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ABSTRACT. We give a detailed microlocal study of X-ray transforms over geodesics-like families of curves with conjugate
points of fold type. We show that the normal operator is the sum of a pseudodifferential operator and a Fourier integral
operator. We compute the principal symbol of both operators and the canonical relation associated to the Fourier integral
operator. In two dimensions, for the geodesic transform, we show that there is always a cancellation of singularities to some
order, and we give an example where that order is infinite; therefore the normal operator is not microlocally invertible in
that case. In the case of three dimensions or higher if the canonical relation is a local canonical graph we show microlocal
invertibility of the normal operator. Several examples are also studied.

1. INTRODUCTION

The purpose of this paper is to study X-ray type of transforms over geodesics-like families of curves with caustics
(conjugate points). We concentrate on the most common type of caustics — those of fold type. Let 
0 be a fixed
geodesic segment on a Riemannian manifold, and let f be a function which support does not contain the endpoints of

0. The question that we are trying to answer is the following: what information about the wave front set WF.f / of
f can be obtained from the assumption that (possibly weighted) integrals

(1.1) Xf .
 / D

Z



f ds

of f along all geodesics 
 close enough to 
0 vanish (or depend smoothly on 
 )? We actually study more general
geodesic-like curves. Since X has a Schwartz kernel with singularities of conormal type, Xf could only provide
information for WF.f / near the conormal bundle N �
0 of 
0. If there are no conjugate points along 
0, then we
know that WF.f / \ N �
0 D ;. This has been shown, among the other results, in [9, 25] in this context. It also
follows from the microlocal approach to Radon transforms initiated by Guillemin [10] when the Bolker condition (in
our case that means no conjugate points) is satisfied. Then the localized normal operator N� WD X ��X , where � is
a standard cut-off near 
0 is a pseudo-differential operator (	DO), elliptic at conormal directions to 
0. If there are
conjugate points along 
0, then N� is no longer a 	DO. One of the goals of this work is first to study the microlocal
structure of N� in presence of fold conjugate points, and then use it to see what singularities can be recovered. That
would also allow us to tell whether the problem of inverting X is Fredholm or not, and would help us to determine the
size of the kernel, and to analyze the stability and the possible instability of this problem.

In some applications like geophysics, recovery of singularities is actually the primary goal. The effect of possible
conjugate points is treated there as “artifacts” in the reconstruction, creating multiple images of the same object. Our
analysis provides in particular a microlocal way to understand those “artifacts”, and in same cases, to shed light on the
possibility to resolve the singularities. We are also motivated by the non-linear boundary and lens rigidity problems,
and their applications to seismology, where the X-ray transform appears as a linearization, see e.g., [17, 3, 4, 24, 22,
26].

The simplest possible X-ray transform is that over lines in Rn:

Xf .x; �/ D

Z
f .x C t�/ dt;

where � 2 Sn�1. Parameterization by x 2 Rn is overdetermined, of course, and we need to think of .x; �/ as a way
to parameterize a line. It is well known to be injective, on L1

comp.Rn/, for example. It is easy to see, for example by
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the Fourier Slice Theorem, that Xf , known for a fixed �0 and all x, determines the Fourier transform Of .�/ for � ? �0.
We refer to [11, 20] for more details about Euclidean X-ray and Radon transforms. Using relatively simple microlocal
techniques, one can show that Xf , known in a neighborhood of some line `, determines WF.f / nearN �`. A positive
smooth weight in the definition of X would not change that. Those facts are well known and serve as a basis for local
tomography methods, see e.g., [7, 8] where the microlocal point of view is implicit.

Geodesic X-ray transforms have a long history, generalizing the Radon type X-ray transform in the Euclidean space,
see, e.g., [11]. When the weight is constant, and .M; g/ is a simple manifold with boundary, uniqueness and non-sharp
stability estimates have been proven in [18, 19, 2], using the energy method. Simple manifolds are compact manifolds
diffeomorphic to a ball with convex boundary and no conjugate points. The uniqueness result has been extended to not
necessarily convex manifolds under the no-conjugate points assumption in [6]. The authors used microlocal methods
to prove a sharp stability estimate in [23] for simple manifolds and uniqueness and stability estimates for more general
weighted geodesic-like transforms without conjugate points in [9]. The X-ray transform over magnetic geodesics with
the simplicity assumption was studied in [5]. Many of those and other works study integrals of tensors as well and
the results for tensors of order two or higher are less complete. For an overview of the microlocal approach to the
geodesic X-ray transform, we refer to [22].

The authors considered in [25] the X-ray transform of functions and tensors on manifolds with possible conjugate
points. Using the overdeterminacy of the problem in dimensions n � 3, we showed that if there exists a family of
geodesics without conjugate points with a conormal bundle covering T �M , then we still have generic uniqueness and
stability. In dimension two however that family has to be the set of all geodesics, and even in higher dimensions, [25]
does not answer the question what is the contribution of the conjugate points to Xf .

We first show in Theorem 2.1 that the normal operator N� can be represented as a sum of a 	DO and a Fourier
Integral Operator (FIO). The FIO part comes from the conjugate point and represents the “artifact”. An essential part
of the proof of Theorem 2.1 is to understand well the geometry of the conjugate locus ˙ of pairs .p; q/ 2 M � M

conjugate to each other. We show that the Lagrangian of the FIO is N �˙ . To prove Theorem 2.1, we analyze the
singularities of the Schwartz kernel of N� in Theorem 6.1, that is interesting by itself.

In section 9, we study whether we can invert N� microlocally, when the curves are geodesics. It turns out that in
some cases we can, and in some, we cannot. In two dimensions, some cancellation of singularities always occurs, at
least to a finite order, see Theorem 9.2. In dimensions three and higher, there are examples (not all geodesic though)
where we cannot resolve singularities, and where we can. If the canonical relation of the FIO part is a local graph,
then we can but that is not always the case.

In section 10, we present a few examples, some of them mentioned above. Most of them are based on the transform
of integrating a function over circles of a fixed radius in R2. Those circles are actually geodesics of a magnetic system
with an Euclidean metric and a constant magnetic field. This example has the advantage that we can compute explicitly
the kernel of X �X , we can get an explicit full expansion of the latter as an FIO, etc. In this case, the singularities cancel
to infinite order. We can construct more or less explicit singular distributions f with the property their singularities
are invisible for X localized near a single circle, i.e., Xf 2 C 1 locally.

2. FORMULATION OF THE PROBLEM

Let .M; g/ be an n-dimensional Riemannian manifold. Let expp.v/, where .p; v/ 2 TM , be a regular exponential
map, see section 3, where we recall the definition given by Warner in [29]. The main example is the exponential map
of g or that of another metric on M or other geodesic-like curves, for example magnetic geodesics, see also [5]. Let
� be a smooth function on TM n 0. We define the weighted X-ray transform Xf by

(2.1) Xf .p; �/ D

Z
�
�

expp.t�/; Pexpp.t�/
�
f .expp.t�// dt; .p; �/ 2 SM;

where we used the notation

Pexp.tv/ D
d
dt

exp.tv/:

The t integral above is carried over the maximal interval, including t D 0, where exp.t�/ is defined. The assumptions
that we make below guarantee that this interval remains bounded.
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Let .p0; v0/ 2 TM be such that v D v0 is a critical point for expp0
.v/ (that we call a conjugate vector) of fold

type, see the definition below. Let q0 D expp0
.v0/. Then our goal is to study Xf for p close to p0 and � close to

�0 WD v0=jv0j under the assumption that the support of f is such that v0 is the only conjugate vector v at p0 so that
expp0

.v/ 2 supp f . Note that v0 can be written in two different ways as t�0, j�0j D 1, with ˙t > 0, and we chose the
first one. The contribution of the second one can be easily derived from our results by replacing �0 by ��0.

Instead of studying X directly, we study the operator

Nf .p/ D

Z
SpM

�].p; �/Xf .p; �/ d�p.�/

D

Z
SpM

Z
�].p; �/�

�
expp.t�/; Pexpp.t�/

�
f .expp.t�// dt d�p.�/;

(2.2)

with some smooth �] localized in a neighborhood of .p0; �0/. Here d�p.�/ is the induced Riemannian surface measure
on Sp.M /. When exp is the geodesic exponential map, there is a natural way to give a structure of a manifold to all
non-trapping geodesics with a natural choice of a measure, see section 5. The operator X can be viewed as a map
from functions or distributions on M to functions or distributions on the geodesics manifold. Then one can define
the adjoint X � with respect to that measure. Then the operator X �X is of the form (2.2) with �] D N�, see (5.1).
The condition that supp �] should be contained in a small enough neighborhood of .p0; �0/ can be easily satisfied by
localizing p near p0, and choosing supp � to be near .
p0;�0

; P
p0;�0
/. In the case of general regular exponential maps

N is not necessarily X �X .
A direct calculation, see [23] and Theorem 5.1, shows that the Schwartz kernel of X �X in the geodesic case (see

also [9] for general families of curves), is singular at the diagonal, as can be expected, and that singularity defines
a 	DO of order �1 similarly to the integral geometry problem for geodesics without conjugate points. We refer to
section 5 for more details. Next, singularities away from the diagonal exist at pairs .p; q/ so that q D expp.v/ for
some v, and dv expp is not an isomorphism (p and q are conjugate points). The main goal of this paper is to study
the contribution of those conjugate points to the structure of X �X and the consequences of that. We actually study a
localized version of this; for a global version on a larger open set, under the assumption that all conjugate points are
of fold type, one can use a partition of unity.

Let U be a small enough neighborhood of .p0; �0/ in SM . Let U be a small neighborhood of p0 so that U � �.U/,
where � is the natural projection on the base. Fix �] 2 C 1

0
.U/. Let Nf be as in (2.2), related to �], where � is a

smooth weight. We will apply X to functions f supported in an open set V 3 p0 satisfying the conjugacy assumption
of the theorem below, see Figure 1. Our goal is to study the contribution of a single fold type of singularity. Let
˙ � M � M be the conjugate locus in a neighborhood of .p0; q0/, see section 3. Finally, let 
0 D 
p0;�0

.t/, t 2 I ,
be the geodesic through .p0; �0/ defined in the interval I 3 0, with endpoints outside V .

FIGURE 1

The first main result of this paper is the following.

Theorem 2.1. Let v0 D jv0j�0 be a fold conjugate vector at p0, and let N be as in (2.2). Let v0 be the only singularity
of expp0

.v/ on the ray fexpp.t�0/; t 2 Ig \ V . Then if U (and therefore, U ) is small enough, the operator

N W C 1
0 .V / �! C 1

0 .U /
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admits the decomposition

(2.3) N D A C F;

where A is a 	DO of order �1 with principal symbol

(2.4) �p.A/.x; �/ D 2�

Z
SxM

ı.�.�// .�]�/.x; �/ d�x.�/;

and F is an FIO of order �n=2 associated to the Lagrangian N �˙ . In particular, the canonical relation C of F in
local coordinates is given by

(2.5) C D
˚
.p; �; q; �/; .p; q/ 2 ˙; � D ��i@ expi

p.v/=@p; � 2 Coker dv expp.v/; det dv expp.v/ D 0
	

:

If exp is the exponential map of g, then C can also be characterized as N �˙ 0, where N˙ is as in (4.17), and the
prime means that we replace � by ��.

It is easy to check that C above is invariantly defined.
In section 9 we show that in dimension 3 or higher in the case that C is a local canonical graph the operator N

is microlocally invertible. In two dimensions, in the geodesic case, we show that there is always a loss of some
derivatives at least when the curves are geodesics. We study in detail the case of the circular Radon transform in two
dimensions in section 10, and show that then N is not microlocally invertible.

3. REGULAR EXPONENTIAL MAPS AND THEIR GENERIC SINGULARITIES

3.1. Regular exponential maps. Let M be a fixed n-dimensional manifold. We will recall the definition of Warner
[29] of a regular exponential map at p 2 M . We think of it as a generalization of the exponential map on a Riemannian
manifold, by requiring only those properties that are really necessary for what follows. For that reason, we use the
notation expp.v/. In addition to [29] , we will require expp.v/ to be smooth in p as well. Let Np.v/ � TvTpM denote
the kernel of d expp . Unless specifically indicated, d is the differential w.r.t. v. The radial tangent space at v will be
denoted by rv . It can be identified with fsv; s 2 Rg, where v is considered as an element of TvTpM .

Definition 3.1. A map expp.v/ that for each p 2 M maps v 3 TpM into M is called a regular exponential map, if
(R1) exp is smooth in both variables, except possibly at v D 0. Next, d expp.tv/=dt 6D 0, when v 6D 0.
(R2) The Hessian d2 expp.v/ maps isomorphically rv � Np.v/ onto Texpp.v/M=d expp.TvTpM / for any v 6D 0 in

TpM for which expp.v/ is defined.
(R3) For each v 2 TpM n 0, there is a convex neighborhood U of v such that the number of singularities of expp ,

counted with multiplicities, on the ray tv, t 2 R in U , for each such ray that intersects U , is constant and
equal to the order of v as a singularity of expp .

An example is the exponential map on a Riemannian (or more generally on a Finsler manifold), see [29]. Then
(R1) is clearly true. Next, (R2) follows from the following well known property. Fix p and a geodesic through it.
Consider all Jacobi fields vanishing at p. Then at any q on that geodesic, the values of those Jacobi fields that do not
vanish at q and the covariant derivatives of those that vanish at q span TqM . Also, those two spaces are orthogonal.
Finally, (R3) represents the well known continuity property of the conjugate points, counted with their multiplicities
that follows from the Morse Index Theorem (see, e.g., [15, Thm 4.3.2]).

We would need also an assumption about the behavior of the exponential map at v D 0.
(R4) expp.tv/ is smooth in p; t; v for all p 2 M , jt j � 1, and v 6D 0. Moreover,

expp.0/ D p; and
d
dt

expp.tv/ D v for t D 0:

Given a regular exponential map, we define the “geodesic” 
p;v.t/, v 6D 0, by 
p;v.t/ D expp.tv/. We will often use
the notation

(3.1) q D expp.v/ D 
p;v.1/; w D � Pexpp.v/ WD � P
p;v.1/; � D v=jvj:

Note that the “geodesic flow” does not necessarily obey the group property. We will assume that
(R5) For q, w as in (3.1), we have expq.w/ D p, Pexpq.w/ D �v.
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This shows that in particular, .p; v/ 7! .q; w/ is a diffeomorphism. If exp is the exponential map of a Riemannian
metric, then (R5) is automatically true and that map is actually a symplectomorphism (on T �M ).

Remark 3.1. In case of magnetic geodesics, or more general Hamiltonian flows, (R5) is equivalent to time reversibility
of the “geodesics.” This is not true in general. On the other hand, one can define the reverse exponential map
exp�

q .w/ D 
q;�w.�1/ in that case, see e.g. [5], near .q0; w0/, and replace exp by exp� in that neighborhood. Then
(R5) would hold. In other words, (R5) really says that .p; v/ 7! .q; w/ is assumed to be a local diffeomorphism with
an inverse satisfying (R1) – (R4).

3.2. Generic properties of the conjugate locus. We recall here the main result by Warner [29] about the regular
points of the conjugate locus of a fixed point p. The tangent conjugate locus S.p/ of p is the set of all vectors
v 2 TpM so that d expp.v/ (the differential of expp.v/ w.r.t. v) is not an isomorphism. We call such vectors conjugate
vectors at p (called conjugate points in [29]). The kernel of d expp.v/ is denoted by Np.v/. It is part of TvTpM that
we identify with TpM . In the Riemannian case, by the Gauss lemma, Np.v/ is orthogonal to v. In the general case, by
(R1), it is always transversal to v. The images of the conjugate vectors under the exponential map expp will be called
conjugate points to p. The image of S.p/ under the exponential map expp will be denoted by ˙.p/ and called the
conjugate locus of p. Note that S.p/ � TpM , while ˙.p/ � M . We always work with p near a fixed p0 and with
v near a fixed v0. Set q0 D expp0

.v0/. Then we are interested in S.p/ restricted to a small neighborhood of v0, and
in ˙.p/ near q0. Note that ˙.p/ may not contain all points near q0 conjugate to p along some “geodesic”; and may
not contain even all of those along expp0

.tv0/ if the later self-intersects — it contains only those that are of the form
expp.v/ with v close enough to v0.

Normally, d expp.v/ stands for the differential of expp.v/ w.r.t. v. When we need to take the differential w.r.t. p,
we will use the notation dp for it, We write dv for the differential w.r.t. v, when we want to distinguish between the
two.

We denote by ˙ the set of all conjugate pairs .p; q/ localized as above. In other words, ˙ D f.p; q/I q 2 ˙.p/g,
where p runs over a small neighborhood of p0. Also, we denote by S the set .p; v/, where v 2 S.p/.

A regular conjugate vector v is defined by the requirement that there exists a neighborhood of v, so that any radial
ray of TpM contains at most one conjugate point there. The regular conjugate locus then is an everywhere dense open
subset of the conjugate locus that has a natural structure of an .n � 1/-dimensional manifold. The order of a conjugate
vector as a singularity of expp (the dimension of the kernel of the differential) is called an order of the conjugate vector.

In [29, Thm 3.3], Warner characterized the conjugate vectors at a fixed p0 of order at least 2, and some of those of
order 1, as described below. Note that in B1, one needs to postulate that Np0

.v/ remains tangent to S.p0/ at points v

close to v0 as the latter is not guaranteed by just assuming that it holds at v0 only.

(F) Fold conjugate vectors: Let v0 be a regular conjugate vector at p0, and let Np0
.v0/ be one-dimensional and

transversal to S.p0/. Such singularities are known as fold singularities. Then one can find local coordinates
� near v0 and y near q0 so that in those coordinates, expp0

is given by

(3.2) y0
D � 0; yn

D .�n/2:

Then

(3.3) S.p0/ D f�n
D 0g; Np0

.v0/ D span f@=@�n
g ; ˙.p0/ D fyn

D 0g:

Since the fold condition is stable under small C 1 perturbations, as follows directly from the definition, those
properties are preserved under a small perturbation of p0.

(B1) Blowdown of order 1: Let v0 be a regular conjugate vector at p0 and let Np0
.v/ be one-dimensional.

Assume also that Np0
.v/ is tangent to S.p0/ for all regular conjugate v near v0. We call such singularities

blowdown of order 1. Then locally, expp0
is represented in suitable coordinates by

(3.4) y0
D � 0; yn

D �1�n:

Then

(3.5) S.p0/ D f�1
D 0g; Np0

.v0/ D span f@=@�n
g ; ˙.p0/ D fy1

D yn
D 0g:
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Even though we postulated that the tangency condition is stable under perturbations of v0, it is not stable
under a small perturbation of p0, and the type of the singularity may change then. In some symmetric cases,
one can check directly that the type is locally preserved.

(Bk) Blowdown of higher order: Those are regular conjugate vectors in the case where Np0
.v0/ is k-dimensio-

nal, with 2 � k � n � 1. Then in some coordinates, expp0
is represented as

yi
D � i ; i D 1; : : : ; n � k

yi
D �1� i ; i D n � k C 1; : : : ; n:

(3.6)

Then

S.p0/ D f�1
D 0g; Np0

.v0/ D span
n
@=@�n�kC1; : : : ; @=@�n

o
;

˙.p0/ D fy1
D yn�kC1

D � � � D yn
D 0g:

(3.7)

In particular, Np0
.v0/ must be tangent to S.p0/, see also [29, Thm 3.2]. This singularity is unstable under

perturbations of p0, as well. A typical example are the antipodal points on Sn, n � 3; then k D n � 1.
The purpose of this paper is to study the effect of fold conjugate points to X .

4. GEOMETRY OF THE FOLD CONJUGATE LOCUS

In this section, we study the geometry of the tangent conjugate locus S.p/, and S respectively; and the conjugate
locus ˙.p/ and ˙ , respectively. Recall that we work locally, and everywhere below, even if not stated explicitly,
.p; v/ belongs to a small enough neighborhood of .p0; v0/; .q; v/ is near .q0; w0/. We assume throughout the section
that v0 is conjugate vector at p0 of fold type. We also fix a non-zero covector �0 at q0 as in (2.5), and let �0 be the
corresponding � as in (2.5). We will see later that �0 6D 0. We refer to Figure 2, where w is not shown, and the zero
subscripts are omitted.

We start with properties of S.p/ and S .

Lemma 4.1.
(a) Let v 2 S.p/ be a fold conjugate vector. Then near q D expp.v/, ˙.p/ is a smooth surface of codimension

one, tangent to w WD � P
p;v.1/.
(b) S is a smooth .2n � 1/-dimensional surface in TM that can be considered as the bundle fS.p/; p 2 M g with

fibers S.p/.

FIGURE 2. A typical fold conjugate locus
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Proof. Consider (a) first. The representation (3.2) implies that locally, ˙.p/ D expp.S.p// is a smooth surface of
codimension one (given by yn D 0). Next, for v 2 S.p/, the differential d expp sends any vector to a vector tangent
to S.p/, as it follows from (3.2) again. In particular, this is true for the radial vector v (considered as a vector in
TvTpM ). This proves that w is tangent to ˙.p/.

The statement (b) follows from the fact that S is defined by det d expp.v/ D 0, and that det d expp.v/ has a non-
vanishing differential w.r.t. v. �

Remark 4.1. It is easy to show that in (a), 
p;v is tangent to ˙.p/ of order 1 only.

We define “Jacobi fields” along 
p;v vanishing at p as follows. For any ˛ 2 TvTpM , set

J.t/ D dŒexpp.tv/�.˛/ D ˛k @

@vk
expp.tv/:

Then J.0/ D 0, PJ .0/ D ˛, where PJ .T / D dJ.t/=dt . If J.1/ D 0, then a direct computation shows that

(4.1) PJ .1/ D d2 expp.v/.˛ � v/:

When exp is the exponential map of a Riemannian metric, it is natural to work with the covariant derivative
Dt J.t/ DW J 0.1/ instead of PJ .t/. While they are different in general, they coincide at points where J.t/ D 0.

The next lemma shows that the fold/blowdown conditions are symmetric w.r.t. p and q.

Lemma 4.2. The vector v0 is a conjugate vector at p0 of fold type, if and only if w0 is a conjugate vector at q0 of fold
type.

Proof. Set w0 D � P
p0;v0
.1/, as in (3.1). Then p0 D expq0

.w0/. Assume now that ˛ 2 Np0
.v0/. In some local

coordinates, differentiate p D expq.w/ w.r.t. v in the direction of ˛; here q, w are viewed as functions of p, v. Then,
using the Jacobi field notation introduced above in (4.1), we get

0 D d expq0
.w0/

�
˛k @w

@vk
.p0; v0/

�
D d expq0

.w0/ PJ .1/

because

˛k @w

@vk
.p0; v0/ D ˛k @

@vk

d
dt

ˇ̌̌
tD1

expp.tv/.p0; v0/ D PJ .1/:

By (R2), PJ .1/ 6D 0, so in particular, this shows that w0 is conjugate at q0, and PJ .1/ 2 Nq0
.w0/. Moreover, by (R2),

the linear map

(4.2) Np.v/ 3 ˛ D PJ .0/ 7! PJ .1/ WD ˇ 2 Nq.w/; J.0/ D J.1/ D 0

defines an isomorphism between Np.v/ and Nq.w/. Then (4.2) shows that w0 is conjugate at q0 of multiplicity one.
By (R3), applied to w0, it is also regular.

We will prove now that w0 is of fold type. Since it is regular and of multiplicity one, S.q0/ near w0 is a smooth
.n � 1/ dimensional surface either of type F , as in (3.3) or of type B1, as in (3.5). Assume the latter case first, then
˙.q0/ is of codimension two, as follows from (3.5). In particular, using the normal form (3.4), we see that in this
case, one can find a non-trivial one-parameter family of vectors w.s/ so that w.0/ D w0 and expq0

.w.s// D p0.
Then the corresponding tangent vectors at p0 would form a non-trivial one-parameter family of vectors v.s/ so that
expp0

.v.s// D q0. That cannot happen, if v0 is of type F , see (3.2), since the equation expp0
.v/ D q0 has (near v0) at

most two solutions. �

For .p; v/ 2 S , let ˛ D ˛.p; v/ 2 Np.v/ be a unit vector. To fix the direction, assume that the derivative of
det d expp.v/ in the direction of ˛, for v a conjugate vector, is positive. Here we identify TvTpM and TpM . In the
fold case, Np.v/ is clearly a smooth vector bundle on TM near .p0; v0/, and ˛ is a smooth vector field.

Lemma 4.3. For any fixed p near p0, the map

(4.3) S.p/ 3 v 7! ˛.p; v/ 2 Np.v/

is a local diffeomorphism, smoothly depending on p if and only if

(4.4) d2 expp0
.v0/

�
Np0

.v0/ n 0 � �
� ˇ̌

Tv0
S.p0/

is of full rank:
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Proof. In local coordinates, we want to find a condition so that the equation

˛i@vi expp.v/ D 0

can be solved for v so that v D v0 for .p; ˛/ D .p0; ˛0/, where ˛0 D ˛.p0; v0/. Then v would automatically be in
S.p/. By the implicit function theorem, this is equivalent to

det
�
@v˛i

0@vi expp0
.v/
�

6D 0 at v D v0:

Choose a coordinate system near v0 so that @=@vn spans Np0
.v0/, and f@=@v1; : : : @=@vn�1g span Tv0

S.p0/. Denote
F.v/ D expp0

.v/ and denote by Fi , Fij the corresponding partial derivatives. Greek indices below run from 1 to
n � 1. We have

@nF.v0/ D 0; because @=@vn 2 Np0
.v0/;(4.5)

@˛ det.@F /.v0/ D 0; because @=@v˛ is tangent to S.p0/ at v0;(4.6)

@n det.@F /.v0/ 6D 0; by the fold condition;(4.7)

c˛@˛F.v0/ 6D 0; 8c 6D 0; because c˛@=@v˛ 62 Np0
.v0/.(4.8)

We want to prove that det.@n@F /.v0/ 6D 0 if and only if (4.4) holds. That determinant equals

(4.9) det.F1n; F2n; : : : ; Fnn/.v0/:

Perform the differentiation in (4.6). By (4.5), (4.8),

det.F1; : : : ; Fn�1; Fn˛/.v0/ D 0; 8˛ H) Fn˛.v0/ 2 span.F1.v0/; : : : ; Fn�1.v0//:

Similarly, (4.7) implies

(4.10) det.F1; : : : ; Fn�1; Fnn/.v0/ 6D 0 H) 0 6D Fnn.v0/ 62 span.F1.v0/; : : : ; Fn�1.v0//:

Those two relations show that (4.9) vanishes if and only if .Fn1.v0/; : : : Fn;n�1.v0// form a linearly dependent system,
that is equivalent to (4.4). �

We study the structure of the conjugate loci ˙.p/, ˙.q/ and ˙ next. Recall again that we work locally near p0, v0

and q0.

Theorem 4.1. Let v0 be a fold conjugate vector at p0.
(a) Then for any p near p0, ˙.p/ is a smooth hypersurface of dimension n�1 smoothly depending on p. Moreover

for any q D expp.v/ 2 ˙.p/, TqM is a direct sum of the linearly independent spaces

(4.11) TqM D Tq˙.p/ ˚ Nq.w/;

and
Tq˙.p/ D Im d expp.v/; N �

q ˙.p/ D Coker dv expp.v/:

Next, those statements remain true with p and q exchanged.
(b) ˙ is a smooth .2n � 1/-dimensional hypersurface in M � M near .p0; q0/, that is also a fiber bundle ˙ D

f˙.p/; p 2 M g with fibers ˙.p/ (and also ˙ D f˙.q/; q 2 M g). Moreover, the conormal bundle N �˙ is given
by

N �˙ D
˚
.p; q; �; �/I .p; q/ 2 ˙; � D �i@ expi

p.v/=@p; � 2 Coker dv expp.v/

where v D exp�1
p .q/ with expp restricted to S.p/

	
:

(4.12)

Proof. We start with (a). By the normal form (3.2), also clear from the fold condition, the image of S.p/ under
d expp.v/ coincides with Tq˙.p/. In particular, d expp.v/, restricted to S.p/ is a diffeomorphism to its image.
Relation (4.11) follows from (4.2) and (R2).

Consider (b). We have .p; q/ 2 ˙ if and only if there exists v (near v0) so that

(4.13) q D expp.v/; det dv expp.v/ D 0:



THE GEODESIC X-RAY TRANSFORM WITH FOLD CAUSTICS 9

In some local coordinates, we view this as n C 1 equations for the 3n-dimensional variable .p; q; v/ near .p0; q0; v0/.
We show first that the solution that we denote by L, is a .2n � 1/-dimensional submanifold. To this end, we need to
show that the following differential has rank n C 1 at .p0; q0; v0/:

(4.14)
�

dp expp.v/ �Id dv expp.v/

dp det dv expp.v/ 0 dv det dv expp.v/

�
:

The elements of the first “row” are n � n matrices, while the second row consists of three n-vectors. That the rank
of the differential above is full follows from the fact that dv det dv expp.v/ 6D 0 at .p0; v0/, guaranteed by the fold
condition.

Set �.p; q; v/ D .p; q/. We show next that �.L/ is a .2n � 1/-dimensional submanifold, too. To this end, we need
to show that d� is injective on TL. The tangent space to L is given by the orthogonal complement to the rows of
(4.14). Let us denote any vector in TL by � D .�p; �q; �v/. Then d�.�/ D .�p; �q/. Our goal is therefore to show
that �p D �q D 0 implies �v D 0. Then .0; 0; �v/ is orthogonal to the rows of (4.14), therefore,

�i
v@vi expk

p.v/ D 0; k D 1; : : : ; n; �i
v@vi det dv expp.v/ D 0:

The latter identity shows that �v 2 Np.v/, while the first one shows that �v 2 Ker dv expp.v/. By the fold condition,
�v D 0.

This analysis also shows that the covectors � orthogonal to ˙ are of the form � D .�p; �q/ with the property that
.�p; �q; 0/ is conormal to L. Since the conormals to L are spanned by the rows of (4.14), in order to get the third
component to vanish, we have to take a linear combination with coefficients ai , i D 1; : : : ; n and b so that

(4.15) ai

@qi

@vj
C b

@ det dv expp.v/

@vj
D 0; 8j ;

where q D expp.v/. Let 0 6D ˛ 2 Np.v/. Multiply by ˛j and sum over j above to get that the v-derivative of
b det dv expp.v/ in the direction of Np.v/ vanishes. According to the fold assumption, this is only possible if b D 0.
Then we get that a 2 Coker dv expp.v/. Therefore the normal covectors to ˙ are of the form

(4.16) � D

��
ai

@qi

@pj

�
; �a

�
; a 2 Coker dv expp.v/;

that proves (4.12).
�

Theorem 4.2. Let v0 be a fold conjugate vector at p0. Let expp be the exponential map of a Riemannian metric.
(a) Then the sum in (4.11) is an orthogonal one, i.e.,

Nq˙.p/ D Nq.w/:

(b) Next, (4.17) also admits the representation

N˙ D
˚
.p; q; ˛; ˇ/I .p; q/ 2 ˙; ˛ D J 0.0/; ˇ D �J 0.1/; where J is any Jacobi field

along the locally unique geodesic connecting p and q with J.0/ D J.1/ D 0
	
:

(4.17)

(c) N˙ is a graph of a smooth map .p; ˛/ 7! .q; ˇ/ if and only if condition (4.4) is fulfilled. Then that map is a
local diffeomorphism.

Remark 4.2. Note that for .p; q/ 2 ˙ , the geodesic connecting p and q is unique, as follows from the normal form
(3.2), only among the geodesics with P
 .0/ close to v0. Also, J is determined uniquely up to a multiplicative constant.
Next, once we prove that ˙ is smooth, then ˛ 2 Np.v/ and ˇ 2 Nq.w/ by (a) (see also (3.2)), but (4.17) gives
something more than that — it restricts .˛; ˇ/ to an one-dimensional space.

Remark 4.3. It is a natural question whether jJ 0.0/j D jJ 0.1/j. One can show that generically, this is not the case.

Proof. By [16, Lemma IX.3.5], the conjugate of d expp.v/, w.r.t. the metric form is given by

(4.18)
�
d expp.v/

��
D d expq.w/;
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where we use the notation (3.1). The normal to ˙.p/ at q is in the orthogonal complement to the image of d expp.v/,
that by (4.18) is Ker d expq.w/ D Nq.w/. This proves (a).

Then we get by (4.18), (4.15) (where b D 0) that a 2 Nq.w/, where we identify the covector a with a vector by
the metric.

We will use now [16, Lemma IX.3.4]: for any two Jacobi fields J1, J2 along a fixed geodesic, the Wronskian
hJ 0

1
; J2i�hJ1; J 0

2
i is constant. Along the geodesic connecting p and q, in fixed coordinates near p, let QJ be determined

by QJ .0/ D ej , QJ 0.0/ D 0. Here ej has components ıi
j . If p and q are conjugate to each other, then QJ .1/ is the equal

to the variation @q=@pj , and this is independent on the choice of the local coordinates, as long as ej is considered as
a fixed vector at p. Define another Jacobi field by J.1/ D 0, J 0.1/ D a, where a is as in (4.16) but considered as a
vector. Denote the field in the brackets in (4.16) by Xj . Then

Xj D ha; QJ .1/i(4.19)

D hJ 0.1/; QJ .1/i

D hJ 0.1/; QJ .1/i � hJ.1/; QJ 0.1/i

D hJ 0.0/; QJ .0/i � hJ.0/; QJ 0.0/i

D J 0
j .0/:

This proves (4.17).
The proof of (c) follows directly from Lemma 4.3. �

5. THE SCHWARTZ KERNEL OF N NEAR THE DIAGONAL AND MAPPING PROPERTIES OF X AND N

5.1. The geodesic case. Let exp be the exponential map of the metric g. Then X is the weighted geodesic ray
transform. One way to parametrize the geodesics is the following. Let H be any orientable hypersurface with the
property that it intersects transversally, at one point only, any geodesic in M issued from a point in U . For our local
analysis, H can be an arbitrarily small surface intersecting transversally 
p0;v0

, so let us fix that choice. Let d VolH
be the induced measure in H , and let � be a smooth unit normal vector field on H consistent with the orientation of
H . LetH consist of all .p; �/ 2 SM with the property that p 2 H and � is not tangent to H , and positively oriented,
i.e., h�; �i > 0. Introduce the measure d� D hn; �i d VolH .p/ d�p.�/ on H. Then one can parametrize all geodesics
intersecting H transversally by their intersection p with H and the corresponding direction, i.e., by elements inH. An
important property of d� is that it introduces a measure on that geodesics set that is invariant under a different choice
of H by the Liouville Theorem, see e.g., [23].

The weighted geodesic transform X can be defined as in (2.1) for .p; �/ 2 H instead of .p; �/ 2 U because
transporting .p; v/ along the geodesic flow does not change the integral. Since we assumed originally that � is localized
near a small enough neighborhood of 
p0;v0

, we get that � is supported in a small neighborhood of .p0; �0/ in H. We
view X as the following map

X W L2.M / ! L2.H; d�/;

restricted to a neighborhood of .p0; �0/. This map is bounded, see [21], and this also follows from our analysis of N .
By the proof of Proposition 1 in [23], X �X is given by

(5.1) X �Xf .p/ D
1p

det g.p/

Z
SpM

Z
N�.p; �/�

�
expp.t�/; Pexpp.t�/

�
f .expp.t�// dt d�p.�/:

We therefore proved the following.

Proposition 5.1. Let exp be the geodesic exponential map. Let X be the weighted geodesic ray transform (2.1), and
let N be as in (2.2), depending on �]. Then

X �X D N with �] D N�:
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Split the t integral in (5.1) in two: for t > 0 and for t < 0, and make a change of variables .t; �/ 7! .�t; ��/ in the
second one to get

(5.2) X �Xf .p/ D
1p

det g.p/

Z
TpM

W .p; v/f .expp.v// d Vol.v/;

where

W D jvj
�nC1

�
N�.p; v=jvj/�

�
expp.v/; Pexpp.v/=jvj

�
C N�.p; �v=jvj/�

�
expp.v/; � Pexpp.v/=jvj

��
:

(5.3)

Note that j Pexpp.v/j D jvj in this case.
Next we recall a result in [23]. Part (a) is based on formula (5.2) after a change of variables. We denote by � the

distance in the metric g.

Theorem 5.1 ([23]). Let exp be the exponential map of M . Assume that expp W exp�1
p .M / ! M is a diffeomorphism

for p near p0.
(a) Then for p in the same neighborhood of p0,

(5.4) X �Xf .p/ D
1p

det g.p/

Z
A.p; q/

f .q/

�.p; q/n�1

ˇ̌̌
det

@2.�2=2/

@p@q

ˇ̌̌
dq;

where
A.p; q/ D N�.p; � gradp �/�.q; gradq �/ C N�.p; gradp �/�.q; � gradq �/:

(b) X �X is a classical 	DO of order �1 with principal symbol

(5.5) �p.X �X /.x; �/ D 2�

Z
SxM

ı.�.�//j�.x; �/j2 d�x.�/;

where �.�/ D �i�
i , and ı is the Dirac delta function.

Note that the integral (5.4) is not written in an invariant form but one can easily check that writing it w.r.t. the
volume form, the kernel is invariant. We also note that in the proof of Theorem 2.1, we apply the theorem above by
restricting supp f and the region where we study Nf to a small enough neighborhood of p0, where there will be no
conjugate points. This gives the 	DO part A of N in Theorem 2.1. Finally, note that Theorem 5.2 provides a proof of
part (b) even in the context of general exponential maps.

Mapping properties of X . Let .x0; xn/ be semigeodesic coordinates on H near x0. Then .x0; � 0/ parameterize the
vectors near .x0; �0/. We define the Sobolev space H 1.H/ of functions constant along the flow, supported near the
flow-out of .x0; �0/ as the H s norm in those coordinates w.r.t. the measure d�. We can choose another such surface
H near q0 with some fixed coordinates on it; the resulting norm will the be equivalent to that on H.

Proposition 5.2. With the notation and the assumptions above, for any s � 0, the operators

X W H s
0 .V / �! H sC1=2.H/;(5.6)

X �X W H s
0 .V / �! H sC1.V /(5.7)

are bounded.

Proof. Recall first that the weight � localizes in a small neighborhood of .
0; P
0/. Let first f have small enough
support in a set that we will call M0. Then M0 will be a simple manifold if small enough. Then we can replace H by
another surface H0 that lies in M0, and denote byH0 the correspondingH . This changes the original parameterization
to a new one, that will give us an equivalent norm.

Then, if s is a half-integer,

kXf k
2
H sC1=2.H0/

� C
X

j˛j�2sC1

ˇ̌̌ �
@˛

x0;�0Xf; Xf
�

L2.H0/

ˇ̌̌
D C

X
j˛j�2sC1

ˇ̌̌ �
X �@˛

x0;�0Xf; f
�

L2.H0/

ˇ̌̌
:
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The term @˛
x0;�0Xf is a sum of weighted ray transforms of derivatives of f up to order j˛j. Then X �@˛

x0;�0X is a 	DO
of order j˛j � 1 because M0 is a simple manifold. That easily implies

kXf kH sC1=2.H0/ � C kf kH s :

The case of general s � 0 follows by interpolation, see, e.g., [27, Sec 4.2].
To finish a proof, we cover 
0 with open sets so that the closure of each one is a simple manifold. Choose a finite

subset and a partition of unity 1 D
P

�j related to that. Then we apply the estimate above to each X�j f on the
corresponding Hj . We then have finitely many Sobolev norms that are equivalent, and in particular equivalent to the
one on H. This proves (5.6).

To prove the continuity of X �X , we need to estimate the derivatives of X �X . We have that @˛X �Xf is sum of
operators X�˛

of the same kind but with possibly different weights applied to derivatives of Xf up to order j˛j, see
(5.1). Let first s D 0. For f , h in C 1

0
.V /, jˇj D 1, we haveˇ̌̌ �

f; X �
�ˇ

@
ˇ

x0;�0Xh
�

L2.V /

ˇ̌̌
� C kX�ˇ

f kH 1=2kXhkH 1=2 � C kf kL2.V /khkL2.V /:

In the last inequality, we used (5.6) that we proved already. This proves (5.7) for s D 0.
For s � 1, integer, we can “commute” the derivative in @˛X �X with X �X by writing it as a finite sum of operators

of the type X �
Q̌
XˇPˇf , jˇj � j˛j, where Pˇ are differential operators of order ˇ. To this end, we first “commute”

it with X �, as above, and then with X . Then we apply (5.7) with s D 0. The case of general s � 0 follows by
interpolation. �

Remark 5.1. We did not use the fold condition here. In fact, Proposition 5.2 holds without any assumptions on the
type of the conjugate points, as long as V is contained in a small enough neighborhood of a fixed geodesic segment
that extends to a larger one with both endpoints outside V . Note that proving the mapping properties of X �X based on
its FIO characterization is not straightforward, and we would get the same conclusion under some assumptions only,
for example that the canonical relation is a canonical graph; that is not always true.

Remark 5.2. A global version of Proposition 5.2 can easily be derived by a partition of unity in the phase space.
Let .M; g/ be a compact non-trapping Riemannian manifold with boundary, i.e., all maximal geodesics in M have a
uniform finite bound on their length. Let M1 be another such manifold which interior includes M , and assume that
@M1 is strictly convex. Such M1 always exists if @M is strictly convex. Let @�SM1 denote the vectors with base
point on @M pointing into M1. Then we can parameterize all (directed) geodesics with points in @�SM1, that plays
the role of H above. Then for s � 0,

X W H s
0 .M / �! H sC1=2.@�SM1/; X �X W H s

0 .M / �! H sC1.M1/

are bounded.

5.2. General regular exponential maps. Let now exp be a regular exponential map. As above, we split the t -integral
in the second line below into two parts to get

Nf .p/ D

Z
�].p; �/Xf .p; �/ d�p.�/

D

Z
SpM

Z
�].p; �/�

�
expp.t�/; Pexpp.t�/

�
f .expp.t�// dt d�p.�/

D

Z
TpM

W .p; v/f .expp.v// d Vol.v/;

(5.8)

where

W D jvj
�nC1

�
�].p; v=jvj/�

�
expp.v/; Pexpp.v/=jvj

�
C �].p; �v=jvj/�

�
expp.v/; � Pexpp.v/=jvj

��
:

(5.9)
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Theorem 5.2. Let expp.v/ satisfy (R1) and (R4) and assume that for any .p; �/ 2 supp �], t� is not a conjugate
vector at p for t such that expp.t�/ 2 supp f . Then N is a classical 	DO of order �1 with principal symbol

(5.10) �p.N /.x; �/ D 2�

Z
SxM

ı.�.�//.�]�/.x; �/ d�x.�/;

where �.�/ D �i�
j , and ı is the Dirac delta function.

Proof. The theorem is essentially proved in Section 4 of [9], where the exponential map is related to a geodesic like
family of curves. We will repeat the arguments there in this more general situation.

Notice first that it is enough to study small enough jt j. Fix local coordinates x near p0. By (R4),

expx.t�/ D x C tm.t; � I x/; m.0; � I x/ D �;

with a smooth function m near .0; �0; p0/. Introduce new variables .r; !/ 2 R � SxM by

r D t jm.t; � I x/j; ! D m.t; � I x/=jm.t; � I x/j;

where j � j is the norm in the metric g.x/. Then .r; !/ are polar coordinates for expx.t�/ � x D r! with r that can be
negative, as well, i.e.,

expx.t�/ D x C r!:

The functions .r; !/ are clearly smooth for jt j � 1, and x close to p0. Let

J.t; � I x/ D det dt;v.r; !/

be the Jacobi determinant of the map .t; v/ 7! .r; !/. By (R4), J jtD0 D 1, therefore that map is a local diffeomorphism
from .�"; "/ � SxM to its image for 0 < " � 1. It is not hard to see that for 0 < " � 1 it is also a global
diffeomorphism, because it is clearly injective. Let t D t.x; r; !/, � D �.x; r; !/ be the inverse functions defined by
that map. Then

t D r C O.jr j/; � D ! C O.jr j/; Pexp.t�/ D ! C O.jr j/:

Assume that the weight � in (2.2) vanishes for p outside some small neighborhood of p0. Then after a change of
variables, we get

Nf .x/ D

Z
SxM

Z
A.x; r; !/f .x C r!/ drd�x.!/;

where

A.x; r; !/ D �].x; �.x; r; !//�.x C r!; ! C rO.1//J �1.x; r; !/

with J as before, but written in the variables .x; r; !/. By [9, Lemma 4.2], N is a classical 	DO of order �1 with a
principal symbol

(5.11) 2�

Z
SxM

ı.�.!//A.x; 0; !/ d�x.!/ D 2�

Z
SxM

ı.�.!//�].x; !/�.x; !/ d�x.!/:

The proof in [9] starts with the change of variables y D x C r!. Then we write the Schwartz kernel of N as a singular
one with a leading part 2Aeven.x; 0; !/jx � yj�1, ! D .y � x/=jy � xj, where Aeven is the even part of A w.r.t. !. It
then follows that N is a 	DO of order �1 with a principal symbols as claimed. �

Remark 5.3. Formulas (5.2) and (5.8) are valid regardless of possible conjugate points. In our setup, the supports
of �, �] guarantee that expp.t�/, for .p; �/ close to .p0; �0/ reaches a conjugate point for t > 0 but not for t < 0.
Therefore, near the conjugate point q of p, the second term on the r.h.s. of (5.3), and (5.9), respectively, vanishes.



14 P. STEFANOV AND G. UHLMANN

6. THE SCHWARTZ KERNEL OF N NEAR THE CONJUGATE LOCUS ˙

We will introduce first three invariants. Let F W M ! N be a smooth orientation preserving map between two
orientable Riemannian manifolds .M; g/ and .N; h/. Then one defines det dF invariantly by

(6.1) F�.d VolN / D .det dF / d VolM ;

see also [16, X.3]. In local coordinates,

(6.2) det dF.x/ D

s
det h.F.x//

det g.x/
det

@F.x/

@x
:

We choose an orientation of S.p0/ near v0, as a surface in Tp0
M by choosing a unit normal field so that the

derivative of det d expp0
.v/ along it is positive on S.p/. Then we extend this orientation to S.p/ for p close to p0 by

continuity. On Figure 2, the positive side is the one below S.p/, if v is the first conjugate vector along the geodesic
through .p; v/. Then we choose an orientation of ˙.p/ so that the positive side is that in the range of expp . On
Figure 2, the positive side is to the left of ˙.p/. The so chosen orientations conform with the signs of �n and yn in
the normal form (3.2).

Next we synchronize the orientations of TpM and M near q by postulating that expp is an orientation preserving
map from the positive side of S.p/, as described above, to the positive side of ˙.p/.

For each p 2 M , the transformation laws in T TpM under coordinate changes on the base show that TpM has the
natural structure of a Riemannian manifold with the constant metric g.p/. Then one can define det d expp invariantly
as above. Let d Volp be the volume form in TpM , and let d Vol be the volume form in M . Then det d expp is defined
invariantly by

(6.3) exp�
p d Vol D

�
det d expp

�
d Volp :

In local coordinates,

det d expp D

s
det g.expp v/

det g.p/
det

@

@v
expp.v/;

where, with some abuse of notation, g.p/ is the metric g in fixed coordinates near a fixed p0, and g.expp v/ is the
metric g in a possibly different system of fixed coordinates near q0 D expp0

v0. Set

(6.4) A.p; v/ WD jd det d expp.v/j:

Since det d expp.v/ is a defining function for S.p/, its differential is conormal to it. By the fold condition, A 6D 0.
One can check directly that A is invariantly defined on ˙ .

By (3.3), for .p; v/ 2 S , the differential of expp maps isomorphically TvS.p/ (equipped with the metric on that
plane induced by g.p/) into Tq˙ , with the induced metric. Let D be the determinant of expp jS.p/, i.e.,

(6.5) D WD det
�
d expp jTvS.p/

�
;

defined invariantly by (6.1). We synchronize the orientations of S.p/ and ˙.p/ so that D > 0.
We express next the weight W .p; v/ restricted to S in terms of the variables .p; q/. For .p; q/ 2 ˙ , v D exp�1

p .q/,
where we inverted expp restricted to S . Let w D w.p; q/ be defined as in (3.1) with v as above. Then we set, see also
(5.9), and Remark 5.3,

(6.6) W˙ .p; q/ WD W
�
.p; exp�1

p .q//j˙ D jvj
1�n�].p; v=jvj/�.q; �w=jvj/

For p close to p0, ˙.p/ divides M in a neighborhood of q0 into two parts: one of them is in the range of expp.v/

for v near v0, that is the positive one w.r.t. the chosen orientation; the other is not. Let z0.p; q/ be the distance from
q to ˙.p/ with a positive sign in the first region, and with a negative sign in the second one. Then for a fixed p,
z0 D z0.p; q/ is a normal coordinate to ˙.p/ depending smoothly on p, and ˙ is given locally by z0 D 0. Then z0

is a defining function for ˙ , i.e., ˙ D fz0 D 0g and dp;qz0 6D 0 because dqz0 6D 0. Let z00 D z00.p; q/ 2 R2n�1 be
such that its differential restricted to T ˙ is an isomorphism at .p0; q0/. Since dz00 and dz0 are linearly independent,
z D z.z0; z00/ are coordinates near .p0; q0/. One way to construct z00 is the following. Choose .znC1; : : : ; z2n/,
depending on p only, to be local coordinates for p, and to choose .z0; z2; : : : ; zn/, depending on p and q, to be
semi-geodesic coordinates of q near ˙.p/.
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The next theorem shows that near ˙ , the operator N has a singular but integrable kernel with a conormal singularity
of the type 1=

p
z0.

Theorem 6.1. Near ˙.p/, the Schwartz kernel N.p; q/ of N (with respect to the volume measure) near .p0; q0/ is of
the form

(6.7) N D W˙

p
2

p
ADz0

.1 C
p

z0R.
p

z0; z00//;

where W˙ D W˙ .z00/, A D A.z00/, D D D.z00/, and R is a smooth function.

Proof. We start with the representation (5.8). We will make the change of variables y D expp.v/ for .p; v/ close to
.p0; v0/ as always. Then y will be on the positive side of ˙.p/, and the exponential map is 2-to-1 there. We split the
integration in (5.8) in two parts: one, where v is on the positive side of S.p/, that we call NCf , and the other one we
denote by N�f . Then

N˙f .p/ D

Z
SpM

Z
Wf .y/

�
det d exp˙

p .v/
��1 d Vol.y/;(6.8)

where W is as in (6.6) but not restricted to ˙ , and .exp˙
p /�1 there is the corresponding inverse in each of the two

cases.
To prove the theorem, we need to analyze the singularity of the Jacobian determinant det d expp.v/ near ˙.p/. It

is enough to do this at .p0; v0/.
Let y D .y0; yn/ be semi-geodesic coordinates near ˙.q0/, q0 D expp0

.v0/, and let y0 correspond to q0. We
assume that yn > 0 on the positive side of ˙.p/. In other words, yn D z0.p0; q/.

We have
d Vol.y/ D det

�
dv expp.v/

�
d Vol.v/

The form on the left can be written as d Vol˙.p/.y
0/ dyn; while the one on the right, restricted to S.p/, equals

d VolS.p/.v
0/ dvn in boundary normal coordinates to S.p/, where vn > 0 gives the positive side of S.p/. On the other

hand, by (6.5),
d Vol˙.p/.y

0/ D D d VolS.p/.v
0/:

We therefore get
D dyn

D det
�
d expp.v/

�
dvn:

By the definition of A, we have

(6.9) det dv expp.v/ D Avn.1 C O.vn//:

Therefore,
D dyn

D A.1 C O.vn// vndvn:

Since yn D 0 for vn D 0, we get

yn
D .vn/2 A

2D
.1 C O.vn//:

Solve this for vn and plug into (6.9) to get

(6.10) det d expp.v/ D ˙
p

2ADyn
�
1 C O˙

�p
yn
��

:

Here O˙

�p
yn
�

denotes a smooth function of
p

yn near the origin with coefficients smooth in y0, that vanishes at
yn D 0. The positive/negative sign corresponds to v belonging to the positive/negative side of S.p/. By (6.8),

(6.11) N˙f .p/ D

Z
Wf .y/

1p
2ADyn

�
1 C O˙

�p
yn
��

d Vol.y/:

We replace A0, D0 in (6.11) by their values at yn D 0; the error will then just replace the remainder term above by
another one of the same type. Similarly, W D W .p; v/, where expp.v/ D q. Solving the latter for v D v.p; q/

provides a function having a finite Taylor expansion in powers of
p

yn of any order, with smooth coefficients. The
leading term is what we denoted by W˙ that is a smooth function on ˙ .
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With the aid of (6.2), it is easy to see that (6.11) is a coordinate representation of the formula (6.7) at the so fixed
p. When p varies near p0, it is enough to notice that since we already wrote the integral in invariant form, yn then
becomes the function z0.p; q/ introduced above. For z00 we then have z00.p; q/ D .x.p/; y0.p; q//. Finally, we note
that another choice of z00 so that .z0; z00/ are coordinates would preserve (6.7) with a possibly different R. �

7. N AS A FOURIER INTEGRAL OPERATOR. PROOF OF THEOREM 2.1

We are ready to finish the proof of Theorem 2.1. By Theorem 6.1, near ˙ , the Schwartz kernel of N has a
conormal singularity at ˙ , supported on one side of it, that admits a singular expansion in powers of

p
z0

C, with a
leading singularity 1=

p
z0

C. The Fourier transform of the latter is

(7.1)
p

�e�i�=4.�
�1=2
C C i��1=2

� /

where �C D max.�; 0/, �� D .��/C. The singularity near � D 0 can be cut off, and we then get a symbol of
order �1=2, depending smoothly on the other 2n � 1 variables. Therefore, near ˙ , the kernel of N belongs to the
conformal class I�n=2.M � M; ˙ I C/, see e.g., [13, 18.2]. It is elliptic when �].p0; �0/�].q0; �w0/ 6D 0 by (5.9),
(6.6). Therefore, the kernel of N near ˙ is a kernel of an FIO associated to the Lagrangian T �˙ . Moreover, the
amplitude of the conormal singularity at ˙ is in the class S

�1=2;1=2
phg (polyhomogeneous of order �1=2, having an

asymptotic expansion in integer powers of j�j1=2), see also (9.13) and (9.14).

8. THE TWO DIMENSIONAL CASE

Theorem 8.1. Let dim M D 2. Assume that (R1) – (R5) are fulfilled. Then N �˙ n 0, near .p0; �0; q0; �0/, is the
graph of a local diffeomorphism T �M n 0 2 .p; �/ 7! .q; �/ 2 T �M n 0, homogeneous of order one in its second
variable (a canonical graph).

Proof. For .p; �/ near .p0; �0/, there are exactly two smooth maps that map � to a unit normal vector. We choose the
one that maps �0 to v0=jv0j. Then we map the latter to v 2 S.p/. Since the radial ray through v is transversal to S.p/,
that map is smooth. Knowing v, then we can express q D expp.v/ 2 ˙.p/ and w D � Pexpp.v/ as smooth functions of
.p; �/ as well. Then in local coordinates, � D �i@ expi

q.w/=@q, see (4.12), that in particular proves the homogeneity.
By (R5), this map is invertible. �

FIGURE 3. The 2D case

The principal symbol of X �X in the geodesics case, see Theorem 5.1, and (5.5), is given by

(8.1) �p.X �X /.x; �/ D 2�j�.x; �?=j�?
j/j2;
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where �? is a continuous choice of a vector field normal to � and of the same length so that at p D p0, �?
0

=j�?
0

j D �0,
��?

0
=j � �?

0
j D �0; therefore, the sign of the angle of rotation is different near �0 and near ��0. Notice that (5.5) in

the two dimensional case is a sum of two terms but we assumed that � is supported near .p0; �0/, therefore only one
of the terms is non-trivial. A similar remark applies to (5.10).

Theorem 6.1 takes the following form in two dimensions, in the Riemannian case.

Corollary 8.1. Let n D 2 and let exp be the exponential map of a Riemannian metric. With the notation of Theo-
rem 6.1, we then have

(8.2) N D W˙

p
2

p
Bz0

.1 C
p

z0R.
p

z0; z00//;

where

B D

ˇ̌̌ d
dN

det d expp.v/
ˇ̌̌

is evaluated at v 2 S.p/ such that q D expp.v/, and d=dN stands for the derivative in the direction of Np.v/.

Proof. Note first that B 6D 0 by the fold condition. Let � be the (acute) angle between S.p/ and Np.v/ at v. Since
Np.v/ is orthogonal to the radial ray at v, we can introduce an orthonormal coordinate system at v with the first
coordinate vector being v=jvj, and the second one: the positively oriented unit vector along Np.v/, that we call �. Let
us parallel transport this frame along the geodesic 
p;v; and invert the direction of the tangent vector to conform with
our choice of w at q. In particular, this introduces a similar coordinate system near the corresponding vector w at q in
the conjugate locus. In these coordinates then

(8.3) d expp.v/ D

�
�1 0

0 j=jvj

�
;

where j is uniquely determined by J.t/ D j .t/�.t/, where J.t/ is the Jacobi field with J.0/ D 0, J 0.0/ D �,
and �.t/ is the parallel transport of � , compare that with (4.1). The extra factor 1=jvj comes from the fact that we
normalize v now in our basis, so that the result would be the Jacobian determinant. Then the Jacobi determinant
det d expp.v/ is given by �j=jvj. In particular, for .p; v/ 2 S we have d expp.v/ D diag.�1; 0/. Note that j depends
on v as well, therefore its differential that essentially gives d det d expp.v/ depends on the properties of the Jacobi field
under a variation of the geodesic.

Now, it easily follows from the definition (6.5) of D that

D D sin �:

On the other hand, d det d expp.v/ is conormal to S.p/, therefore, the derivative of det d expp.v/ in the direction of
Np.v/ satisfies ˇ̌̌ d

dN
det d expp.v/

ˇ̌̌
D jd det d expp.v/j sin � D A sin � D AD:

�

9. RESOLVING THE SINGULARITIES IN THE GEODESIC CASE

Let, as before, .p0; q0/ be a pair of fold conjugate points along 
0, and X be the ray transform with a weight that
localizes near 
0. We want to see whether we can resolve the singularities of f near p0 and near q0 knowing that
Xf 2 C 1, and more generally, whether we can invert X microlocally. Assume for simplicity that p0 6D q0.

We will restrict ourselves to the geodesic case only but the same analysis holds without changes to the case of
magnetic geodesics as well. We avoid the formal introduction of magnetic geodesics for simplicity of the exposition.
Assume also that

(9.1) �.p; �/�.q; �w=jwj/ 6D 0; for .p; �/ 2 U0;

where .q; w/ are given by (3.1), and U c U0 3 .p0; �0/. This guarantees the microlocal ellipticity of the 	DO A near
N �.p0; v0/ and N �.q0; w0/ in Theorem 2.1, see Theorem 5.1.
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FIGURE 4. Two geometric objects can detect singularities at p0 in the geodesic case: a geodesic 
0

through p0, and the conjugate locus ˙.q0/ of q0 conjugate to p0. By Theorem 4.2, 
0 is parallel to
˙.q0/.

9.1. Sketch of the results. We explain the results before first in an informal way. As we pointed out in the Introduc-
tion, Xf .
 / for geodesics near 
0 can only provide information for WF.f / near N �
0, and does not “see” the other
singularities. The analysis below based on Theorem 2.1, shows that on a principal symbol level, the operator jDj1=2F

behaves as a Radon type of transform on the curves (when n D 2) or the surfaces (when n � 3) ˙.p/. Similarly, its
adjoint behaves as a Radon transform on the curves/surfaces ˙.q/. Therefore, there are two geometric objects that
can detect singularities at p0 conormal to v0: the geodesic 
0 D 
p0;v0

(and those close to it) and the conjugate locus
˙.q0/ through p0 (and those corresponding to perturbations of v0). We refer to Figure 4.

When n D 2, the information coming from integrals along the two curves (and their neighborhoods) may in
principle cancel; and we show in Theorem 9.2 that this actually happens, at least to order one. When n � 3, the
Radon transform over ˙.q/ 3 p competes with the geodesic transform over geodesics through p. Depending on the
properties of that Radon transform, the information that we get for ˙�0 may or may not cancel because �0 is conormal
both to 
0 and ˙.q0/. On the other hand, for any other �1 conormal to v0 but not parallel to �0, the geodesic 
0 (and
those close to it) can detect whether it is in WF.f / but the Radon transform restricted to small perturbations of v0

(and therefore of q0) will not. Thus, we can invert N microlocally at such .p0; �1/.
Now, when n � 3, we may try to invert N even at �0 by choosing v’s close to v0 but normal to �0. If �0 happens

not to be conormal to the corresponding conjugate locus ˙.q.p0; v// at p0, we can just use the argument above with
the new v. In particular, if the map (4.3) is a local diffeomorphism, this can be done.

This suggests the following sufficient condition for inverting N at .p0; �1/:

(9.2) 9�1 2 Sp0
M , so that �.p0; �1/ 6D 0, �1.�1/ D 0, and �1 is not conormal to ˙.q.p0; �1// at p0.

Above, ˙.q.p0; �1// is the conjugate locus to the point q that is conjugate to p0 along 
p0;�1
. We normally denote

that point by q.p0; v1/, where v1 2 S.p0/ has the same direction as �1.
In case of the geodesic transform, one could formulate (9.2) in terms of the map (4.3) as follows:

(9.3) 9v1 2 S.p0/, so that �.p0; v1=jv1j/ 6D 0, �1.v1/ D 0, and �1 is not the image of v1 under the map (4.3) at p0.

In Section 10.3, we present an example where (4.3) is a local diffeomorphism, therefore (9.2) holds. In Section 10.4
we present another example, where (9.2) fails.

9.2. Recovery of singularities in all dimensions. We proceed next with analysis of the recovery of singularities.
Let �1;2 be smooth functions on M that localize near p0, and q0, respectively, i.e., supp �1 � U1, supp �2 �

U2, where U1;2 are small enough neighborhoods of p and q, respectively. Assume that �1, �2 equal 1 in smaller
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neighborhoods of p0, q0, where f1, f2 are supported. Then f WD f1 C f2 is supported in U1 [ U2 and we can write

(9.4) �1Nf D A1f1 C F12f2;

where A1 D �1N�1 is a 	DO by Theorem 5.2, while F12 D �1N�2 is the FIO that we denoted by F in Theorem 2.1.
By (R5), we can do the same thing near q0 to get

(9.5) �2Nf D A2f2 C F21f1;

where A2 D �2N�2, F21 D �2N�1. It follows immediately that F21 D F�
12

. Recall that F12 D F in the notation of
Theorem 2.1. Assuming X �Xf 2 C 1, we get

(9.6) A1f1 C Ff2 2 C 1; A2f2 C F�f1 2 C 1:

Solve the first equation for f2, plug into the second one to get

(9.7)
�
Id � A�1

2 F�A�1
1 F

�
f2 2 C 1 near .q0; ˙�0/ ;

where A�1
1

, A�1
2

, denote parametrices of A1, A2 near .p0; ˙�0/, and .q0; ˙�0/, respectively. The operator in the
parentheses is a 	DO of order 0 if the canonical relation is a graph, that is true in particular when n D 2, by
Theorem 8.1. In that case, if Id � A�1

2
F�A�1

1
F is an elliptic (as a 	DO of order 0), near .q0; ˙�0/; then we can

recover the singularities. Without the canonical graph assumption, if it is hypoelliptic, then we still can.
Another way to express the arguments above is the following. Since �1;2 together with � restrict to conic neighbor-

hoods of .p0 ˙ �0/, and .q0 ˙ �0/, respectively, and A1;2, F , F� have canonical relations of graph type that preserve
the union of those neighborhoods, we may think of f D f1 C f2 as a vector f D .f1; f2/, and then

(9.8) F D

�
A1 F

F� A2

�
:

The operator Id � A�1
2

F�A�1
1

F can be considered then as the “determinant” of F , up to elliptic factors.

Theorem 9.1. Let the canonical relation of F be a canonical graph. With the assumptions and the notation above, if
the zeroth order 	DO

(9.9) Id � A�1
2 F�A�1

1 F

is elliptic in a conic neighborhood of .q0; ˙�0/, then Xf 2 C 1 near .p0; �0/ (or more generally, Nf 2 C 1 near
p0 and q0) implies f 2 C 1.

In the geodesic case in two dimensions, the principal symbol of A�1
2

F�A�1
1

F is always 1, see the Proposition 9.1
below.

When n � 3 and F is of graph type, then A�1
2

F�A�1
1

F is of negative order, therefore we can resolve the singular-
ities.

Corollary 9.1. Let n � 3 and assume that the canonical relation of F is a canonical graph. Then the conclusions of
Theorem 9.1 hold, i.e., Xf 2 C 1 near .p0; �0/ (or more generally, Nf 2 C 1 near p0, q0) implies f 2 C 1.

Proof. In this case, A�1
1

F is an FIO of order 1 � n=2 with the same canonical relation is F . Similarly A�1
2

F� is
an FIO of order 1 � n=2 with a canonical relation that is a graph of the inverse canonical map. Their composition is
therefore a 	DO of order 2 � n < 0. Its principal symbol as a 	DO of order 0 is zero. The corollary now follows
from Theorem 9.1. �

In Section 10.3, we give an example where the assumptions of the corollary hold. Note that those assumptions are
stable under small perturbations of the dynamical system.

When the graph condition does not hold, the analysis is harder. Then (4.3) is not a local diffeomorphism. If its
range is a lower dimension submanifold, for example, we can at least recover the conormal singularities to �0 away
from it, as the corollary below implies. Note that below, (b) implies (a). Also, (9.1) is not needed; only ellipticity of �

at .p0; �0/ suffices.
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Corollary 9.2. Let Xf 2 C 1 for 
 near 
0. Then
(a) If �1 2 Tp0

M n 0 is conormal to v0 but not conormal to ˙.q0/ (not parallel to �0), then

.p0; �1/ 62 WF.f /:

(b) The same conclusion holds if condition (9.2) or the equivalent (9.3) is fulfilled.

Proof. Note first that A1 is elliptic at .p0; �/ by (9.1) and Theorem 5.1(b). By the first relation in (9.6), .p0; �1/ 2

WF.f1/ if and only if .p0; �1/ 2 WF.Ff2/. To analyze the latter, we will use the relation WF.Ff2/ � WF0.F / ı

WF.f2/, see [12, Thm 8.5.5]. Note also that in the notation in [12, Thm 8.5.5], WF.F /X is empty. By Theorem 6.1,
WF0.F / consists of those points in the canonical relation C, see (2.5), for which the conormal singularity in (6.7) is
not canceled by a zero weight.

Now, let �1 be as in (a). Since �1 is separated by ˙�0 by a conic neighborhood, one can choose a weight � on SM

that is constant along the geodesic flow, non-zero at .p0; �0/ and supported in a flow-out of a neighborhood V of it
small enough such that the conormals to the corresponding conjugate loci at p0 stay away from a neighborhood of
�1. In the geodesics case, the condition is that the map (4.3) restricted to V , does not intersect a chosen small enough
conic neighborhood of ˙�0. This can always be done by continuity arguments. Then left projection of WF0.F / will
not be singular at .p0; �1/, and therefore, Ff2 will have the same property regardless of the singularities of f2.

Statement (b) follows from (a) by varying v near v0 in directions normal to �1. �

9.3. Calculating the principal symbol of (9.9) in case of Riemannian surfaces. Let exp be the exponential map of
g, and let n � 2. We will take n D 2 later. Recall that the leading singularity of the kernel of N near ˙ is of the type
.z0

C/�1=2, by Theorem 6.1. We will compose F with a certain 	DO R so that this singularity becomes of the type
ı.z0/. Then modulo lower order terms, FRf .p/ will be a weighted Radon transform over the surface ˙.p/. In 2D,
that will be an X-ray type of transform. We are only interested in this composition acting on distributions with wave
front sets in a small conic neighborhood W of .q0; ˙�0/.

The Fourier transform of .z0
C/�1=2 is given by (7.1). Its reciprocal is

��1=2ei�=4
�
h.�/�1=2

� ih.��/.��/1=2
�

D ��1=2ei�=4
�
h.�/ � ih.��/

�
j�j

1=2;

where h is the Heaviside function, and j�j is the norm in T �
y M . We fix p near p0 and local coordinates x D x.p/

there, and we work in semi-geodesic coordinates y D y.p; q/ near q0 normal to ˙.p/ oriented as in section 6. Let x

denote local coordinates near q0. Let R be a properly supported 	DO of order 1=2 with principal symbol, equal to

(9.10) r.y; �/ D ��1=2ei�=4
�
h.�n/ � ih.��n/

�
j�j

1=2r0.y; �/;

inW , outside some neighborhood of the zero section, where r0 is a homogeneous symbol of order 0, an even function
of �. Note that

(9.11) jr j
2

D ��1
j�jr2

0 :

The appearance of the Heaviside function here can be explained by the fact that N �˙ has two connected components:
near .p0; q0; ��0; �0/ and near .p0; q0; �0; ��0/; and the constants needs to be chosen differently in each component.

We start with computing the composition

(9.12) FR:

Since the kernel of (9.12) is the transpose of that of RF 0, we will compute the latter; and we only need those
singularities that belong to W . Denote by F.p; q/ the Schwartz kernel of F . Then the kernel F 0.q; p/ D F.p; q/ of
F 0 (with the notation convention F 0f .q/ D

R
F 0.q; p/f .p/ d Vol.p/) can be written as F 0.q.x; y/; p.x// that with

some abuse of notation we denote again by F 0.y; x/. Then

(9.13) F 0.y; x/ WD .2�/�1

Z
eiyn�n QF 0.y0; �n; x/ d�n;

where QF 0 is the partial Fourier transform of F w.r.t. yn, and there is no summation in yn�n. By Theorem 6.1 and (7.1),

(9.14) QF 0.y0; �n; x/ D �1=2e�i�=4
�
h.�n/ C ih.��n/

�
j�nj

�1=2G.x; y0; �n/
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where G is a symbol w.r.t. �n, smoothly depending on .x; y0/ with principal part

G0 WD W˙

p
2

p
AD

:

Moreover, by Theorem 6.1, G has an expansion it terms of positive powers of j�nj�1=2. In particular, G � G0 is an
amplitude of order �1=2 that contributes a conormal distribution in the class I�n=2�1=2.M � M; ˙ I C/, see, e.g.,
[13, Thm 18.2.8]. By the calculus of conormal singularities, see e.g., [13, Theorem 18.2.12], the kernel of FR is of
conormal type at yn D 0 as well, with a principal symbol given by that of F multiplied by r jynD0;�0D0. That principal
symbol coincides with the full one modulo conormal kernels of order 1 less that the former, see the expansions in [13]
preceding Theorem 18.2.12. Since we assumed that r0 is an even homogeneous function of � of order 0, r0.y0; 0; 0; �n/

is a function of y0 only for � in a conic neighborhood of .0; ˙1/, equal to r.y; 0; 0; 1/. Therefore, the principal part of
r.y; Dy/F 0.�; x/ is

(9.15) .2�/�1

Z
eiyn�nG0.x; �0/r0.y0; 0; 0; 1/ d�n D W˙

p
2

p
AD

r0.y0; 0; 0; 1/ı.yn/;

and the latter is in I�n=2C1=2.M � M; ˙ I C/. The “error” is determined by the next term of the principal symbol of
the composition FR with G replaced by G0, that is of order 1 lower and by the contribution of G D G0 that is of
order �1=2 lower. Since the coordinates .y0; yn/ depend on p, as well, r0.y0; 0; 0; 1/ is actually the restriction of r0

to N �˙.p/. So we proved the following.

Lemma 9.1. Let r0 be as in (9.10). Then modulo I�n=2.M � M; ˙ I C/, FR 2 I1=2�n=2.M � M; ˙ I C/ reduces to
the Radon transform

FRf .p/ '

Z
˙.p/

af dS; a WD r0jN�˙.p/ W˙

p
2

p
AD

;

where dS is the Riemannian surface measure on ˙.p/ that we previously denoted by d Vol˙.p/.

In two dimensions, this is an X-ray type of transform. In higher dimensions, this is a Radon type of transform on
the family of codimension one surfaces ˙.p/.

In what follows, n D 2.
We will compute RF�FR next. We have

(9.16)
Z

FRf FRh d Vol '

Z
M

Z
˙.p/

.af /.z0/ dS.z0/

Z
˙.p/

. Na Nh/.q/ dS.q/ d Vol.p/

modulo terms of the kind .Pf; h/, where P is a 	DO of order �3=2 or less.
In the latter integral, p parameterizes the curve ˙.p/, while q 2 ˙.p/ parameterizes a point on it. Another

parameterization is by p and � 2 S�
p M with � oriented positively; then q D expp.v/, where v 2 ˙.p/ and �.v/ D 0.

For the Jacobian of that change we have

(9.17) dS.q/ d Vol.p/ D D d VolS.p/.v/ d Vol.p/ D
jvjD

cos �
d�p.�/ d Vol.p/;

and we recall that d�p denotes the surface measure on SpM , that in this case is a circle. The canonical map .p; �/ !

.q; �/ is symplectic, and therefore preserves the volume form dp d�. Set

(9.18) K WD j�.p; �/j=j�j:

Then this map takes S�M into f.q; �/ 2 T �M I j�j D Kg. Project that bundle to the unit circle one, and set
O� D �=j�j. Then we have the map .p; �/ ! .q; O�/, and d Vol.p/ d�p.�/ D K2d Vol.q/ d�q. O�/.

When we perform those changes of variables in (9.16), we will have

(9.19) dS.q/ d Vol.p/ D
jwjDK2

cos �
d Vol.q/ d�q.�/;

where p 2 M , q 2 ˙.p/, .q; �/ 2 S�M , and we removed the hat over �. Let w be the corresponding vector in S.q/

normal to �. That parameterizes the curves ˙.p/ over which we integrate by initial points q and unit conormal vectors
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�. The latter can be replaced by unit tangent vectors Ow D w=jwj; then d Vol.q/ d�q.�/ D d Vol.q/ d�q. Ow/. Let us
denote the so parameterized curves by cq; Ow.s/, where s is an arc-length parameter.

It remains to notice that the integral w.r.t. z0 2 ˙.p/ is an integral w.r.t. the arc-length measure on ˙.p/, that we
denote by s. Then performing the change of the variables .p; q; z0/ 7! .q; Ow; z0/ in (9.16), we get

(9.20)
Z

FRf FRh d Vol '

Z
R�SqM �M

.af /.cq; Ow.s// Na.q; � Ow/ Nh.q/ ds
jwjDK2

cos �
d�q. Ow/ d Vol.q/:

Therefore, we get as in (5.2), (5.4),

R�F�FRf .q/ '
1p

det.g.q//

Z
a Na

jwjDK2

cos �

f .q0/

�.q; q0/
d Vol.q0/

'
1p

det.g.q//

Z ˇ̌
r0jN�˙.p/

ˇ̌2
jW˙ j

2 2jwjK2

A cos �

f .q0/

�.q; q0/
d Vol.q0/:

(9.21)

For the directional derivatives of det d expp.v/ D �J 0=jvj, see (8.3), we have that the derivative along the radial ray is
jJ 0.1/j=jvj by absolute value, while the derivative in the direction of S.p/ vanishes. That implies

A cos � D jJ 0.1/j=jwj D K=jwj:

Therefore,

(9.22) R�F�FRf .q/ '
1p

det.g.q//

Z
2K

ˇ̌
r0jN�˙.p/

ˇ̌2
jW˙ j

2
jwj

2 f .q0/

�.q; q0/
d Vol.q0/:

Here .p; v/ is defined as follows. It is the point in SM that lies on the continuation of the geodesic through q, q0 to its
conjugate point near p0, The weight � restricts q0 to a small neighborhood of 
0. Next, A2 restricts q0 near q0.

We compare (9.22) with (5.4) and (5.5). Notice that the Jacobian term in (5.4) at the diagonal equals
p

det g and
therefore cancels the factor in front of the integral in the calculation of the principal symbol. We therefore proved the
following.

Lemma 9.2. Let n D 2. Then R�F�FR is a 	DO of order �1 with principal symbol modulo S�3=2 at .q; �/ near
.q0; �0/ given by

4�Kj�j
�1
ˇ̌
r0jN�˙.p/

ˇ̌2
j�.p; v=jvj/j2j�.q; �w=jwj/j2

Here w=jwj is a continuous choice of a unit vector normal to � at q, so that .q; w=jwj/ D .q0; w0=jw0j/ when
.q; �/ D .q0; �0/, and v=jvj is a parallel transport of �w=jwj from q to its conjugate point p along the geodesic 
q;w .

Later we use the notation w D �?=j�?j, and v D �?=j�?j.

Proposition 9.1. Let n D 2. Then

Id � A�1
2 F�A�1

1 F

is a 	DO of order �1=2.

Proof. We apply Lemma 9.2 with ��1=2ei�=4j�j1=2r0 being the principal symbol of A
�1=2
2

, see (9.10), where A
�1=2
2

is a parametrix of A
1=2
2

near .q0; ˙�0/. To this end, choose

��1=2ei�=4.2�/�1=2r0.q; �/ D .2�/�1=2
j�.q; �?=j�?

j/j�1;

see (8.1). Note that �.q; w=jwj/ D �.p; �v=jvj/ D 0 because of the assumption on supp �. Then
ˇ̌
r0jN�˙.p/

ˇ̌
D

2�1=2j�.q; �w=jwj/j�1, where w is as in (3.1). The choice of r0 yields RR� D A
�1=2
2

mod 	 �1. So Lemma 9.2
implies that R�F�FR, and therefore RR�F�F and A�1

2
F�F , have principal symbol

�p.A�1
2 F�F /.q; �/ D 2�Kj�.p; �?=j�?

j/j2=j�j
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We only need to insert A�1
1

between F� and F . By [14, Thm 25.3.5], modulo 	DOs of order 1 lower, the principal

symbol of A�1
2

F�A�1
1

F is given by that of A�1
2

F�F multiplied by the principal symbol
�
2�j�.p; v/j2=j�j

��1
of A�1

1

pushed forward by the canonical map of F . In other words,

�p.A�1
2 F�A�1

1 F /.q; �/ D
2�j�.p; �?=j�?j/j2

j�j
K
h
2�j�..p; �?=j�?

j/j2=j�.q; �/j/
i�1

D 1:

�

The following lemma is needed below for the proof of Theorem 9.2.

Lemma 9.3. Let �1 and � both satisfy the assumptions for � in the Introduction, and let �.p0; �0/ 6D 0. Let � 2 	 0

have essential support near .p0; ˙�0/ [ .q0; ˙�0/ and Schwartz kernel in .U1 � U1/ [ .U2 � U2/. Then there exists
a zero order classical 	DO Q with the same support properties so that

QX �
� X�� D X �

�1
X��; mod I�3=2.M � M; � [N �˙; C/;

where � is the diagonal. In particular, QX �
� X�� � X �

�1
X�� W H s ! H sC3=2 is bounded for any s.

Proof. We define Q D Q1 C Q2 where Q1;2 have Schwartz kernels in U1 � U1 and U2 � U2, respectively. Following
the notation convention in (9.8), Q D diag.Q1; Q2/.

Then we choose Q1 to have principal symbol

(9.23) N�1.p; �?=j�?
j/= N�.p; �?=j�?

j/

in a conic neighborhood of .p0; ˙�0/ with the same choice of �? as in (8.1). Next, we choose Q2 with a principal
symbol

(9.24) N�1.q; �?=j�?
j/= N�.q; �?=j�?

j/

in a conic neighborhood of .q0; ˙�0/. Then

QX �
� X� D

�
Q1A1 Q1F

Q2F� Q2A2

�
:

Then, see (8.1),
�p.Q1A1/ D 2�. N�1�/.p; �?=j�?

j/; �p.Q2A2/ D 2�. N�1�/.q; �?=j�?
j/:

For Q1F , Q2F�, we use the arguments used in the proof of Lemma 9.1. A representation of the Schwartz kernel of
F 0 as a conormal distribution is given by (9.13). The composition Q2F� then is of the same conormal type with a
principal symbol equal to the complex conjugate of that of F 0 multiplied by the symbol (9.24) restricted toN �˙ . This
replaces �] D N� in (6.6) by N�1. Since in (6.6), �] D N� we get that Q2F� is of the same conormal type with leading
singularity as in Theorem 6.1, with

W˙ D jvj
�1

N�.p; v=jvj/�1.q; �w=jwj/:

This is however the leading singularity of �2X �
�1

X��1.
The proof for Q1F is the same with the roles of p and q replaced. �

9.4. Cancellation of singularities on Riemannian surfaces. Assume in all dimensions that there are no conjugate
points on the geodesics in M , and that @M is strictly convex. Let M1 � M be an extension of M so that the interior
of M1 contains M be as in Remark 5.2. Then if � 6D 0,

(9.25) kf kL2.M / � C kX �Xf kH 1.M1/ C Ckkf kH �k .M /; 8f 2 L2.M /;

for all k � 0, see [23, 9], and [25] for a class of manifolds with conjugate points. When we know that X is injective,
for example when the weight is constant; then we can remove the H �k term. The same arguments there show that for
any s � 0,

(9.26) kf kH s.M / � C kX �Xf kH sC1.M1/ C Ckkf kH �k .M /; 8f 2 H s
0 .M /:

Consider Xf parameterized by points in @CSM1, that defines Sobolev spaces for Xf as in section 5.1. Then

(9.27) kf kH s.M / � C kXf kH sC1=2.@CSM1/ C Ckkf kH �k .M /; 8f 2 H s
0 .M /; s � 0:
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Indeed, in Proposition 5.2, one can complete M1 and H to closed manifolds, and then we would get that X � W H s !

H sC1=2 is bounded. Then (9.27) follows by (9.26). Estimate (9.27) is sharp in view of Proposition 5.2. In the
following theorem, we show that (9.25), (9.27) fail in the 2D case, with a loss at least of one derivative in the first one,
and 1=2 derivative in the second one.

Theorem 9.2. Let n D 2, and let 
0 be a geodesic of g with conjugate points satisfying the assumptions in section 2.
Then for each f2 2 H s.M /, s � 0, with WF.f2/ in a small neighborhood of .q0; ˙�0/, there exists f1 2 H s.M /

with WF.f1/ in a some neighborhood of .p0; ˙�0/ so that

Xf 2 H sC3=4 and X �Xf 2 H sC3=2; where f WD f1 C f2:

In particular, if .M; g/ is a non-trapping Riemannian surface with boundary with fold type of conjugate points on
some geodesics, neither of the inequalities (9.25), (9.27) can hold.

Remark 9.1. It is an open problem whether we can replace H sC3=4 and H sC3=2 above with C 1. See Section 10.1
for an example where this can be done.

Remark 9.2. If there are no conjugate points, one has Xf 2 H sC1=2, X �Xf 2 H sC1. Therefore, the conjugate
points are responsible for an 1=4 derivative smoothing for Xf , and an 1=2 derivative smoothing for X �Xf

Proof. Let f2 be as in the theorem. Set
f1 D �A�1

1 Ff2;

where, as before, A�1
1

, A�1
2

are parametrices of A1;2 in conic neighborhoods of .p0; ˙�0/ and .q0; ˙�0/, respectively.
Then f1 belongs to H s and has a wave front set in small neighborhood of .p0˙; �0/, by Theorem 2.1. By construction
and by (9.4),

(9.28) �1X �Xf 2 C 1:

Next, by (9.28),
A2f2 C F�f1 D A2f2 � F�A�1

1 Ff2 D .A2 � F�A�1
1 F /f2:

The operator in the parentheses is a 	DO of order �3=2 by Proposition 9.1. Therefore, see (9.5),

�2X �Xf D A2f2 C F�f1 2 H sC3=2:

We therefore get X �Xf 2 H sC3=2.U1 [ U2/.
To prove Xf 2 H sC3=4, note first that above we actually proved that

(9.29) X �X.Id � A�1
1 F /� W H s.U2/ �! H sC3=2.U1 [ U2/

is bounded, being a 	DO of order �3=2, where � denotes a zero order 	DO with essential support in a small
neighborhood of .p0; ˙�0/ and Schwartz kernel supported in U2 � U2.

Our goal is to show that
X.Id � A�1

1 F /� W H s.U2/ �! H
sC3=4
0

.H/

is bounded. It is enough to prove that

(9.30) ��.Id � A�1
1 F /�X �P2sC3=2X.Id � A�1

1 F /� W H s.U2/ �! H �s.U2/

for any 	DO P2sC3=2 of order 2s C 3=2 on H. All adjoints here are in the corresponding L2 spaces. By (9.29),

(9.31) Q2sC3=2X �X.Id � A�1
1 F /� W H s.U2/ �! H �s.U2/

is bounded for any 	DO Q2sC3=2 of order 2s C 3=2.
To deduce (9.30) from (9.31), it is enough to “commute” X � with P2sC3=2 in (9.30). Let 2sC3=2 be a non-negative

integer first. As in the proof of Proposition 5.2, we use the fact that X �P2sC3=2 D .P �
2sC3=2

X /�, and P �
2sC2

Xf is a
finite sum of X-ray transforms with various weights of derivatives of f of order not exceeding 2s C 2. Thus we can
write

(9.32) X �P2sC2 D

X
QQj X �

j ;

where Qj are differential operators on H of degree 2s C 3=2 or less, and Xj are like X in (2.1) but with different
weights still supported where � is supported. By Lemma 9.3, QQj X �

j X D Rj X �X , where Rj is a 	DO of the same
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order as QQj . The proof of (9.30) is then completed by the observation that ��.Id � A�1
1

F /� maps continuously H s

into itself, since the canonical relation of F is canonical graph. �

10. EXAMPLES

In this section, we present a few examples. We start in Section 10.1 with the fixed radius circular transform in the
plane, where we can have cancellation of singularities similarly to Theorem 9.2 but we show that this happens to any
order. Then we consider in Section 10.2 the geodesic X-ray transform on the sphere, where the conjugacy is not of fold
type, but a similar result holds. Next, in Section 10.3, we study an example of magnetic geodesics in the Euclidean
space R3 with a constant magnetic field. We show that then the canonical relation of F is a canonical graph, and
therefore, one can resolve the singularities. Finally, in Section 10.4, we present an example of a Riemannian manifold
of product type where the graph condition is violated.

10.1. The fixed radius circular transform in the plane. Let R be the integral transform in R2 of integrating func-
tions over circles of radius 1. We fix the negative orientation on those circles; then for each .x; �/ 2 SR2, there
is a unique unit circle passing through x in the direction of � . It is very easy to see, see below, that the first con-
jugate point appears at “time” � . The next one is at 2� , that equals the period of the curve. If one originally
chooses f supported near, say .0; 0/ and .2; 0/; and chooses 
0 to be the arc of the circle that is a small exten-
sion of fjx1 � 1j2 C x2

2
D 1; x2 � 0g, then we are in the situation studied above. On the other hand, if we do not

impose any assumptions on supp f , we will get contributions that are smoothing operators only. Therefore, we do not
need to restrict supp f .

Those circles are also magnetic geodesics w.r.t. the Euclidean metric and a constant non-zero magnetic field, see
e.g., [5]. Let us use the following parameterization first. We temporarily denote vectors � by

�!
� WD .sin �; cos �/ to

reserve � for their (non-standard) polar angles. The circle through x in the direction of
�!
� is given by

(10.1) 
x;� .t/ D x C .cos � � cos.� C t/; � sin � C sin.� C t//:

Then 
x;� .0/ D x, P
x;� .0/ D
�!
� . Let J1 be the Jacobi matrix @
x;� .t/=@.t; �/. We have

(10.2) J1 D

�
sin.� C t/ � sin � C sin.� C t/

cos.� C t/ � cos � C cos.� C t/

�
:

Then det J1 D � sin.� C t/ cos � C sin � cos.� C t/ D � sin t . It vanishes when t D � (see the remarks above why the
other zeros do not matter). Therefore, in the .t; �/ coordinates, the tangent conjugate locus S.x/ is given by ft D �g,
for any x. The conjugate locus of x then is the circle ˙.x/ D f
x;� .�/g D fx C 2.cos �; � sin �/I � 2 Rg, i.e.,

˙.x/ D fyI jy � xj D 2g

that is the envelope of all circles of radius 1 passing through x, see Figure 5. Next,

(10.3) J1jtD� D

�
� sin � �2 sin �

� cos � �2 cos �

�
:

The null-space consist of multiples of 2@=@t � @=@� . That null-space is transversal to ft D �g, therefore, we have a
fold conjugate locus.

To write this in the Cartesian coordinates x D .x1; x2/, set

v D t.sin �; cos �/;

i.e., v D t
�!
� . Set also expx.v/ D 
x;� .t/, i.e., the endpoint of the magnetic geodesic originating at x in the direction

v=jvj, of length jvj. Then
S.x/ D fvI jvj D �g:

We compute next Nx.v/ for v D .0; �/. By the rotational symmetry, this would determine Nx.v/ for any v 2 Sx.v/

in a trivial way. For the Jacobi matrix J2 WD @v=@.t; �/ we get

(10.4) J2 D

�
sin � t cos �

cos � �t sin �

�
:
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To find the Jacobi matrix J WD @ expx.v/=@v D @
x;� .t/=@v at v D .0; �/, we write J D J1J �1
2

at � D 0, t D � , to
get

(10.5) J jvD.0;�/ D

�
0 0

�2=� �1

�
:

The null space is spanned by .�1; 2=�/. For general � it follows immediately that

Nx.v/ D Re�i� .�1; 2=�/;

where we used complex identification to denote rotation by the angle �� . We could have obtained this as J D J1J �1
2

for t D � , and general � ’s, of course. In particular, for � D 0, i.e., for v D .0; �/, we get Nx.v/ D R.�1=2; �/. We
see again that S is a fold conjugate locus. The other assumptions of the dynamical system are easy to check.

It is much more natural to parametrize those circles by their centers, we use the notation C.x/. Then the circular
integral transform is defined by

(10.6) Xf .y/ D

Z
C.y/

f d` D

Z
j!jD1

f .y C !/ d`! D

Z 2�

0

f .z C ei˛/ d˛:

The connection to the natural parametrization by x and � that we used above is as follows. As in [5], for all circles
in neighborhood of a given one, for example the one with x D 0 and � D 0, we choose a curve S through x D 0,
transversal to that circle. Let z be the point of intersection of those circles with S , close to 0. Then we use z and � as
parameters, and the natural measure is d� D j� � �.z/jd`z d� , where d`z is the Euclidean length measure on S , �.z/

is the unit normal at z. This measure has the property to be independent of the choice of S . Choose S D fx2 D 0g.
Then the natural measure on those circles is d� D cos � dz1 d� , near z1 D 0, � D 0. The center of each such circle is
given by y WD .z1 C cos �; � sin �/, see (10.1). Using y as a new parameter, and computing the Jacobian of the map
.z1; �/ 7! y, we see that d� D dy in the new variables. Therefore, with the parameterization by its center as in (10.6),
X is unitarily equivalent to its previous definition, and if we define X � w.r.t. the inner product L2.R2; dy/, X �X will
not change.

10.1.1. X as a convolution. It is well known and easy to see that X is a convolution with the delta function ıS1 of
the unit circle

Xf D ıS1 � f:

Fourier transforming, we get

(10.7) X D 2�F�1J0.j�j/F ;

where J0 is the Bessel function of order 0. This shows that

(10.8) X �X D .2�/2F�1J 2
0 .j�j/F :

Note that J 2
0

.j�j/ is not a symbol because it oscillates. In principle, one can use this representation to analyze X �X

but this is not so convenient when we want to analyze X locally.

10.1.2. Integral representation. We write

.Xf; Xh/ D

Z Z
j!jD1

f .x C !/ d`!

Z
j� jD1

Nh.x C �/ d`� dx

D

Z Z
j!jD1

Z
j� jD1

f .y C ! � �/ Nh.y/ d`! d`� dy:

(10.9)

Therefore,

(10.10) X �Xf .x/ D

Z
j!jD1

Z
j� jD1

f .x C ! C �/ d`! d`� ;

compare with (5.1).
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We will make the change of variables z D ! C � . For 0 < jzj < 2, there are exactly two ways z can be represented
this way. Write ! D ei˛ , � D eiˇ . Since d`! D d˛, d`� D dˇ, and dz1 ^ dz2 D .�2i/�1dz ^ dNz, we get

dz1 ^ dz2 D
1

�2i

�
iei˛d˛ C ieiˇdˇ

�
^

�
�ie�i˛d˛ � ie�iˇdˇ

�
D sin.ˇ � ˛/ d˛ ^ dˇ

D sin.ˇ � ˛/ d`! ^ d`� :

It is easy to see that jˇ � ˛j equals twice the angle between z D ! C � and � . Let r D jzj. Then r=2 D cos j˛�ˇj

2
.

Elementary calculations then lead to

sin j˛ � ˇj D
r

2

p
4 � r2:

Therefore, (10.10) yields the following.

Proposition 10.1. Let X be the circular transform defined above. Then

(10.11) X �Xf .x/ D

Z
r<2

4

r
p

4 � r2
f .y/ dy; r WD jx � yj:

10.1.3. X �X as an FIO. The kernel has singularities near the diagonal x D y, and also near

˙ D fjx � yj D 2g:

That singularity is of the type .2 � jx � yj/�1=2, and for a fixed x the expression 2 � jx � yj measures the distance
from the circle ˙.x/ to the point y inside that circle. We therefore get the same singularity as in Theorem 6.1. Note
also that

(10.12) N �˙ D f.x; x ˙ 2�=j�j; �; ��/I � 2 R2
n 0g:

Based on Proposition 10.1, and Theorem 2.1, we conclude that X �X is an FIO of order �1 with a canonical relation
C of the following type. We have that .x; �; y; �/ 2 C if and only if .y; �/ D .x; �/ (that gives us the 	DO part), or
.y; �/ D .x ˙ 2�=j�j; �/.

This can also be formulated also in the following form.

Theorem 10.1. Let X be the circular transform defined above. Then, modulo 	 �1,

(10.13) X �X D A0 C FC C F�;

where A0, FC and F� are Fourier multipliers with the properties
(a) A0 D 4�jDj�1 mod 	 �2;
(b) F˙ are elliptic FIOs of order �1 with canonical relations of a graph type given by

(10.14) F˙ W .x; �/ 7! .x ˙ 2�=j�j; �/:

(c) F� D F�
C.

Proof. We start with the Fourier multiplier representation (10.7). The leading term of .2�/2J 2
0

.j�j/ is

(10.15)
8�

j�j
cos2.j�j � �=4/ D

8�

j�j
.1 C sin.2j�j/ D 2�

 
2

j�j
C

e2ij�j

ij�j
�

e�2ij�j

ij�j

!
:

Those three terms are the principal parts of the operators in (10.13). The first one gives 4�jDj�1, while the second
and the third one are FIOs with phase functions �˙ D .x � y/ � � ˙ 2j�j. A direct calculation show that the canonical
relations of F˙ are given by (10.14), indeed. For the complete proof of the theorem, we need the full asymptotic
expansion of J0.

We recall the well known expansion of J0.z/ for z ! 1:

J0.z/ �
p

2=.�z/ .P .z/ cos.z � �=4/ � Q.z/ sin.z � �=4// ;

where

P .z/ �

1X
kD0

pkz�2k ; Q.z/ �

1X
kD0

qkz�2k�1;
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with some (explicit) coefficients pk , qk . In particular, p1 D 1, q1 D �1=8. Then

.2�/2J 2
0 .z/ �

2�

z

�
.P C iQ/ei.z��=4/

C .P � iQ/e�i.z��=4/
�2

�
2�

z

�
�i.P C iQ/2e2iz

C i.P � iQ/2e�2iz
C 2P 2

C 2Q2
�

:

We set

(10.16) A0 D 4�jDj
�1
�
P 2.jDj/ C Q2.jDj/

�
; F˙ D �2� ijDj

�1
�
P .jDj/ ˙ iQ.jDj/

�2
e˙2ijDj:

This completes the proof. �

We will now connect this to Theorem 2.1. Let p0 D .0; 0/, q0 D .2; 0/, v0 D .0; �/, w0 D .0; �/. Then
v0 2 S.p0/. Choose �0 D .1; 0/, conormal to the conjugate locus ˙.q0/ D fjx � q0j D 2g at p0; and choose
�0 D .1; 0/, conormal to the conjugate locus ˙.p0/ D fjx � p0j D 2g at q0. The directions of �0, �0 reflects the
choice of the orientation we made earlier. We refer to Figure 5.

FIGURE 5

If we localize X near v D v0, then the pseudo-differential part of X ��X is .1=2/A0, see (5.10). Therefore, in the
notation of Theorem 2.1,

A D
1

2
A0; F D FC C F�:

The canonical relation of FC maps .p0; �0/ into .q0; �0/, see Figure 5, while that of F� maps .p0; ��0/ into .q0; ��0/.
This is consistent with the results in Theorem 2.1, where the Lagrangian has two disconnected components located
near .p0; q0; ˙�0; ��0/.

To analyze the operator (9.9), note first that A1 D A2 D A0=2. Let us first analyze this operator applied to
distributions with wave front set near .q0; �0/ but not near .q0; ��0/. Then F reduces to FC only, and we have,
modulo 	 �1,

A�1
2 F�A�1

1 F D
1

4
A�2F�

CFC D Id;

see (10.16). The analysis near .q0; ��0/ is similar. Therefore, we have a stronger version of Theorem 9.2 in this case:
singularities can cancel to any order.

Theorem 10.2. Let f1 be any distribution with WF.f1/ supported in a small conic neighborhood of some .x0; �0/ 2

T �R2 n 0. Then there exists a distribution f2 with WF.f2/ supported in a small conic neighborhood of .x0 ˙

2�0=j�0j; �0/, that is an image of WF.f1/ under the map F˙, so that X.f1 C f2/ 2 C 1 for all unit circles in a
neighborhood of the unit circle C.x0 ˙ �0/.
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In other words, for a fixed circle C0 of radius 1, there is a rich set of distributions f , with any order of singularity
at N �C0, so that those singularities are invisible by X localized near C0, i.e., Xf 2 C 1. Explicit examples can be
constructed by choosing f2.x/ D ı.x � q0/, then Ff2 near p0 is just given by the Schwartz kernel of X �X , see
(10.11). To obtain f1, we apply 2A�1

0
to the result.

We would like to emphasize on the fact that the theorem provides an example of cancellation of singularities for
the localized transform only. As we will see below, Xf 2 C 1 (globally) for f 2 E 0 implies f 2 C 1. On the other
hand, without the compact support assumption, one can construct singular distributions in the kernel of X , using the
Fourier transform.

10.1.4. The wave front set of a distribution in Ker X . Now, if Xf D 0 or more generally, if Xf 2 C 1, one easily
gets that

(10.17) 8f 2 Ker X , WF.f / is invariant under the action of the group fFm
C ; m 2 Zg.

Then, if f is compactly supported (or more generally, smooth outside some compact set), we get that WF.f / must
be empty, i.e., f 2 C 1.R2/. In other words, even though recovery of WF.f / is impossible by knowing Xf locally,
as we saw above; the condition Xf 2 C 1 globally, together with the compact support assumption yielded a global
recovery of singularities. Here an important role is played by the fact that X is translation invariant, and in particular,
our assumptions are valid for any .p0; �0/ 2 TSR2 that cannot be guaranteed in the general case. Also, the dynamics
is not time reversible; therefore for each .x0; �0/ 2 T �M n 0 there are two different curves through x0 in our family.
The latter is true for general magnetic systems with a non-zero magnetic field, see [5].

Remark 10.1. One can see that X is invertible on L2.M / by using Fourier transform, see (10.7). The formal inverse
is 1=J0.j�j/, and conjugating a compactly supported � with the Fourier transform, one gets a convolution in the �

variable that will smoothen out the zeros of J0.j�j/, thus producing a Fourier multiplier with asymptotic � j�j1=2. In
Lp.R2/ with p > 4 however it is not invertible, and elements of the kernel include functions with Fourier transforms
supported on the circles J0.j�j/ D 0, see also [28, 1].

Finally, we remark that in this case, one can study X directly, instead of X �X D X 2, with the same methods. Our
goal however is to connect the analysis of this transform with our general results.

10.2. The X-ray transform on the sphere. Consider the geodesic ray transform on the sphere Sn. The conjugate
points are not of fold type, instead they are of blow-down type. Let J be the antipodal map.

Without going into details, we will just mention that then (2.3) still holds with

CN D jDj
�1

� jDj
�1J;

with some constant C , where the canonical relation of F is the graph of the antipodal map, lifted to T �S2. Then
CN jDj D Id � J . The canonical graph is an involution, however (its square is identity), so arguments similar to that
in the previous example do not apply. That means that singularities may cancel. In fact, it is known that X has an
infinite dimensional kernel — all odd functions with respect to J .

In this case ˙ consists of all antipodal pairs .x; y/, and has dimension 2 (and codimension 2), unlike the case above
(dimension 3 and codimension 1). On the other hand, N �˙ still has the same dimension (that is 2n=4, and this is
always the case as long as ˙ is smooth submanifold). One can see that the Lagrangian in this case is still N �˙ .

10.3. Magnetic geodesics in R3. Consider the magnetic geodesic system in the Euclidean space R3 with a constant
magnetic potential .0; 0; ˛/, ˛ > 0. The geodesic equation is then given by

(10.18) R
 D P
 � .0; 0; ˛/;

where � denotes the vector product in R3. The r.h.s. above is the Lorentz force that is always normal to the trajectory
and in particular does not affect the speed. We restrict the trajectories on the energy level 1 that is preserved under the
flow. Then we get

R
 1
D ˛ P
 2; R
 2

D �˛ P
 1; R
 3
D 0:

The magnetic geodesics are then given by


 .t/ D 
 .0/ C

� r

˛
.sin.˛t C �/ � sin �/;

r

˛
.� cos.˛t C �/ C cos �/; tz

�
;
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where .r; �; z/ are the cylindrical coordinates of P
 .0/. The unit speed requirement means that

r2
C z2

D 1:

The geodesics are then spirals; when z D 0 then they reduce to closed circles, and when r D 0 they are vertical lines.
The parameterization by cylindrical coordinates is singular when r D 0. Away from that we can use � , z to

parametrize unit speeds. Then in expp.v/, we use the coordinates .t; �; z/ to parametrize v, i.e.,

v D t
�p

1 � z2.cos �; sin �/; z
�
:

At t D 0 we may have additional singularity but this is irrelevant for our analysis since we know that the exponential
map has an injective differential near v D 0. An easy computation yields that the conjugate locus is given by the
condition ˛t D � , i.e.,

Sp.v/ D fvI jvj D �=˛g ;

and this is true for any p 2 R3. This is a sphere in T R3. For ˙.p/ we then get

(10.19) 
 .�=˛/ D p C ˛�1.�2r sin �; 2r cos �; �z/

with p D 
 .0/. This shows that ˙.p/ is an ellipsoid

˙ D

�
.p; q/I

1

4
.q1 � p1/2

C
1

4
.q2 � p2/2

C
1

�2
.q3 � p3/2

D ˛�2

�
:

Then

(10.20) N �˙ D

�
.p; q; �; �/I .p; q/ 2 ˙ I � D c

�
p1 � q1; p2 � q2;

4

�2
.p3 � q3/

�
; � D ��; 0 6D c 2 R

�
:

Therefore, given p, � , we can immediately get q as a smooth function of .p; �/, and we can obtain v so that expp.v/ D

q by (10.19), where the l.h.s. is q. Therefore, .p; �/ 7! v is a smooth map, and therefore .p; �/ 7! .q; �/ is a smooth
map, too. The later also directly follows from (10.20), since � D �� .

We therefore get that F is an FIO of order �3=2 with a canonical relation

(10.21) .p; �/ 7! .q; �/;

where q can be determined as described above. A geometric description of q is the following: q is one of the two
points on the ellipsoid ˙ , where the normal is given by �. The choice of one out of the two points is determined by
the choice of the initial velocity v0 near which we localize; changing v0 to �v0 would alter that choice. Since (10.21)
is a diffeomorphism, F is of canonical graph type, and therefore maps H s to H sC3=2. In contrast, A1;2 are elliptic
of order �1, thus they dominate over F . By Corollary 9.1, X can be inverted microlocally in the setup described in
Section 2.

10.4. Fold caustics on product manifolds. Let .M; g/ D .M 0; g0/ � .M 00; g00/ be a product of two Riemannian
manifolds. The geodesics on M then have the form


p;v.t/ D .
 0
p0;v0.t/; 
 00

p00;v00.t//:

Consequently,
expp.v/ D .exp0

p0.v
0/; exp00

p00.v
00//:

Assume that in .M 0; g0/, v0
0

is conjugate at p0 of fold type, and assume that v00
0

is not conjugate at p00
0

in .M 00; g00/.
Then

d expp.v/ D diag.d exp0
p0.v

0/; d expp00.v00//:

The kernel of d expp.v/ then consists of Np.v/ D Np0.v0/ � 0. Next, S.p/ D S.p0/ � Tp00M 00, and ˙.p/ D

˙ 0.p0/�M 00. Then Np.v0/ is transversal to S.p/ at v D v0, therefore .v0; v00/ is a fold conjugate vector for v0 2 S 0.p/

close to v0 and for any v00. Then the left projection �L of the LagrangianN �˙ consists of .p; �/ with .p0; � 0/ 2 �L.˙ 0/

and � 00 D 0. Thus the rank drops at least by n00 D dim.M 00/. We get the same conclusion for �R.N �˙/. Therefore,
N �˙ is not a canonical graph in this case.

Let n0 D dim.M 0/ D 2. Then the canonical relation in .M 0; g0/ is a canonical graph, and we get that �L;R.N �˙/

have rank 2n0 C n00 D 4 C n00 instead of the maximal possible 2n D 4 C 2n00; i.e., the loss is exactly n00.
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Assume now that n0 D 2, n00 D 1, and the metric in M is given by
2X

˛;ˇD1

g˛ˇ.x1; x2/dx˛dxˇ
C .dx3/2:

Assume also that in M 0, we have a fold conjugate vector v0 D .0; 1/ at x1 D x2 D 0. Then all possible conormals to
the conjugate loci at .0; 0/ corresponding to small perturbations of v0 will lie in the plane v3 D 0. This is an example
where Corollary 9.2 can be applied. We can recover singularities of the kind � D .�1; �2; �3/ at p0 D .0; 0; 0/ with
�3 6D 0 and .�1; �2/ in a conic neighborhood of .1; 0/. The ones with �3 D 0 are the problematic ones.
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