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The EIT Problem

Current is applied on electrodes on the surface of the body and
the resulting voltage is measured. Let γ = σ + iωε.

el

Ω

∇ · γ∇u = 0 in Ω

u = f on ∂Ω

Λγ : f → γ
∂u
∂ν
|∂Ω

Mathematically, this is governed by the inverse admittivity
problem: Can the admittivity γ be recovered from
measurements of the Dirichlet-to-Neuman (DN) map Λγ?



Applications of EIT

Medical Applications in 2-D:
• Monitoring ventilation and perfusion in ARDS patients
• Detection of pneumothorax
• Diagnosis of pulmonary edema and pulmonary embolus



Clinical Applications

What does the silent zone represent?
• Pneumothorax? • Pulmonary edema?
• Hyperinflation? • Atelectasis?

0
Figure courtesy of M. Amato from Real-time detection of pneumothorax using electrical impedance

tomography, Crit Care Med 2008 (Costa et al)



Global Uniqueness Result: Brown, Uhlmann

A classic result showed that once differentiable conductivities
are uniquely determined by knowledge of the DN map Λσ:

Theorem

Let Ω ∈ R2 be a bounded domain with Lipschitz boundary and
σ be a measurable function bounded away from zero and
infinity. If σ1 and σ2 are two conductivities with ∇σi in Lp(Ω),
p > 2, and Λσ1 = Λσ2 , then σ1 = σ2.

0Brown and Uhlmann, Comm PDEs, 1997



Global Uniqueness Result of Francini

Assume there exist positive constants σ0 and E such that

σ > σ0 in Ω,

‖σ‖W 2,∞(Ω) ≤ E , ‖ε‖W 2,∞(Ω) ≤ E

Theorem

Let Ω be an open bounded domain in R2 with Lipschitz
boundary. Let σj and εj satisfy the conditions above. Then there
exists a constant ω0 such that if γj = σj + iωεj for j=1,2 and
ω < ω0 and if Λγ1 = Λγ2 , then γ1 = γ2.

0Francini, Inverse Problems, 2000



General Overview: D-bar Methods for EIT

D-bar reconstruction methods capitalize on the direct
relationship between the conductivity and CGO solutions
to a PDE related to the inverse conductivity problem
(possibly through a transformation).

Λγ −→ Scattering transform −→ CGO solutions −→ γ

They are

• Mesh independent

• Trivially parallelizable



General Overview: D-bar Methods for EIT

The CGO solution depends on an auxilliary variable k ∈ C.

Typically, a ∂̄ equation in z for the CGO solution leads to a
direct formula for γ.

The link between the DN map and the CGO solution is through
a nonlinear Fourier transform known as the scattering
transform.

A ∂̄ equation in the auxilliary variable k for the CGO solution
involves the scattering transform and completes the
constructive steps.
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To learn more, see our forthcoming book:

Linear and Nonlinear Inverse Problems with Practical
Applications, by JM and Samuli Siltanen
In production, SIAM 2012



The Potential Matrix

Define the matrix potential Q by

Q =

(
0 −1

2∂ log γ

−1
2 ∂̄ log γ 0

)
=

 0 −∂γ1/2

γ1/2

− ∂̄γ1/2

γ1/2 0


and matrices D and Dk by

D =

(
∂̄ 0
0 ∂

)
Dk =

(
∂̄ ∂̄ − ik

∂ + ik ∂

)
where ∂̄z = 1

2

(
∂
∂x + i ∂

∂y

)
and ∂z = 1

2

(
∂
∂x − i ∂

∂y

)
.



Exponentially Growing Solutions

Given a solution u ∈ H1(Ω) of ∇ · (γ(z)∇u(z)) = 0, the vector(
v
w

)
= γ1/2

(
∂u
∂̄u

)
solves (

D −Q
)(v

w

)
= 0 (1)

For k = k1 + ik2 ∈ C, seek solutions ψ of (?? ) of the form

ψ(z, k) = M(z, k)

(
eizk 0
0 e−i z̄k

)
where M converges to the identity matrix as |z| → ∞.



Exponentially Growing Solutions

The CGO solutions M(z, k) satisfy

(Dk −Q)M = 0

Or in integral form

M11(z, k) = 1 +
1
π

∫
Ω

Q12(ζ)M21(ζ, k)

z − ζ
dζ

M21(z, k) =
1
π

∫
Ω

e−k (z − ζ)Q21(ζ)M11(ζ, k)

z̄ − ζ̄
dζ

and similarly for M12 and M22, which are coupled.

Here ek (z) = exp(i(zk + z̄k̄)).



Computation of CGO Solutions

Applying FFT’s on a suitable grid of meshsize h to the integral
form of the equations

M11(z, k) = 1 + h2IFFT (FFT (
1
πz

)FFT (Q12(z)M21(z, k)))

M21(z, k) = h2IFFT (FFT (
e−k (z − ζ)

πz
)FFT (Q21(z)M11(z, k)))

results in a linear system that can be solved by, eg, GMRES.



Reconstruction of Q

Knowledge of the full matrix M results in a direct reconstruction
formula for Q and hence γ.

Theorem
For any ρ > 0,

Q(z) = lim
k0→∞

µ(Bρ(0))−1
∫

k :|k−k0|<r
DkM(z, k) dµ(k).

This large k limit presents a problem for practical computation.

0 Theorem 6.2 of Francini, 2000



Reconstruction of Q

The following is a direct reconstruction formula for Q and hence
γ involving a small k limit:

Theorem
Define

M+(z, k) ≡ M11(z, k) + e−k (z)M12(z, k)

M−(z, k) ≡ M22(z, k) + ek (z)M21(z, k).

Then

Q12(z) =
∂z̄M+(z,0)

M−(z,0)
Q21(z) =

∂zM−(z,0)

M+(z,0)

0 Hamilton, 2012



The Scattering Transform

The scattering transform matrix is defined by

S(k) =
i
π

∫
R2

(
0 e−i k̄zQ12(z)ψ22(z, k)

−ei k̄ z̄Q21(z)ψ11(z, k) 0

)
dz.

The matrix M(z, k) satisfies the D-bar equation wrt k :

∂̄kM(z, k) = M(z, k̄)

(
ek̄ (z) 0

0 e−k (z)

)
S(k),

0 Francini, Inverse Problems, 2000
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Computation

This results in two coupled systems. The first is

∂̄kM11(z, k) = M12(z, k̄) e−k (z) S21(k)

∂̄kM12(z, k) = M11(z, k̄) ek̄ (z) S12(k)

or in integral form

1 = M11(z, k)− 1
πk

∗ (M12(z, k̄)e−k (z)S21(k))

0 = M12(z, k)− 1
πk

∗ (M11(z, k̄)ek̄ (z)S12(k))

This can be discretized and a linear system results. Note that
care must be taken with the conjugate with respect to k .



The Scattering Transform

Denote the unit outer normal to ∂Ω by ν = ν1 + iν2 and its
conjugate by ν̄ = ν1 − iν2.

Then

S12(k) =
i

2π

∫
∂Ω

e−i k̄z ψ12(z, k) ν(z) ds(z)

S21(k) = − i
2π

∫
∂Ω

ei k̄ z̄ ψ21(z, k) ν(z) ds(z).

0 A. Von Hermann, PhD thesis, Colorado State University, 2010



There exist CGO solutions u1 and u2 to the admittivity equation
with asymptotic behavior

u1 ∼
eikz

ik
and u2 ∼

e−ik z̄

−ik
as |z|, |k | → ∞.

and the following connection to the DN map:

u1(z, k) =
eikz

ik
−
∫

∂Ω
Gk (z − ζ) (Λγ − Λ1) u1(ζ, k) ds(ζ)

u2(z, k) =
e−ik z̄

−ik
−
∫

∂Ω
Gk (z − ζ) (Λγ − Λ1) u2(ζ̄, k) ds(ζ)

0 A. Von Hermann, PhD thesis, Colorado State University, 2010



where Gk (z) is the Faddeev Green’s function

Gk (z) =
eikz

(2π)2

∫
R2

eiz·ξ

ξ(ξ̄ + 2k)
dξ k ∈ C \ 0.

These CGO solutions satisfy

(
Ψ11

Ψ21

)
= γ1/2

(
∂zu1

∂̄zu1

)
and

(
Ψ12

Ψ22

)
= γ1/2

(
∂zu2

∂̄zu2

)
,

which leads to BIE’s for Ψ12 and Ψ21...



A Boundary Integral Equation for Ψ

Differentiating u1 and u2 leads to BIEs for the CGO solutions Ψ:

Theorem
The trace of the exponentially growing solutions Ψ12(z, k) and
Ψ21(z, k) for k ∈ C \ 0 and γ = 1 on ∂Ω can be determined by

Ψ12(z, k) =

∫
∂Ω

ei k̄(z−ζ)

4π(z − ζ)
(Λγ − Λ1) u2(ζ, k) ds(ζ)

Ψ21(z, k) =

∫
∂Ω

[
eik(z−ζ)

4π(z − ζ)

]
(Λγ − Λ1) u1(ζ, k) ds(ζ).

This provides the connection from Λγ → S.



Steps of the Method

Given the DN map Λγ :

• Compute the traces of the CGO
solutions u1 and u2 from the BIE’s

• Compute the traces of the CGO
solutions Ψ12 and Ψ21 from
knowledge of u1 and u2 on ∂Ω

• Compute the scattering transforms
S12 and S21 from knowledge of Ψ12

and Ψ21

• Numerically solve the system of ∂̄k

equations for M

• Form M+ and M− and compute Q12

• Compute γ by solving the ∂̄ equation

∂̄ log γ = −2Q21
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Reconstructions from Simulated Data

Dynamic range: 76% (conductivity) 53% (permittivity)



Reconstructions from Simulated Data
Heart: 1.1+0.6 i Lungs: 0.5 +0.2 i Background: 0.8+0.4 i

No Noise

0.01% Noise

Dynamic range: 61% (no noise) 60%, 53% (noise)



Simulation of fluid in the lung

Numerical Phantom

Dynamic range
Reconstruction:
Conductivity: 80%
Permittivity: 84%

Difference image:
Conductivity: 63%
Permittivity: 67%.



Thank you, Gunther, for all you do,
may you have many, many more Happy Birthdays!!


