
MICROLOCAL ANALYSIS METHODS

PLAMEN STEFANOV

One of the fundamental ideas of classical analysis is a thorough study of
functions near a point, i.e., locally. Microlocal analysis, loosely speaking, is
analysis near points and directions, i.e., in the “phase space”. We review
here briefly the theory of pseudo-differential operators, and geometrical op-
tics.

1. Wave front sets

The phase space in Rn is the cotangent bundle T ∗Rn that can be identi-
fied with Rn ×Rn. Given a distribution f ∈ D′(Rn), a fundamental object
to study is the wave front set WF(f) ⊂ T ∗Rn \ 0 viewed as the singularities
of f , that we define below.

1.1. Definition. The basic idea goes back to the properties of the Fourier
transform. If f is an integrable compactly supported function, one can tell
whether f is smooth by looking at the behavior of f̂(ξ) =

∫
e−ix·ξf(x) dx

(that is smooth, even analytic) when |ξ| → ∞. It is known that f is smooth

if and only if for any N , |f̂(ξ)| ≤ CN |ξ|−N for some CN . If we localize
this requirement to a conic neighborhood V of some ξ0 6= 0 (V is conic if
ξ ∈ V ⇒ tξ ∈ V,∀t > 0), then we can think of this as a smoothness in
the cone V . To localize in the base x variable however, we first have to cut
smoothly near a fixed x0.

We say that (x0, ξ0) ∈ Rn × (Rn \ 0) is not in the wave front set WF(f)
of f ∈ D′(Rn) if there exists φ ∈ C∞0 (Rn) with φ(x0) 6= 0 so that for any
N , there exists CN so that

|φ̂f(ξ)| ≤ CN |ξ|−N

for ξ in some conic neighborhood of ξ0. This definition is independent of
the choice of φ. If f ∈ D′(Ω) with some open Ω ⊂ Rn, to define WF(f) ⊂
Ω × (Rn \ 0), we need to choose φ ∈ C∞0 (Ω). Clearly, the wave front set is
a closed conic subset of Rn × (Rn \ 0). Next, multiplication by a smooth
function cannot enlarge the wave front set. The transformation law under
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coordinate changes is that of covectors making it natural to think of WF(f)
as a subset of T ∗Rn \ 0, or T ∗Ω \ 0, respectively.

The wave front set WF(f) generalizes the notion singsupp(f) — the com-
plement of the largest open set where f is smooth. The points (x, ξ) in
WF(f) are referred to as singularities of f . Its projection onto the base is
singsupp(f), i.e.,

singsupp(f) = {x; ∃ξ, (x, ξ) ∈WF(f)}.

Examples.
(a) WF(δ) = {(0, ξ); ξ 6= 0}. In other words, the Dirac delta function is

singular at x = 0, and in all directions there.
(b) Let x = (x′, x′′), where x′ = (x1, . . . , xk), x

′′ = (xk+1, . . . , xn) with
some k. Then WF(δ(x′)) = {(0, x′′, ξ′, 0), ξ′ 6= 0}, where δ(x′) is the Dirac
delta function on the plane x′ = 0, defined by 〈δ(x′), φ〉 =

∫
φ(0, x′′) dx′′. In

other words, WF(δ(x′)) consists of all (co)vectors 6= 0 with a base point on
that plane, perpendicular to it.

(c) Let f be a piecewise smooth function that has a non-zero jump across
some smooth surface S. Then WF(f) consists of all non-zero (co)vectors
at points of S, normal to it. This follows from a change of variables that
flattens S locally and reduces the problem to that for the Heaviside function
multiplied by a smooth function.

(d) Let f = pv 1
x − πiδ(x) in R, where pv 1

x is the regularized 1/x in the
principal value sense. Then WF(f) = {(0, ξ); ξ > 0}.

In example (d) we see a distribution with a wave front set that is not even
in the ξ variable, i.e., not symmetric under the change ξ 7→ −ξ. In fact, wave
front sets do not have a special structure except for the requirement to be
closed conic sets; given any such set, there is a distribution with a wave
front set exactly that set. On the other hand, if f is real valued, then f̂ is
an even function; therefore WF(f) is even in ξ, as well.

Two distributions cannot be multiplied in general. However, if WF(f)
and WF′(g) do not intersect, there is a “natural way” to define a product.
Here, WF′(g) = {(x,−ξ); (x, ξ) ∈WF(g)}.

2. Pseudodifferential Operators

2.1. Definition. We first define the symbol class Sm(Ω), m ∈ R, as the set
of all smooth functions p(x, ξ), (x, ξ) ∈ Ω ×Rn, called symbols, satisfying
the following symbol estimates: for any compact set K ⊂ Ω, and any multi-
indices α, β, there is a constant CK,α,β > 0 so that

(1) |∂αξ ∂βxp(x, ξ)| ≤ CK,α,β(1 + |ξ|)m−|α|, ∀(x, ξ) ∈ K ×Rn.

More generally, one can define the class Smρ,δ(Ω) with 0 ≤ ρ, δ ≤ 1 by

replacing m− |α| there by m− ρ|α|+ δ|β|. Then Sm(Ω) = Sm1,0(Ω). Often,
we omit Ω and simply write Sm. There are other classes in the literature,
for example Ω = Rn, and (1) is required to hold for all x ∈ Rn.
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The estimates (1) do not provide any control of p when x approaches
boundary points of Ω, or ∞.

Given p ∈ Sm(Ω), we define the pseudodifferential operator (ΨDO) with
symbol p, denoted by p(x,D), by

(2) p(x,D)f = (2π)−n
∫
eix·ξp(x, ξ)f̂(ξ) dξ, f ∈ C∞0 (Ω).

The definition is inspired by the following. If P =
∑
|α|≤m aα(x)Dα is a

differential operator, where D = −i∂, then using the Fourier inversion for-
mula we can write P as in (2) with a symbol p =

∑
|α|≤m aα(x)ξα that is a

polynomial in ξ with x-dependent coefficients. The symbol class Sm allows
for more general functions. The class of the pseudo-differential operators
with symbols in Sm is denoted usually by Ψm. The operator P is called a
ΨDO if it belongs to Ψm for some m. By definition, S−∞ = ∩mSm, and
Ψ−∞ = ∩mΨm.

An important subclass is the set of the classical symbols that have an
asymptotic expansion of the form

(3) p(x, ξ) ∼
∞∑
j=0

pm−j(x, ξ),

where m ∈ R, and pm−j are smooth and positively homogeneous in ξ of
order m − j for |ξ| > 1, i.e., pm−j(x, λξ) = λm−jpm−j(x, ξ) for |ξ| > 1,
λ > 1; and the sign ∼ means that

(4) p(x, ξ)−
N∑
j=0

pm−j(x, ξ) ∈ Sm−N−1, ∀N ≥ 0.

Any ΨDO p(x,D) is continuous from C∞0 (Ω) to C∞(Ω), and can be ex-
tended by duality as a continuous map from E ′(Ω) to D′(Ω).

2.2. Principal symbol. The principal symbol of a ΨDO in Ψm(Ω) given
by (2) is the equivalence class Sm(Ω)/Sm−1(Ω), and any representative of it
is called a principal symbol as well. In case of classical ΨDOs, the convention
is to choose the principal symbol to be the first term pm, that in particular
is positively homogeneous in ξ.

2.3. Smoothing Operators. Those are operators than map continuously
E ′(Ω) into C∞(Ω). They coincide with operators with smooth Schwartz
kernels in Ω × Ω. They can always be written as ΨDOs with symbols in
S−∞, and vice versa — all operators in Ψ−∞ are smoothing. Smoothing
operators are viewed in this calculus as negligible and ΨDOs are typically
defined modulo smoothing operators, i.e., A = B if and only if A − B is
smoothing. Smoothing operators are not “small”.
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2.4. The pseudolocal property. For any ΨDO P and any f ∈ E ′(Ω),

(5) singsupp(Pf) ⊂ singsupp f.

In other words, a ΨDO cannot increase the singular support. This property
is preserved if we replace singsupp by WF, see (13).

2.5. Symbols defined by an asymptotic expansion. In many applica-
tions, a symbol is defined by consecutively constructing symbols pj ∈ Smj ,
j = 0, 1, . . . , where mj ↘ −∞, and setting

(6) p(x, ξ) ∼
∑
j

pj(x, ξ).

The series on the right may not converge but we can make it convergent
by using our freedom to modify each pj for ξ in expanding compact sets
without changing the large ξ behavior of each term. This extends the Borel
idea of constructing a smooth function with prescribed derivatives at a fixed
point. The asymptotic (6) then is understood in a sense similar to (4). This
shows that there exists a symbol p ∈ Sm0 satisfying (6). That symbol is not
unique but the difference of two such symbols is always in S−∞.

2.6. Amplitudes. A seemingly larger class of ΨDOs is defined by

(7) Af = (2π)−n
∫
ei(x−y)·ξa(x, y, ξ)f(y) dy dξ, f ∈ C∞0 (Ω),

where the amplitude a satisfies

(8) |∂αξ ∂βx∂γy a(x, y, ξ)| ≤ CK,α,β,γ(1 + |ξ|)m−|α|, ∀(x, y, ξ) ∈ K ×Rn

for any compact set K ⊂ Ω×Ω, and for any α, β, γ. In fact, any such A is
a ΨDO with symbol p(x, ξ) (independent of y) with the formal asymptotic
expansion

p(x, ξ) ∼
∑
α≥0

Dα
ξ ∂

α
y a(x, x, ξ).

In particular, the principal symbol of that operator can be taken to be
a(x, x, ξ).

2.7. Transpose and adjoint operators to a ΨDO. The mapping prop-
erties of any ΨDO A indicate that it has a well defined transpose A′, and a
complex adjoint A∗ with the same mapping properties. They satisfy

〈Au, v〉 = 〈u,A′v〉, 〈Au, v̄〉 = 〈u,A∗v〉, ∀u, v ∈ C∞0
where 〈·, ·〉 is the pairing in distribution sense; and in this particular case
just an integral of uv. In particular, A∗u = A′ū, and if A maps L2 to L2 in
a bounded way, then A∗ is the adjoint of A in L2 sense.

The transpose and the adjoint are ΨDOs in the same class with amplitudes
a(y, x,−ξ) and ā(y, x, ξ), respectively; and symbols∑

α≥0
(−1)|α|

1

α!
(∂αξ D

α
xp)(x,−ξ),

∑
α≥0

1

α!
∂αξ D

α
x p̄(x, ξ),



MICROLOCAL ANALYSIS METHODS 5

if a(x, y, ξ) and p(x, ξ) are the amplitude and/or the symbol of that ΨDO.
In particular, the principal symbols are p0(x,−ξ) and p̄0(x, ξ), respectively,
where p0 is (any representative of) the principal symbol.

2.8. Composition of ΨDOs and ΨDOs with properly supported ker-
nels. Given two ΨDOs A and B, their composition may not be defined
even if they are smoothing ones because each one maps C∞0 to C∞ but may
not preserve the compactness of the support. For example, if A(x, y), and
B(x, y) are their Schwartz kernels, the candidate for the kernel of AB given
by
∫
A(x, z)B(z, y) dz may be a divergent integral. On the the hand, for any

ΨDO A, one can find a smoothing correction R, so that A+R has properly
supported kernel, i.e., the kernel of A+R, has a compact intersection with
K × Ω and Ω × K for any compact K ⊂ Ω. The proof of this uses the
fact that the Schwartz kernel of a ΨDO is smooth away from the diagonal
{x = y} and one can always cut there in a smooth way to make the kernel
properly supported at the price of a smoothing error. ΨDOs with properly
supported kernels preserve C∞0 (Ω), and also E ′(Ω), and therefore can be
composed in either of those spaces. Moreover, they map C∞(Ω) to itself,
and can be extended from D′(Ω) to itself. The property of the kernel to be
properly supported is often assumed, and it is justified by considering each
ΨDO as an equivalence class.

If A ∈ Ψm(Ω) and B ∈ Ψk(Ω) are properly supported ΨDOs with symbols
a and b, respectively, then AB is again a ΨDO in Ψm+k(Ω) and its symbol
is given by ∑

α≥0
(−1)|α|

1

α!
∂αξ a(x, ξ)Dα

x b(x, ξ).

In particular, the principal symbol can be taken to be ab.

2.9. Change of variables and ΨDOs on manifolds. Let Ω′ be another
domain, and let φ : Ω → Ω̃ be a diffeomorphism. For any P ∈ Ψm(Ω),

P̃ f := (P (f ◦ φ)) ◦ φ−1 maps C∞0 (Ω̃) into C∞(Ω̃). It is a ΨDO in Ψm(Ω̃)
with principal symbol

(9) p(φ−1(y), (dφ)′η)

where p is the symbol of P , dφ is the Jacobi matrix {∂φi/∂xj} evaluated at
x = φ−1(y), and (dφ)′ stands for the transpose of that matrix. We can also
write (dφ)′ = ((dφ−1)−1)′. An asymptotic expansion for the whole symbol
can be written down as well.

Relation (9) shows that the transformation law under coordinate changes
is that of a covector. Therefore, the principal symbol is a correctly defined
function on the cotangent bundle T ∗Ω. The full symbol is not invariantly
defined there in general.

Let M be a smooth manifold, and A : C∞0 (M) → C∞(M) be a linear
operator. We say that A ∈ Ψm(M), if its kernel is smooth away from the
diagonal in M ×M , and if in any coordinate chart (A,χ), where χ : U →
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Ω ⊂ Rn, we have (A(u◦χ))◦χ−1 ∈ Ψm(Ω). As before, the principal symbol
of A, defined in any local chart, is an invariantly defined function on T ∗M .

2.10. Mapping properties in Sobolev Spaces. In Rn, Sobolev spaces
Hs(Rn), s ∈ R, are defined as the completion of S ′(Rn) in the norm

‖f‖2Hs(Rn) =

∫
(1 + |ξ|2)s|f̂(ξ)|2 dξ.

When s is a non-negative integer, an equivalent norm is the square root of∑
|α|≤s

∫
|∂αf(x)|2 dx. For such s, and a bounded domain Ω, one defines

Hs(Ω) as the completion of C∞(Ω̄) using the latter norm with the integral
taken in Ω. Sobolev spaces in Ω for other real values of s are defined by
different means, including duality or complex interpolation.

Sobolev spaces are also Hilbert spaces.
Any P ∈ Ψm(Ω) is a continuous map from Hs

comp(Ω) to Hs−m
loc (Ω). If

the symbols estimates (1) are satisfied in the whole Rn × Rn, then P :
Hs(Rn)→ Hs−m(Rn).

2.11. Elliptic ΨDOs and their parametrices. The operator P ∈ Ψm(Ω)
with symbol p is called elliptic of order m, if for any compact K ⊂ Ω, there
exists constants C > 0 and R > 0 so that

(10) C|ξ|m ≤ |p(x, ξ)| for x ∈ K, and |ξ| > R.

Then the symbol p is called also elliptic of order m. It is enough to require
the principal symbol only to be elliptic (of order m). For classical ΨDOs, see
(3), the requirement can be written as pm(x, ξ) 6= 0 for ξ 6= 0. A fundamental
property of elliptic operators is that they have parametrices. In other words,
given an elliptic ΨDO P of order m, there exists Q ∈ Ψ−m(Ω), so that

(11) QP − Id ∈ Ψ−∞, PQ− Id ∈ Ψ−∞.

The proof of this is to construct a left parametrix first by choosing a symbol
q0 = 1/p, cut off near the possible zeros of p, that form a compact set any
time when x is restricted to a compact set as well. The corresponding ΨDO
Q0 will then satisfy Q0P = Id +R, R ∈ Ψ−1. Then we take a ΨDO E with
asymptotic expansion E ∼ Id−R+R2−R3 + . . . , that would be the formal
Neumann series expansion of (Id +R)−1, if the latter existed. Then EQ0 is
a left parametrix that is also a right parametrix.

An important consequence is the following elliptic regularity statement.
If P is elliptic (and properly supported), then

(12) singsupp(PF ) = singsupp(f), ∀f ∈ D′(Ω),

compare to (5). In particular, Pf ∈ C∞ implies f ∈ C∞.
It is important to emphasize that elliptic ΨDOs are not necessarily invert-

ible or even injective. For example, the Laplace-Beltrami operator −∆Sn−1

on the sphere is elliptic, and then so is −∆Sn−1 − z for every number z.
The latter however so not injective for z an eigenvalue. On the other hand,
on a compact manifold M , an elliptic P ∈ Ψm(M) is “invertible” up to a
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compact error, because then QP − Id = K1, PQ − Id = K2, see (11) with
K1,2 compact operators. As a consequence, such an operator is Fredholm
and in particular has a finitely dimensional kernel and cokernel.

3. ΨDOs and wave front sets

The microlocal version of the pseudo-local property is given by the fol-
lowing:

(13) WF(Pf) ⊂WF(f)

for any (properly supported) ΨDO P and f ∈ D′(Ω). In other words, a
ΨDO cannot increase the wave front set. If P is elliptic for some m, it
follows from the existence of a parametrix that there is equality above, i.e.,
WF(Pf) = WF(f), which is a refinement of (12).

We say that the ΨDO P is of order −∞ in the open conic set U ⊂ T ∗Ω\0,
if for any closed conic set K ⊂ U with a compact projection on the the base
“x-space”, (1) is fulfilled for any m. The essential support ES(P ), sometimes
also called the microsupport of P , is defined as the smallest closed conic set
on the complement of which the symbol p is of order −∞. Then

WF(Pf) ⊂WF(f) ∩ ES(P ).

Let P have a homogeneous principal symbol pm. The characteristic set
CharP is defined by

CharP = {(x, ξ) ∈ T ∗Ω \ 0; pm(x, ξ) = 0}.

CharP can be defined also for general ΨDOs that may not have homoge-
neous principal symbols. For any ΨDO P , we have

(14) WF(f) ⊂WF(Pf) ∪ CharP, ∀f ∈ E ′(Ω).

P is called microlocally elliptic in the open conic set U , if (10) is satisfied in
all compact subsets, similarly to the definition of ES(P ) above. If it has a
homogeneous principal symbol pm, ellipticity is equivalent to pm 6= 0 in U .
If P is elliptic in U , then Pf and f have the same wave front set restricted
to U , as follows from (14) and (13).

3.1. The Hamilton flow and propagation of singularities. Let P ∈
Ψm(M) be properly supported, where M is a smooth manifold, and suppose
that P has a real homogeneous principal symbol pm. The Hamiltonian vector
field of pm on T ∗M \ 0 is defined by

Hpm =

n∑
j=1

(
∂pm
∂xj

∂

∂ξj
− ∂pm

∂ξj

∂

∂xj

)
.

The integral curves ofHpm are called bicharacteristics of P . Clearly, Hpmpm =
0, thus pm is constant along each bicharacteristics. The bicharacteristics
along which pm = 0 are called zero bicharacteristics.
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The Hörmander’s theorem about propagation of singularities is one of the
fundamental results in the theory. It states that if P is an operator as above,
and Pu = f with u ∈ D′(M), then

WF(u) \WF(f) ⊂ CharP,

and is invariant under the flow of Hpm .
An important special case is the wave operator P = ∂2t −∆g, where ∆g is

the Laplace Beltrami operator associated with a Riemannian metric g. We
may add lower order terms without changing the bicharacteristics. Let (τ, ξ)
be the dual variables to (t, x). The principal symbol is p2 = −τ2+|ξ|2g, where

|ξ|2g :=
∑
gij(x)ξiξj , and (gij) = (gij)

−1. The bicharacteristics equations

then are τ̇ = 0, ṫ = −2τ , ẋj = 2
∑
gijξi, ξ̇j = −2∂xj

∑
gij(x)ξiξj , and

they are null ones if τ2 = |ξ|2g. Here, ẋ = dx/ds, etc. The latter two

equations are the Hamiltonian curves of H̃ :=
∑
gij(x)ξiξj and they are

known to coincide with the geodesics (γ, γ̇) on TM when identifying vectors

and covectors by the metric. They lie on the energy surface H̃ = const. The
first two equations imply that τ is a constant, positive or negative; and up
to rescaling, one can choose the parameter along the geodesics to be t. That
rescaling forces the speed along the geodesic to be 1. The null condition
τ2 = |ξ|2g defines two smooth surfaces away from (τ, ξ) = (0, 0): τ = ±|ξ|g.
This corresponds to geodesics starting from x in direction either ξ or −ξ.
To summarize, for the homogeneous equation Pu = 0, we get that each
singularity (x, ξ) of the initial conditions at t = 0 starts to propagate from
x in direction either ξ or −ξ or both (depending on the initial conditiosn)
along the unit speed geodesic. In fact, we get this first for the singularities
in T ∗(Rt × Rn

x) first, but since they lie in CharP , one can see that they
project to T ∗Rn

x as singularities again.

4. Geometrical Optics

Geometrical optics describes asymptotically the solutions of hyperbolic
equations at large frequencies. It also provides a parametrix (a solution
up to smooth terms) of the initial value problem for hyperbolic equations.
The resulting operators are not ΨDOs anymore; they are actually examples
of Fourier Integrals Operators. Geometrical Optics also studies the large
frequency behavior of solutions that reflect from a smooth surface (obstacle
scattering) including diffraction; reflect from an edge or a corner; reflect and
refract from a surface where the speed jumps (transmission problems).

As an example, consider the acoustic equation

(15) (∂2t − c2(x)∆)u = 0, (t, x) ∈ Rn,

with initial conditions u(0, x) = f1(x), ut(0, x) = f2. It is enough to assume
first that f1 and f2 are in C∞0 , and extend the resulting solution operator
to larger spaces later.
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We are looking for a solution of the form

u(t, x) = (2π)−n
∑
σ=±

∫
eiφσ(t,x,ξ)

(
a1,σ(x, ξ, t)f̂1(ξ)

+ |ξ|−1a2,σ(x, ξ, t)f̂2(ξ)
)

dξ,

(16)

modulo terms involving smoothing operators of f1 and f2. The reason to
expect two terms is already clear by the propagation of singularities theorem,
and is also justified by the eikonal equation below. Here the phase functions
φ± are positively homogeneous of order 1 in ξ. Next, we seek the amplitudes
in the form

(17) aj,σ ∼
∞∑
k=0

a
(k)
j,σ , σ = ±, j = 1, 2,

where a
(k)
j,σ is homogeneous in ξ of degree −k for large |ξ|. To construct such

a solution, we plug (16) into (15) and try to kill all terms in the expansion
in homogeneous (in ξ) terms.

Equating the terms of order 2 yields the eikonal equation

(18) (∂tφ)2 − c2(x)|∇xφ|2 = 0.

Write fj = (2π)−n
∫
eix·ξ f̂j(ξ) dξ, j = 1, 2, to get the following initial condi-

tions for φ±

(19) φ±|t=0 = x · ξ.

The eikonal equation can be solved by the method of characteristics. First,
we determine ∂tφ and ∇xφ for t = 0. We get ∂tφ|t=0 = ∓c(x)|ξ|, ∇xφ|t=0 =
ξ. This implies existence of two solutions φ±. If c = 1, we easily get
φ± = ∓|ξ|t+ x · ξ. Let for any (z, ξ), γz,ξ(s) be unit speed geodesic through
(z, ξ). Then φ+ is constant along the curve (t, γz,ξ(t)) that implies that
φ+ = z(x, ξ)·ξ in any domain in which (t, z) can be chosen to be coordinates.
Similarly, φ− is constant along the curve (t, γz,−ξ(t)). In general, we cannot
solve the eikonal equation globally, for all (t, x). Two geodesics γz,ξ and γw,ξ
may intersect, for example, giving a non-unique value for φ±. We always
have a solution however in a neighborhood of t = 0.

Equate now the order 1 terms in the expansion of (∂2t − c2∆)u to get that
the principal terms of the amplitudes must solve the transport equation

(20)
(
(∂tφ±)∂t − c2∇xφ± · ∇x + C±

)
a
(0)
j,± = 0,

with

2C± = (∂2t − c2∆)φ±.

This is an ODE along the vector field (∂tφ±,−c2∇xφ), and the integral
curves of it coincide with the curves (t, γz,±ξ). Given an initial condition at
t = 0, it has a unique solution along the integral curves as long as φ is well
defined.
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Equating terms homogeneous in ξ of lower order we get transport equa-

tions for a
(k)
j,σ , j = 1, 2, . . . with the same left-hand side as in (20) with a

right-hand side determined by a
(k−1)
k,σ .

Taking into account the initial conditions, we get

a1,+ + a1,− = 1, a2,+ + a2,− = 0 for t = 0.

This is true in particular for the leading terms a
(0)
1,± and a

(0)
2,±. Since ∂tφ± =

∓c(x)|ξ| for t = 0, and ut = f2 for t = 0, from the leading order term in the
expansion of ut we get

a
(0)
1,+ = a

(0)
1,−, ic(x)(a

(0)
2,− − a

(0)
2,+) = 1 for t = 0.

Therefore,

(21) a
(0)
1,+ = a

(0)
1,− =

1

2
, a

(0)
2,+ = −a(0)2,− =

i

2c(x)
for t = 0.

Note that if c = 1, then φ± = x · ξ ∓ t|ξ|, and a1,+ = a1,− = 1/2, a2,+ =
−a2,− = i/2. Using those initial conditions, we solve the transport equations

for a
(0)
1,± and a

(0)
2,±. Similarly, we derive initial conditions for the lower order

terms in (17) and solve the corresponding transport equations. Then we
define aj,σ by (17) as a symbol.

The so constructed u in (16) is a solution only up to smoothing opera-
tors applied to (f1, f2). Using standard hyperbolic estimates, we show that
adding such terms to u, we get an exact solution to (15). As mentions
above, this construction may fail for t too large, depending on the speed.
On the other hand, the solution operator (f1, f2) 7→ u makes sense as a
global Fourier Integral Operator for which this construction is just one if its
local representations.
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