion.

7 Sharp upper bounds in the classical case

In this section we prove a result similar to Theorem 6.1 in the classical caseX letR” be a domain with smooth
boundary and compact compleme&nt Let

P =Y Dyaj(x)Dx+ Y bj(x)Dy; + V(x) (7.1)
i,j=1 j=1

be a formally symmetric elliptic differential operator with™ (X) coefficients having the same properties as those of
P(h) in (4.1). For simplicity, assume thd@ = —A for |[x| > Ry. We study the resonancésof P near the real line.



P. Stefanov/Sharp upper bounds 23

Denote byP again the selfadjoint realization @f in L?(X) with Dirichlet boundary conditions o8X". We study the
resonances of P near the real axis.

Define thegeneralized bicharacteristic flowf P as in [MeSj1], [MeSj2] (see also [H]). Recall that in the inte-
rior T*X the generalized bicharacteristics are the integral curves of the Hamiltggian &) = Zij a;j&i&;. We
assume that the bicharacteristics Bfcannot be tangent to the boundary of infinite order. Under this assumption,
any generalized bicharacteristics is uniquely determined by any of its points. Define the trapped/sobget X
as the complement of the set of §lle T*X, for which any generalized bicharacteristic passing throfigéaves
B(0, Ro) x R" for eithers > 0 or¢ < 0. Fix a decreasing functioh < S(r) = O(r—*°), asr — oco. Set

Qr)={eC; 1 <ReA<r,0<—-Imi < S(ReA)}. (7.2)
The main result in this section is the following.

Theorem 7.1 Let P be the operator (7.1) an (r) be asin (7.2). Then

n

.
NEQO) =

(meas7 N B*X) +o(1)), asr — oo,

whereB*X = {(x,&) € T*X; po(x,&) < 1}.

Before proceeding with the proof of Theorem 7.1, we would like to give an example of a system with trapped set
of positive measure. LeP = —A in the exterior of a bounded obstacle with smooth boundary and assume that there
exists an elliptic periodic ray satisfying some mild degeneracy conditions (see [Pol]). Then it is known that for some
S(r) = O(r~==°), N(2(r)) admits a lower bound of the kingr" (1 + o(1)). The constant there is positive and is
proportional to the measure of the invariant tori around the elliptic ray, which existence is guaranteed by the KAM
theory. This constant can also be chosen to be(27) "mea$7Zo N B*X), whereZy C 7 is a Cantor set of trapped
rays near the periodic elliptic ray. There is ho hope that i&as B* X') = meas7 N B*X) becausd is (a part of)
the trapped rays that are close enough to a single periodic ray, Whilehe set of all trapped rays. Nevertheless, this
gives us a two-side estimate with different constants in the principal terms that have the same nature.

We start with a propagation of singularities result in the spirit of that in [MeSj1], [MeSj2]. We apply arguments
similar to those in [Le] in order to derive the semiclassical version from the classical one. Since we are interested
in operators having trapped set of positive measure, the behavior in a small neighborhood of the boundary is not
important for our analysis. In the next proposition the wave front set of a tempérgdonsidered in the open s#t,
and we do not need to work with the more general\yB. Here it is more convenient to work withDOs with large
parametei. Those operators are the same as the semiclasgR@ls with. = 1/A.

Let

Yi=1{(x,8) e T*X; po(x,§) =1}

be the characteristic variety @f — A2. Given f = f(x, 1;), where0 < A; — oo we will denotef = f(x,1) := f;
forA e A ={A;}.

Proposition 7.1 Let f; € D(P), j = 1,2,... be supported imB(0, R), R > Ry, and let0 < A; — oo, asj — oo.
Let(P —13) fj = O(Aj®) asj — oo, and|| fjl| = 1. ThenWF(/) c 7 N X.

Proof. Fix (xo,&0) € T*X \ (7 N X). Let x; € C5°(R") be such thaj (x) = 1 nearxo and supg; C X and let
x2 € Cg°(R") be such thaj, (&) = 0 for |§] < §/4, x2(§) = 1 for [§] = §/2, where0 < § = min{|&[; (x,§) € X}.
Choosego(x, £) homogeneous of order 0 with respecttsuch thay = 1 in a small conic neighborhood @k, &)
and suppo N7 = @. Set

q(x,y,8) = x1(x)q0(x,8) x2(5) x1(»)

and letQ = ¢(x, y, D) be the classicalDO with amplitudey (x, y, £). We would like to expres® as aA-wDO. In
order to avoid the problem with the singularity @f até = 0, for A > 2 write

q(x,3,8) = x1()q0(x, &) x2(6) (1 — x2(§/M)) x1(») + x1(X)q0(x, &) x2 (/M) x1(¥) == q1 + q2.



P. Stefanov/Sharp upper bounds 24

The classica?’DO Q; := ¢i(x, y, D), depending ork, can be expressd as a composition of the bounded operator
011 = x1(x)qo0(x, D)x2(D), independent of. and theA-WDO Q;, with amplitude (as ai-wDO) equal to(1 —
x2(8) x1(x). We haveQ 1, f = O(A~°), because WEf) C X, and thereforeQ; f = O(A~°°). Next, the classical
wDO Q, with amplitudeg, can be expressed azalDO with amplitudeyqo(x, &) x2(£) x1(»). Our goal is to prove
thatQ, f = O(A™).

Assume that the estimate above is not true. Then there ¥xist0 and a subsequene€ such that

IWNOf| — 0o, asA’ 5 A — . (7.3)

Without loss of generality we may assume thag < A ;. for any 2 consecutive numbers ixf. Set

u(t,x) = Z 7O f(x, ).

AEAN

Note that the series above is absolutely convergent. We (igve P)u € C®(R x X). Sinceu = 0 for large|x]|,

by the classical propagation of singularities results for boundary value problems [MeSj1], [MeSj2], we get that the
classical wave front set of in (the interior of)7*(R x X) is contained i(z, x, 7,£); 2 = po(x,&), (x,&) € T}.
Choosep € Cg°(R). Theng(r) Qu € C§°(R x R") and

PO(Qu)(t,x) =Y eMpOATQf (. ) = Fp, Y = MDA QS (x,h)

AEA’ AEAN

We get therefore that, _ q@(u — MATQf(x, M) is in the Schwartz class with respect(o, x) and in particular
1) du— WA QS (x, ] = O(™), asp — oc.
AEA’

We will split the sum above into two sums: one fpr— A| < 11/2 and another fofx —A| > /2. In the second case,
l[¢(u — A)| = O(u™°) there. Thus,

I Y =AM = 0(u™™), asu — oo.

AeN |u—Al>p/2

When summing up foju — A| < /2, we therefore get

I Y dr—ATOf (M = 0(u™™), asp — oo

AeA, |u—Al<u/2

Forj=1,2,...,choosqi; = A;. The conditioreA; < Aj41,j = 1,2,...impliesthatin the interval; —A| < A;/2
there is only one number in” and that is\;. Therefore,||¢3(O))Lj—1 Of(x, Al = O(AJT°°). One can always assume

that¢3(0) = 1,thusQf = O(A=%°), A € A/, contrary to (7.3). This implies tha®f = O(A~*°), A € A, and
therefore,Q, /' = O(A~%°) for A € A, and this completes the proof of the proposition. |

Givenr > 1, seth = 1/r and defineP (i) = h? P. With some abuse of notation, in this sectiBrwill denote the
h-independent operator (7.1), whil(#) will be the operator we just defined. Any semi-classical resonakgis
related to a classical orlewith Im A < 0 by the formula

A2 =h72z(h) = r2z(h). (7.4)
Fix a small paramet € (0, 1]. First, we are going to estimate the number of resonahées

Qu(r)={AeC;ar <ReA <r, 0 <—-ImA < S(Rer)}.
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The image 0f2,(r) under the map (7.4) is a curved “box” with vertice’, 1, a> — h?aS*(ah™') — 2ihaS(ah™"),
andl — h2S2(h=Y) —2ihS(h™"). Itis included in

Q(h) =[a?/2, 11+ i[-S(h),0], S(h) :=2hS(@ah™") = O(h*™).
We are going to prove first that

1
Qrh)"

N(Q(h)) < (meagpy'(—00, 11N T} +0(1)), ash — 0. (7.5)

Herepgl(—oo, 1] = B*X. Note that without loss of generality we may assume $¥t) > 2e=""""* so that (3.31)
is satisfied.
Givene > 0, denote

XF={xeR" distx,X) <€}, X. ={xeX; dist(x,dX) > €}.

ThenX C X C X;. For0 < € < 1, X is smooth. Let us extend the coefficientsifn a smooth way outsid&’

by keepingP self-adjoint and elliptic such that for the extensifit/) we haveP(h)|R,,\X% = —h%A. Hereeg > 0

is fixed and in what follows we assume tliak ¢ < €. This extension can be constructed as follows. First we extend
the coefficients ofP in a smooth way neak’ and we choosey > 0 so small that inX:g our operator is still elliptic.
Next, we choose a smooth partition of unjty + x5 = 1 such thaty; (x) = 1in X} , andy:(x) = 0 outsideX.,
and setP(h) = x1 P(h)x1 + x2(—h?A)x2. Then the so extendeB(h) is elliptic self-adjoint operator ifR" with
principal symbolpy = > a;;&:§;, whered;; are thea;; extended outsid&’. Clearly, every energy level > 0 is
non-critical for 59. Our goal next is to construct a reference operatd¢) in the whole space that would give us a
sharp bound. Similarly to (5.1), define

T =T*X_NTNpy'[a?/2,1], Tg=1{{ e T*R"; dist{{, T} < p}.

We will defineq, (x,§) in a way similar to that in section 5 by taking extra care of the behavior near the boundary.
For0 < u « 1, choosgy, € C*°(T*R") so that0 < ¢, <2, and

0 for(x,&) e 75,
qu(x,§) = { 2 for (x,§) ?ZT;LG,L-

We may also assume thgt is homogeneous ié of order 2 fora? /2 — . < |£| < 1 + u, which would guarantee that
any E e [a?, 1] is a non-critical value for the principal symbp), defined below. Leb < V € Cs°(R") be such that
Vo = 01in B(0, R) andVy(x) = |x|? for |x| large enough. Set

Pli(h) = P(h) + ¢} (x,h D) + Vo(x).

The operatorPfj is self-adjoint in L2(R™) and its principal symbop,, is p, = po + g, + V. The spectrum of
Pﬁ(h) is discrete. Herd’ is added for convenience in the considerations below and is not really necessary, without
it the spectrum ofP;f(h) would be discrete if{—oo, 2) and that would be enough. Notice th@f is not a reference
operator in the sense of Definition 3.1 because applyi‘;’_‘jgh) to the resonant states @f(%) would produce delta
functions on the boundadXx. We can go around this problem if we consider the quadratic f(o?ﬁ(h)w, ¥), where
Y = y(h) isrelated tof = f(h) € Rarllg as in (3.38) and) is extended as O outsidE. Then we consider
(P;f(h)l//, ¥)r2rey @S @ quadratic form with domain larger than the domainP@(h). In particular, the functiong
do not belong to the domain d?ﬁ(h) because the normal derivative ¢fjumps atoX” but they belong to the domain
of the quadratic.

According to Proposition 7.1y, (x,1D) + Vo(x))¥ (h) = O(h*) for any normalized) € xpRanllg, , where
the subdomain®y () are as in (3.32). As in the proof of Theorem 4.1, this implies the same fogaayy gRanl g @)
with |y || = 1.
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We will show that

(P, ) 2@my = (PN V. ¥) 20y + O, V¥ € xpRarllgu, [V = 1, (7.6)

where the I.h.s. is understood in the sense of quadratic forms. To prove (7.6), write

(P(MY,¥)r2(x)

aij (hDx, W) (hDx;¥) + Y bj(hDx, )W + V(x)|y|* )dx
X
ij J

fRn (Zaij(thi V)(hDy; W) + Y bj(hDx Y1)y + f/(x)w)dx
ij J

= (P, V) 2wy — (@) (X, DY, ¥) 2Ry — (VoW ¥) 12y

(PE(MY. ) [2@rny + O(h™),

wherey, as explained above, is extended as 0 outdide
We claim that

(P, ¥)L2x) < 1+ O*™), V¥ € xpRalgw, V] = 1. (7.7)

To prove (7.7), we use Theorem 3.2(b). By choosing:) = O(#*°) in a suitable way, we get that for arfyas above,

the corresponding’ can be written agr = ij vjk + Yoo, Wherev; are eigenfunctions of the self-adjoint reference
operatorPi(h) := P(h) + Vo(x) in L?(X) with eigenvalues;x € [a?/2 — O(h*),1 + O(h*™)]. For y/» We have

Vool = O(h°°) and repeating the argument in the proof of Theorem 3.2(b) based on the spectral theorem, wee see
also that||P§(h)woo|| = O(h*™). If amongu;x’s there are eigenfunctions corresponding to the same eigenvalue, we
combine them as a single eigenfunction, so we may assume;thate orthogonal to each other. Therefore,

POV W2y = (s, ) = ({0 Y vk 3 k) + OG)
= Y zikllell® + 0h®) < (1 4+ OG>y 1> + O(h™) = 1+ O(h™).

This proves (7.7).
By (7.6) and (7.7) we get that

(P, W2y < 1 +a(h),  alh) = 0(h™) (7.8)

in the sense of quadratic forms, for attye xpRanlg. The latter subspace is of dimension equaM2 (%)) by
Theorem 3.1. Thus we get that (7.8) holds for any normaligeselonging to a subspad® of dimensionN (2 (%))
included in the domain of the quadratic form in (7.8). We will show that this implies that

N(Q(h)) < N¥ (=00, 1 + a(h)]) + O(h'™™). (7.9)

To prove (7.9), consider all eigenvaluesij not exceedind + «(/), counted according to their multiplicities. If
1 4+ a(h) happens to be an eigenvalue itself, we include it according to its multiplicity, whieh(is ="). So the
numberm (i) of all those eigenvalues admits an estimate like the r.h.s. of (7.9). Denokglihe subspace oV’
that is orthogonal to the space spanned by the eigenfunctions correspondingit@itheigenvalues above. Assume
that dimW = N(Q2(h)) > m(h). ThenW, is non-trivial and therefore, there exisfs € Wy with || /|| = 1. By
expanding/" in terms of the normalized eigenfunctiong of the reference operator, we g¢t = sz>m(h) Jivi,

where}" z;| /;1? < oo (only finite number ot:;’s can be negative), becaugebelongs to the domain of the quadratic
form related toP;. We therefore get thatP? /, /)r2(x) = Zmm+1 2. | /j1* > 1 + (k) and this contradicts (7.8).
This shows that dinkV’ = N(2(h)) < m(h), and this proves (7.9).

Next, using the fact thak' = 1 is non-critical forp,,, as in section 5, we get that

N*((=o0, 1 +a(h)]) <

Qrh)y (Vol(p ' (=00, 1]) + o(h)), ash — 0.
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Again as in section 5, after taking the limit— 0, we deduct that from this that

limsup(27h)" N*((—o0, 1 + a(h)]) < (meas7® N py'(—oo, 1]) +o(1)), ash — 0.
h\0

Now we can take the limi ~ 0, and combining this with (7.9), we complete the proof of (7.5).
Using (7.5), we get that

rn

@m)"

N(Qqu(r)) < (meas7 N B*X) +o(1)), asr — oo. (7.10)
With some abuse of notation, we denote Ny2) both the number of semiclassical and classical resonances for
Q = Q(h)andQ = Q(r), respectively. It is easy to see that

N(QL(r) <C(+ar)", where Q, (r):={Ae€C; | <ReA <ar, 0 < —Imi < S(Re))} (7.11)

with C > 0 independent of: > 0. This follows for example from the estimate of the number of resonances in a
ball of radiusr of the type (2.3) by observing tha&¥ (2 (r)) above depends onthroughar only for r > 1. Then
Q(r) = QL(r)UQq(r) (see (7.2)). Combining (7.10) and (7.11) together, we get that

n

NOO) = o

(A+0(1)), asr— oo

forany 4 > meas7 N B*X). By studying lim sup =" N(2(r)), we complete the proof of the theorem. O

8 Generalizations for general long range operators

As explained in the Introduction, we allow only the zeroth order téfay) of P (/) to be long range only to simplify

the exposition. One can study general long rafgé) in the black box setting by requiring the coefficients®fh)

outside the black box to satisfy analyticity assumptions and estimates of the type (2.1), see e.g. [B2]. Then resonances
are well defined in a sector near the real axis and in particular in andSdégras shown in [Sj2]. The necessary
modifications in the proofs are as follows. To prove Proposition 3.1, one needs to pass to global geodesics coordinates
as done in [B2]. The absorption estimate in Proposition 3.1 then holds and the proof is the same as in Proposition 3.1,
where the new terms that appear are estimated as in [B2, Proposition 7.1]. The choice of the &y#tantdepends

on the rate of decay of all coefficients outside the black box, not only olm estimate (3.42) those extra terms do not
create additional difficulties. All results in sections 3, 4, 5 remain the same. Except for the second part of Theorem 6.1
(see also the remark at the end of sectionf&);) can be general long range operator in section 6 as well. The results

in section 7 hold for long range operators as well.
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