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1 Introduction

In this paper we study of the residue of the scattering amplitude for resonances near the real axis. We are
motivated by the following interesting result by Lahmar-Benbernou and Martinez [Be], [BeM]. Consider
the semiclassical scattering amplitude related to the Schrödinger equation in the case of a “well in an
island”. They studied a simple resonance z0(h) exponentially close to the real axis, corresponding to a
simple eigenvalue of the harmonic oscillator that approximates the Hamiltonian near the bottom of the well.
Under some additional assumptions they showed that z0(h) that is also a pole of the scattering amplitude
A(ω, θ, z, h), has residue satisfying the estimate

Ares(ω, θ, h) = O(hN )|Im z0(h)| (1)

with some fixed N . Therefore, in the decomposition of A into a singular and holomorphic part around z0(h)

A(ω, θ, z, h) =
Ares(ω, θ, h)
z − z0(h)

+Ahol(ω, θ, z, h), (2)

for z real and near Re z0(h), the growth of the singular term (z − z0(h))−1 is exactly compensated by the
decay of the residue up to a polynomial factor. The papers [Be] and [BeM], among the other results there,
give a detailed analysis of this polynomial term O(hN ) under additional assumptions, it turns out that for
some directions (ω, θ) it is O(h∞), while for some other directions it has full asymptotic expansion with a
non-vanishing principal term.

The main purpose of this paper is to show that (1) holds in much more general situations, namely, for any
black-box compactly supported perturbation of the Laplacian, provided that z0(h) is an isolated resonance
close to the real axis. We give two proofs of this under two slightly different sets of assumptions. First, we
assume that the resonances cannot approach the real axis more than exponentially fast, i.e., that

e−C/h ≤ −Im z(h) (3)

for any resonance z(h) with E1 ≤ Re z(h) ≤ E2, where 0 < E1 < E2 are fixed. In this paper by C we
will denote different positive constants. This is connected to the estimate ‖1|x|≤RR(z, h)1|x|≤R‖ = O(eC/h),
R > 0, E1 ≤ z ≤ E2. The bound (3) has been proved by Burq [B1], [B2] for very general systems and also
by Vodev [V2], [V3] and Cardoso–Vodev [CV]. In Theorem 2 we prove (1) under the assumption (3).

In Theorem 1, we give a simpler proof of (1) assuming in addition that

‖1R1≤|x|≤R2R(z, h)1R1≤|x|≤R2‖ = O(h−1), 0 < E1 ≤ z ≤ E2, (4)
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where R(z, h) is the outgoing meromorphic extension of the resolvent defined below, and 1 � R1 < R2.
Estimate (4) is proven in [B2], [CV] for a large number of long-range systems.

Most of the important scattering systems are covered by the assumptions in [B2], [CV] however, and for
them both (3) and (4) hold. The proof of Theorem 2 under the assumption (3) only is a bit longer than
that of Theorem 1 but it also provides some insight into the structure of the scattering amplitude and its
connection with the singular part of the so-called scattering solution (known also as a distorted harmonic
wave, or scattered wave) near a resonance with −Im z(h) = O(h∞). As a byproduct, we get in section 7
estimate on the residue of the scattering solution.

Acknowledgments. The author would like to thank Vesselin Petkov for proposing this problem to him
and for many useful discussions. Thanks are also due to the referee whose critical remarks contributed to
improving the exposition. Part of this work was done during author’s visit to the MSRI.

2 Preliminaries

We work in the general framework of black-box scattering proposed by Sjöstrand and Zworski [SjZ] (see also
[Sj], [TZ1]). We consider only compactly supported perturbations of the semiclassical Schrödinger operator
−h2∆. Let H be a complex Hilbert space of the form

H = HR0 ⊕ L2(Rn \B(0, R0)),

where R0 > 0 is fixed and B(0, R0) is the ball centered at the origin with radius R0. We consider a
family of self-adjoint unbounded operators P (h) in H with common domain D, whose projection onto
L2(Rn \B(0, R0)) is H2(Rn \B(0, R0)). In what follows we will denote by 1B(0,R0) the orthogonal projector
onto HR0 . We will also denote the same projector by 1|x|≤R0 , and will use the notation HR for the space
HR0 ⊕ L2(B(R, 0) \B(R0, 0)), where R > R0. We assume that

1B(0,R0) (P (h) + i)−1 : H → H

is compact. Outside HR0 , P (h) is assumed to coincide with the semiclassical Schrödinger operator, i.e.,

1Rn\B(0,R0)P (h)u = −h2∆
(
u|Rn\B(0,R0)

)
.

Finally, we assume that P (h) > −C0, C0 > 0. Under those assumptions, one can define (the semi-classical)
resonances R(P (h)) of P (h) in a conic neighborhood of the real axis by the method of complex scaling
(see [SjZ], [Sj]). Resonances are also poles of the meromorphic continuation of the resolvent (P (h) − z)−1 :
Hcomp → Hloc from Im z > 0 into a conic neighborhood of the real line. We will denote the so continued
resolvent by R(z, h). In classical scattering, we consider P as above independent of h by formally assuming
that h = 1. Then P has classical resonances R(P ) defined as the poles of the meromorphic continuation
of the resolvent (P − λ2)−1 : Hcomp → Hloc from Imλ > 0 to a neighborhood of the real line. For such P
we then set P (h) = h2P and define resonances z(h) as above. Then the semi-classical resonances and the
classical ones are related by λ2 = h−2z.

As in [SjZ], [Sj], we construct a reference selfadjoint operator P#(h) from P (h) on H# = HR0 ⊕L2(M \
B(0, R0)), where M = (R/RZ)n for some R � R0. Then for the number of eigenvalues of P# in a given
interval [−λ, λ], we assume

#{z ∈ SpecP#(h); −λ ≤ z ≤ λ; } ≤ C(λ/h2)n#/2, λ ≥ 1,

with some n# ≥ n. This implies (see [SjZ] and [Sj]) that

#{z ∈ R(P (h)); 0 < a0 ≤ Re z ≤ b0; 0 ≤ −Im z ≤ c0} ≤ C(a0, b0, c0)h−n#
, (5)

#{λ ∈ R(P ); 1 ≤ |λ| ≤ r; 0 ≤ −Imλ ≤ 1} ≤ Crn#
, r > 1. (6)

Polynomial estimates of this type have been proved also in [M1], [Z1], [SjZ], [V1], [Sj].
We will denote by C various positive constants that may change from line to line.
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3 The scattering amplitude

We introduce here the scattering amplitude in the black-box setting. Our definition is equivalent to that
given in [PZ], [Z4], for example, but is somewhat closer to the classical one and we include it in order to
keep the exposition self-contained.

Choose a smooth cut-off function χ1 such that χ1 = 0 on B(0, R0 + 1), and χ1 = 1 outside B(0, R+ 2).
For any θ ∈ Sn−1, and any z > 0, we are looking for a solution ψ(x, θ, z, h) to the problem (P (h)− z)ψ = 0,
ψ ∈ Dloc(P (h)) such that

ψ = χ1e
i
√

zθ·x/h + ψsc, (7)

with ψsc satisfying the Sommerfeld outgoing condition at infinity: (∂/∂r − i
√
z/h)ψsc = O(r−(n+1)/2), as

r = |x| → ∞. Then

ψ(x, θ, z, h) = ei
√

zθ·x/h +
ei

√
zr/h

r(n−1)/2
A
(x
r
, θ, z, h

)
+O

(
1

r(n+1)/2

)
, as r = |x| → ∞. (8)

The function A(ω, θ, z, h) is the scattering amplitude related to P (h). In order to justify this definition, we
will show that ψsc is well defined and the limit above exists.

Before proceeding, we will recall the definition for outgoing solution in the case that z is not necessarily
real that we will need later. In short, “outgoing” function is a function equal for large x to R0(z, h)f for
some compactly supported f . Here R0(z, h) : Hcomp → Hloc is the outgoing free resolvent, i.e., the analytic
continuation of R0(z, h) = (−h2∆−z)−1 from a neighborhood of the positive real axis in the upper half-plane
into the lower half-plane in C. The extension from the lower to the upper half plane is called incoming.

Definition 1 Given z ∈ C, we say that the function u is z-outgoing (or simply, outgoing, if z is understood
from the context), if there exists a > 0 and f ∈ Hcomp such that u||x|>a = R0(z, h)f ||x|>a.

Similarly one defines incoming functions.

Proposition 1 ([St1], see also Lemma 1 in [Z4])
(a) For any f ∈ Hcomp and any z not a resonance, the function u = R(z, h)f is z-outgoing. Moreover,

if χ is a smooth cut-off function such that χ = 1 for |x| > a, and χ = 0 in a neighborhood of B(0, R0) and
supp f , then we have R(z, h)f ||x|>a = −R0(z, h)[h2∆, χ]R(z, h)f ||x|>a.

(b) Let u ∈ Dloc(P (h)), (P (h) − z)u = f ∈ Hcomp, z is not a resonance, and u is z-outgoing. Then
u = R(z, h)f .

Proof. First, consider (a). Let χ ∈ C∞ be such that χ = 0 near B(0, R0), and χ = 1 for large |x|.
Then (−h2∆ − z)χu = −[h2∆, χ]u + χf is compactly supported. Since u ∈ H for Im z > 0, we have
χu = R0(z, h)(−h2∆ − z)χu there. Both sides of this equality are meromorphic in z in a neighborhood of
the real axis, therefore by analytic continuation it also hold in the lower half-plane. In particular,

χR(z, h)f = R0(z, h)
(
−[h2∆, χ]R(z, h)f + χf

)
.

This proves that u is outgoing. If χ is as in the proposition, then χf = 0 and this proves the second
statement.

Next, consider (b). Choose a smooth partition of unity χ1 +χ2 = 1, where χ1 = 1 for |x| < a and χ1 has
compact support. Here a is such that u||x|>a = R0(z, h)f ||x|>a with some f ∈ Hcomp. Set

v(w) = χ1u+ χ2R0(w, h)f.

Observe first that v(z) = u. Next, (P (h)−w)v(w) = g(w) with g(w) = (P (h)−w)χ1u−[h2∆, χ2]R0(w, h)f+
χ2f is compactly supported. Therefore, for Imw > 0, v(w) solves the problem (P (h)−w)v(w) = g(w) ∈ H,
also, v(w) ∈ H, thus v(w) = R(w, h)g(w) there. By meromorphic continuation through the real line, this is
true for Im z < 0 as well, and in particular for w = z, thus u = v(z) = R(z, h)g(z) = R(z, h)f . 2
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The scattering solution ψsc can be constructed as follows. Apply P (h) − z to ψsc to get

(P (h) − z)ψsc = −(P (h) − z)χ1e
i
√

zθ·x/h = [h2∆, χ1]ei
√

zθ·x/h. (9)

Then, since ψsc is outgoing, by Proposition 1(b),

ψsc(x, θ, z, h) = R(z, h)[h2∆, χ1]ei
√

zθ·x/h. (10)

Choose a smooth function χ2 with χ2 = 1 for large x and χ2 = 0 on suppχ1. Then, by Proposition 1(a),

χ2ψsc(x, θ, z, h) = −R0(z, h)[h2∆, χ2]R(z, h)[h2∆, χ1]ei
√

zθ·x/h,

To take the asymptotic as x = rω, r = |x| → ∞, we recall the asymptotic formula for R0(z, h)f , where f has
compact support, see [M2, section 1.7] (note that in [M2], we have λ = h−1

√
z and we have to take complex

conjugate since the resonances there are in the upper half-plane)

[R0(z, h)f ](rω) =
ei

√
zr/h

r
n−1

2

(
v∞(ω, z, h) +O

(1
r

))
, (11)

where
v∞ = h−2 i

2
(2π)−

n+1
2 h−

n−3
2 z

n−3
4 e−iπ n−1

4 f̂(h−1
√
zω). (12)

The function v∞ is called in the applied literature the far-field pattern of the outgoing solution v to (−h2∆−
z)v = 0 for large x (which always can be expressed as v = R0(z, h)f for large x). In our case, v∞ is just the
scattering amplitude, if v = ψsc. Thus we get

A(ω, θ, z, h) =
1
2
e−iπ n−3

4 (2πh)−
n+1

2 z
n−3

4

∫
e−i

√
zω·x/h[h2∆, χ2]R(z, h)[h2∆, χ1]ei

√
zθ·•/hdx. (13)

It is clear from this formula, that the scattering amplitude A can be extended meromorphically everywhere,
where the resolvent admits continuation as well. In particular, resonances are poles of A as well.

As in [Z4], [PZ], introduce the operators

[E±(z, h)f ](ω) =
∫
e±i

√
zω·x/hf(x) dx = f̂(∓h−1

√
zω), ω ∈ Sn−1,

and we will apply E±(z, h) only to functions f with compact support. Let tE±(z, h) be the transpose oper-
ators defined as operator with Schwartz kernels tE(x, ω) = E(ω, x). Then viewing the scattering amplitude
as an operator A(z, h) on L2(Sn−1) with kernel A(ω, θ, z, h), we recover the formula for A in [PZ] modulo
normalizing factors:

A(z, h) =
1
2
e−iπ n−3

4 (2πh)−
n+1

2 z
n−3

4 E−(z, h)[h2∆, χ2]R(z, h)[h2∆, χ1] tE+(z, h). (14)

We will recall another formula in classical scattering. Let v be an outgoing solution of the Helmholtz
equation (−h2∆ − z)v = 0 outside B(0, R0 + 1). Of course, the situation we have in mind is the solution
v = ψsc related to ψ as in (8). Using the Green’s formula and the outgoing condition, we get for any
R > R0 + 1,

v(x, θ, z, h) = h2

∫

|x|=R

(
R0(x − y, z, h)

∂v(y, θ, z, h)
∂ry

− ∂R0(x− y, z, h)
∂ry

v(y, θ, z, h)
)
dSy , |x| > R,

where R0(x− y, z, h) denoted the kernel of R0(z, h), and ry = |y|. Take the asymptotic (11), (12) again (for
z positive) as x = rω → ∞ to get

v∞(w) =
1
2
e−iπ n−3

4 (2πh)−
n+1
2 z

n−3
4 h2

∫

|y|=R

(
e−i

√
zω·y/h ∂v(y)

∂ry
− ∂e−i

√
zω·y/h

∂ry
v(y)

)
dSy

=
1
2
e−iπ n−3

4 (2πh)−
n+1
2 z

n−3
4 h

∫

|y|=R

e−i
√

zω·y/h

(
h
∂v(y)
∂ry

+ i
√
zω ·

y

|y|v(y)
)
dSy. (15)
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Formula (15) relates the near field v(x) to the far field v∞(ω) via the Cauchy data of v on any closed surface
outside the black box. In our case, this is the sphere |x| = R. We can extend this map v(x) 7→ v∞(ω) by
analyticity for z not necessarily real and positive, even though then the limit as |x| → ∞ is problematic,
since v(x) grows exponentially fast for Im z < 0. With the aid of (12), we get the following representation
for E±[h2∆, χ] acting on outgoing solutions: for each outgoing v as above,

E∓[h2∆, χ]v = h

∫

|y|=R

e∓i
√

zω·y/h

(
h
∂v(y)
∂ry

± i
√
zω · y

|y|
v(y)

)
dSy. (16)

In view of this, one can regard (14) as taking two consecutive limits of the Schwartz kernel R(x, y, z, h) of
the resolvent R(z, h) as x = rω, r → ∞ first, and y = −rθ, r → ∞, second (or in reverse order) and this
gives A modulo multiplication factors. Each limit can be replaced by the integral (16), and this makes sense
for complex z as well. This generalizes a well known fact in scattering theory to the black-box setting.

4 Estimate on the residue of the scattering amplitude

Let Ares, Ahol be as in (2). In this section we prove the following.

Theorem 1 Fix 0 < E1 < E2 and let z0(h) be a simple resonance with 0 < −Im z0(h) ≤ h
3n#+5

2 , E1 ≤
Re z0(h) ≤ E2 such that there is no other resonance in

Ω(h) =
{
z ∈ C; |Re z − Re z0(h)| ≤ h−

3n#+4
2 |Im z0(h)|, 0 ≤ −Im z ≤ h−n#−2|Im z0(h)|

}
. (17)

Assume (3) and (4). Then

|Ares(ω, θ, h)| ≤ Ch−
n−1

2 |Im z0(h)|, |Ahol(ω, θ, z, h)| ≤ Ch−
n−1

2 in Ω̃(h),

where Ω̃ =
{
z ∈ C; |Re z − Re z0(h)| ≤ 1

2h
− 3n#+4

2 |Im z0(h)|, 0 ≤ −Im z ≤ 2|Im z0(h)|
}
.

Proof of Theorem 1. For R1, R2 such that R0 < R1 < R2 denote

RR1,R2(z, h) = 1R1≤|x|≤R2R(z, h)1R1≤|x|≤R2 .

By (4), for some R1, R2 we have ‖RR1,R2(z, h)‖ = O(h−1) for z ∈ [E1, E2]. Set

G(z, h) =
z − z0(h)
z − z̄0(h)

RR1,R2(z, h).

Then G(z, h) is holomorphic in Ω(h) and satisfies

‖G(z, h)‖ = O(h−1) for z ∈ [E1, E2] (18)

as well. On the other hand, we claim that G(z, h) satisfies the following a priori estimate:

‖G(z, h)‖ ≤ CeCh−n#−1
in Ω3/4(h) := 3

4 (Ω(h) − Re z0(h)) + Re z0(h). (19)

This estimate is a direct consequence of the exponential a priori estimate of the resolvent due to M. Zworski
[Z2], see [TZ1], [TZ2] for a proof in this generality:

‖Rχ(z, h)‖H→H ≤ eCΩh−n#
log(1/g(h)) for z ∈ Ω(h), |z − zj | ≥ g(h), ∀zj ∈ R(P (h)), 0 < g(h) � 1, (20)
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where χ is any compactly supported function and Rχ(z, h) = χR(z, h)χ. This implies a similar estimate for
G(z, h) with g(h) = e−Ch−1

, in Ω3/4(h), C � 1, since this choice of g(h) guarantees by (3) that all resonances
are at least at a distance g(h) from ∂Ω3/4(h). Indeed, this is true for z0(h), which is inside Ω3/4(h), and it
is true for all other resonances that are outside Ω(h). Therefore, G(z, h) satisfies (19) on the boundary of
Ω3/4(h), and since it is holomorphic inside, it also satisfies the same estimate inside Ω3/4(h). This proves
(19).

We need the semi-classical maximum principle in the form presented in [St2, Lemma 1]:

Lemma 1 Fix n# > 0. Let 0 < h < 1 and a(h) ≤ b(h). Suppose that F (z, h) is a holomorphic function of
z defined in a neighborhood of

Ω(h) = [a(h) − 5w(h), b(h) + 5w(h)] + i[−S−(h), S+(h)h−n#−ε],

where 0 ≤ S−(h) ≤ S+(h) ≤ w(h)h3n#/2+2ε, S+(h) > 0 and ε > 0. If F (z, h) satisfies

|F (z, h)| ≤ AeAh−n#
log(1/h) on Ω(h), (21)

|F (z, h)| ≤ M(h) on [a(h) − 5w(h), b(h) + 5w(h)] − iS−(h) (22)

with M(h) ≥ 1/C, as h→ 0, then there exists h1 = h1(S−, S+, A, ε) > 0 such that

|F (z, h)| ≤ 2e3M(h), ∀z ∈ Ω̃ := [a(h) − w(h), b(h) + w(h)] + i[−S−(h), S+(h)]

for h ≤ h1.

Lemma 1 is the same as [St2, Lemma 1] with three exceptions. First, we allow here S−(h) = 0, while
in [St2] it is required that S−(h) > 0. Second, we dropped the requirement that ω(h) = o(1). Finally, we
replaced the assumption M(h) → 0 by M(h) ≥ 1/C. It can be seen from the proof that those requirements
are not needed. By Lemma 1, we get from (18), (19),

‖G(z, h)‖ ≤ Ch−1, in Ω̃(h), (23)

where Ω̃(h) is as in Theorem 1. Then, from

RR1,R2(z, h) =
z − z̄0(h)
z − z0(h)

G(z, h).

we get that

RR1,R2(z, h) =
Rres

R1,R2
(h)

z − z0(h)
+Rhol

R1,R2
(z, h) (24)

with
‖Rres

R1,R2
(h)‖ ≤ Ch−1|Im z0(h)|, ‖Rhol

R1,R2
(z, h)‖ ≤ Ch−1 in Ω̃(h). (25)

After proving the first of the above estimates, in order to prove the second one, we apply the maximum
principle to Rhol in Ω̃(h). By a standard argument, we can get the same estimates for the L2 → H2 norm
of the operators above in the annulus R1 ≤ |x| ≤ R2 and therefore, for the L2 → H1 norm. Here, as usual,
‖f‖Hs =

∑
|α|≤s ‖(hD)αf‖. Then the estimates above and (13), (14) imply

|Ares(ω, θ, h)| ≤ Ch−
n−1

2 |Im z0(h)|, |Ahol(ω, θ, z, h)| ≤ Ch−
n−1

2 in Ω̃(h).

In the derivation of those estimates we used the fact that the integration in (13) is performed over a compact
region and in this case, |

∫
g dx| ≤ C‖g‖. This proves Theorem 1. 2
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5 An absorption estimate and estimates on the resonant states

The following is a slight improvement over Proposition 2.2 in [B1].

Proposition 2 For any γ > 0 there exists R1 > 0 such that for any R > R1 the following estimate holds

|λ|
∫

|x|=2R

(
|u|2 + |λ−1∇u|2

)
dSx ≤ ±C

∫

|x|=2R

Im (ū∂ru)dSx + Ce−γ|λ|
∫

|x|=R

(
|u|2 + |λ−1∇u|2

)
dSx

for any λ with |Imλ| ≤ 1, Reλ � 1 and for any outgoing/incoming solution u of the equation (−∆−λ2)u = 0
outside B(0, R1). The positive sign above corresponds to an outgoing solution, the negative — to incoming
solution.

The difference between the proposition above and the corresponding result in [B1] is that we show that
one can choose the constant γ large enough if R is large enough. We will show below that this is in fact
implicit in Burq’s proof. Our proof below also indicates that we can replace above R by R1 and 2R by
R2 > R1, and then one can see that the constant γ is bounded from below by C1R1, if R2/R1 ≥ C2.

In [B1], outgoing solutions correspond to incoming in our paper. For this reason, below we work with
incoming solutions and it is clear that all estimates translate in a natural way for outgoing solutions as well.
As in [B1], we develop an incoming solution u in spherical harmonics for |x| > R1:

u =
∑

ν

uν(r)Yν(ω), x = rω, r > 0, ω ∈ Sn−1,

where ν runs over the eigenvalues of the Laplacian on Sn−1, and Yν is an orthonormal basis of eigenfunctions.
The functions uν are expressed in terms of the Hankel functions of type 2, i.e.,

uν(r) = ανr
1−n/2hµ(λr), µ :=

√
ν2 + (n/2− 1)2,

where hµ (usually denoted by H
(2)
µ ) admits the following asymptotic at infinity hµ(r) ∼ Cr−1/2e−ir. The

lack of term involving H(1)
µ is due to the incoming condition imposed on u. A well known fact is that the

asymptotics for hµ(λr) have different behavior in the hyperbolic region µ/(ReλR) < 1, the glancing region
µ/(ReλR) ∼ 1, and the elliptic region µ/(ReλR) > 1 (see, e.g., [O], [StV1]).

The following lemma is similar to Lemma 2.5 in [B1].

Lemma 2 There exists γ > 0, such that for any R > 1 there exist C > 0, λ0 > 0, with the property that for√
2 ≤ µ/(ReλR), Reλ ≥ λ0, |Imλ| ≤ 1, we have

|hµ(2λR)| ≤ Ce−γµ|hµ(λR)|,
|h′µ(2λR)| ≤ Ce−γµ|hµ(λR)|.

Proof. Following [B1], we start with the following representation of the Hankel functions hµ

hµ(r) =
∫ +∞−iπ

−∞
er sinh t−µtdt.

Using it, it is shown in [B1] that

|hµ(λR)| ≥ C

µ
eµ(tanh t1−t1) − C, (26)

where t1 = −arccosh(µ/(ReλR)) is the negative critical point of the function eλr sinh t−µt. Under our
assumption, −t1 ≥ arccosh

√
2. Therefore, for µ � 1, the term −C above is absorbed by the exponential

term. On the other hand,

|hµ(2λR)| ≤





Ceµ(tanh t2−t2), if 2ReλR ≤ µ, where t2 = −arccosh
( µ

2ReλR

)
,

C, otherwise.
(27)
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Note that the first line above corresponds to the elliptic region, while the second one is in the hyperbolic
region. The proof of the first estimate in the lemma is based on (26), (27). Before combining those two
estimates, we will estimate the difference of the phase functions there. Set

g(s) = tanh t− t, t = −arccosh
( µ

ReλR

)
.

A straightforward calculation shows that

g(s) = arccosh(s) −
√
s2 − 1
s

.

We are interested in the difference of g at s1 = µ/(ReλR) ≥
√

2 and s2 = µ/(2ReλR) = s1/2 ≥
√

2/2. We
claim that there exists a constant c0 > 0 such that

c0 ≤ g(s) − g(s/2), for 2 ≤ s,

c0 ≤ g(s) − g(1), for
√

2 ≤ s ≤ 2,
(28)

(observe that g(1) = 0). Since g′(s) = s−2
√
s2 − 1 = s−1(1 + o(s)), as s → ∞, the first inequality above is

clearly true for large s, and by compactness argument it also holds for all 2 ≤ s. The second one also holds
with c0 = g(

√
2). From (28) we get

0 < c0 < g(µ/(ReλR)) − g(max{1, µ/(2ReλR)}).

With the aid of (26) and (27) we get

|hµ(2λR)| ≤ Ceµg(max{1,µ/(2Re λR})) ≤ Ce−c0µeµg(µ/(Re λR))

≤ Cµe−c0µ|hµ(λR)| ≤ Ce−c0µ/2|hµ(λR)|.

The proof for h′µ is similar. 2

By Lemma 2, we get
|uν(2R)| + |u′ν(2R)| ≤ Ce−γν |uν(R)| (29)

for ν/(ReλR) ≥
√

2 (which implies µ/(ReλR) ≥
√

2) and |λ| � 1, where γ > 0 can be chosen independently
of R, if R is large enough. Therefore,

|uν(2R)| + |u′ν(2R)| ≤ Ce−γ′|λ|R|uν(R)|, for ν/(ReλR) ≥
√

2. (30)

Note that the condition above implies that the right-hand side is in the elliptic region, but at a positive
distance from it, while the left-hand side might be in the hyperbolic one.

With the aid of (29) and (30) we complete the proof of Proposition 2 as in [B1]. To this end, write the
integral −

∫
|x|=2R Im (ū∂ru)dSx in terms of the spherical harmonics decomposition, separate into a partial

sum in the hyperbolic (on the sphere |x| = 2R) region ν/(Reλ2R) ≤
√

2/2, and another sum over the
indexes belonging to the complement

√
2 ≤ ν/(ReλR), which include the whole elliptic region, the glancing

one, and a part of the hyperbolic one:
√

2/2 ≤ ν/(Reλ2R) ≤ 1 + ε. The first sum contributes to the term
in the left-hand side of the estimate in Proposition 2, while the second one can be estimated using (29) and
(30) and gives the exponentially small remainder. The latter argument is based on the observation that
the contribution to the terms in the region

√
2/2 ≤ ν/(Reλ2R) ≤ 1 + ε on the boundary of B(0, 2R) is

coming from rays that do not reach B(0, R), and therefore belong to the elliptic region of the ball B(0, R).
Similar analysis using studying the parametrix of the corresponding Neumann operator on a convex boundary
surrounded the obstacle was carried out in [St3]. We refer to [B1] for more details. 2

Using Proposition 2, we can estimate the resonant states outside B(0, R), R � 1 in terms of the imaginary
part of the resonance. The proposition below is an improved version of an argument in [St3], and the use of
Burq’s type of absorption estimates as those in Proposition 2 for proving the estimate below was suggested
by M.Zworski [Z3].
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Proposition 3 Assume (3). Let z(h) be a resonance with E1 ≤ Re z(h) ≤ E2, 0 < −Im z(h) ≤ Ch, and
u(h) be an outgoing resonant state such that (P (h) − z(h))u(h) = 0. Then for R� 1 and 0 < h� 1,

∫

|x|=2R

(
|u|2 + |h∇u|2

)
dSx ≤ −Ch−1Im z(h)

∫

|x|≤2R

|u|2dx.

Proof. Note first that after standard scaling, Proposition 2 implies
∫

|x|=2R

(
|u|2 + |h∇u|2

)
dSx ≤ C

∫

|x|=2R

Im (ūh∂ru)dSx + Ce−γ/h

∫

|x|=R

(
|u|2 + |h∇u|2

)
dSx, (31)

where γ > 0 can be chosen arbitrary large, if R � 1. The exponentially decaying term above can be estimated
by Ce−γ′/h

∫
R/2≤|x|≤2R

|u|2dx after applying the trace theorem, a local elliptic estimate for −h2∆, and using
the fact that u solves (P − z)u = 0.

Apply Green’s formula for black boxes in B(0, 2R), we obtain

−2 Im z(h)
∫

|x|≤2R

|u|2dx = 2h
∫

|x|=2R

Im (ūh∂ru) dSx, (32)

therefore,
∫

|x|=2R

(
|u|2 + |h∇u|2

)
dSx ≤ −Ch−1 Im z(h)‖u‖2

L2(B(0,2R)) + Ce−γ/h

∫

R/2≤|x|≤2R

|u|2dx. (33)

By our assumption (3), e−C0/h ≤ −Im z(h) with C0 > 0 depending on P (h). Choose R � 1, so that
R/2 > R0 and γ > C0. Then the exponential term above is absorbed by the one containing Im z(h) and this
completes the proof. 2

6 The singular part of the scattering amplitude

Assume that z0(h) is a simple pole of R(z, h) in the domain Ω(h). Then

R(z, h) =
Rres(h)
z − z0(h)

+Rhol(z, h),

where Rhol(z, h) is holomorphic in Ω(h), and Rres(h) is the residue. The simplicity of the pole z0(h) implies
that Rres(h) is a rank one operator. Therefore, Rres(h)f = (f, u−)Hu+ with some u±(h) ∈ Hloc. It is easy
to check that (P (h)− z0(h))Rres(h) = 0, therefore (P (h)− z0(h))u+(h) = 0. It is also easy to see that u+(h)
is outgoing. Indeed, by the Cauchy integral formula, for any f ∈ Hcomp,

Rres(h)f =
1

2πi

∮

|z−z0(h)|�1

R(z, h)f dz,

with positively oriented contour. According to Proposition 1, for R � 1 and z not a resonance, we have
1{R<|x|}R(z, h)f = 1{R<|x|}R0(z, h)g(z), where g ∈ Hcomp is given by g = −[h2∆, χ]R(z, h)f with suitable
cut-off function χ. Clearly, there exists f ∈ Hcomp such that (f, u−)H 6= 0. We thus get that

1{R<|x|}u+ = C
1

2πi

∮

|z−z0(h)|�1

1{R<|x|}R0(z, h)g(z) dz = C1{R<|x|}R0(z0(h), h)
1

2πi

∮

|z−z0(h)|�1

g(z) dz,

therefore, u+ is outgoing. On the other hand, by studying the incoming resolvent R(z̄, h)∗, we derive that
u− is incoming. In what follows, consider for simplicity the case when P (h) is real, i.e., when HR0 is a
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function space and P (h)u = P (h)ū. Then Rres(h) is preserved under the change (u−, u+) 7→ (λ̄−1u−, λu+),
0 6= λ ∈ C, and if we choose |λ| = 1, then we have u− = ū+.

Therefore, u+(h) is a resonant state, and we have

R(z, h) =
u+(h) ⊗ u+(h)
z − z0(h)

+Rhol(z, h). (34)

Using (13), (14), we get that the scattering amplitude has similar form near the pole z0:

A(ω, θ, z, h) =
1
2
e−iπ n−3

4 (2πh)−
n+1
2 z0(h)

n−3
4
a(ω, h)a(−θ, h)

z − z0(h)
+Ahol(ω, θ, z, h), (35)

where a(ω, h) is the “far field pattern” of u+(h) given by the right-hand side of (16), i.e.,

a(ω, h) = h

∫

|y|=R

e−i
√

z0(h)ω·y/h

(
h
∂u+(y)
∂ry

+ i
√
z0(h)ω ·

y

|y|u+(y)
)
dSy.

Let us apply Proposition 3 to the integral above with R > R0 large enough. We get

|a(ω, h)| ≤ Ch1/2
√
−Im z0(h) ‖u+(h)‖R, (36)

where ‖ · ‖R is the norm in HR. It remains to estimate ‖u+‖R. Here we are going to use essentially the
assumption that z0(h) is an isolated pole. By (34), ‖u+(h)‖2

HR
is just the norm of the residue Rres(h) at

z = z0(h) restricted to HR. We will use the semi-classical maximum principle again. Set

G(z, h) =
z − z0(h)

z − z̄0(h) + 2Im z0(h)
Rχ(z, h),

where χ is a compactly supported cut-off function equal to 1 near B(0, R). Then ‖G(z, h)‖ ≤ C/|Im z0(h)|
on the line Im z = −Im z0(h). Applying Lemma 1 to G(z, h) in Ω(h), we get

‖G(z, h)‖ ≤ C/|Im z0(h)| in Ω̃(h),

and this implies
‖Rres

χ ‖ ≤ C =⇒ ‖u+‖R ≤ C.

By (36),
|a(ω, h)| ≤ Ch1/2

√
−Im z0(h),

and by (35),
|Ares| ≤ Ch−

n−1
2 |Im z0(h)|.

Similarly to the proof of Theorem 1, we estimate the holomorphic part of A as well. We have therefore
proved the following.

Theorem 2 Theorem 1 remains true, if we drop the assumption (4).

7 Estimates on the scattering solution

In this section we prove estimates on the scattering solution ψ(x, θ, z, h) defined by (8) for real z in terms of
the distance

dist{z,R(P (h))} = |z − z0(h)|

from z to the closest resonance z0(h). The main result in this section is the following.
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Theorem 3 Let 0 < E1 < E2 and assume that (3) holds for E′
1 ≤ Re z ≤ E′

2 with some 0 < E′
1 < E1,

E2 < E′
2. Then for h� 1, ε > 0,

|ψ(x, θ, z, h)| ≤ Ch−N

√
d(z, h)

for all x ∈ B(0, R0), θ ∈ Sn−1, E1 ≤ z ≤ E2

with N = 3n#/4− 1/4 + ε, where d(z, h) = min (dist{z,R(P (h))}, 1).

Note that for some non-trapping systems, for example in the case of the classical wave equation with
variable sound speed, one can construct an asymptotic expansion of ψ by using geometric optics, under
the additional assumption of no caustics in a compact set. Then ψ = O(1). In the same case of variable
speed, M. Taylor [T] proved the optimal estimate ψ = O(|λ|) in L∞ (which translates to ψ = O(h−1) in
the semiclassical formalism) for non-trapping wave speeds that may generate caustics in a fixed compact.
Theorem 3 also proves a polynomial estimate in the non-trapping case but this example shows that the
polynomial factor is not sharp at least in the case studied in [T].

The proof of Theorem 3 is based on [St2, Proposition 2]. We will formulate here a semiclassical version
of this proposition.

Proposition 4 Let χ be the multiplication with a compactly supported function. Then under the assumptions
of Theorem 3, ∀ε > 0, for h� 1,

‖χR(z, h)χ‖ ≤ h−
3
2 n#− 3

2−ε

d(z, h)
for E1 ≤ z ≤ E2.

Proof. For any z0 ∈ [E1, E2], the disk B(z0, d(z0, h)) is free of resonances. In particular, there are no
resonances in

Ω(h) =
[
z0 −

1
2
d, z0 +

1
2
d
]

+ i
[
− dh(n#+1)/2+ε, 0

]
,

where d = d(z0, h). We will apply the semiclassical maximum principle to the cut-off resolvent in Ω(h). For
this reason, note first that that the closest resonance to ∂Ω(h) is at distance at least g(h) = 1

2 (1 + o(h))d
and by (3), d ≥ e−C/h. By (20), this choice of g(h) implies the exponential estimate (21) for the cut-off
resolvent with n# replaced by n# + 1. Set S−(h) = S+(h) = dh3(n#+1)/2+3ε, 10ω(h) = d. All requirement
of Lemma 1 are now satisfied with M(h) = 1/S−(h) and we therefore get the estimate in the proposition for
h � 1. Observe that the constants in Lemma 1 depend on the a priori exponential estimate only (which in
turn depend on C in (3)) and is independent of the choice of z0. 2

Proof of Theorem 3. We will use Proposition 4 above. Let f ∈ HR with R > R0 (i.e., f = 0 for |x| ≥ R).
Set g = R(z, h)f , where we assume that z is real. Applying Green’s formula, we get similarly to (32),

h

∫

|x|=2R

Im (ḡh∂rg) dSr ≤ ‖g‖2R‖f‖,

where ‖g‖R is the norm of g restricted to HR. Apply Proposition 2 with R large enough to get
∫

|x|=2R

(
|g|2 + |h∇g|2

)
dSx ≤ C‖g‖2R‖f‖. (37)

By Proposition 4,

‖g‖2R = ‖R(z, h)f‖2R ≤ Ch−N

d(z, h)
‖f‖, (38)

with N = 3n#/2 + 3/2 + ε, ε > 0. Therefore,
∫

|x|=2R

(
|g|2 + |h∇g|2

)
dSx ≤

Ch−N

d(z, h)
‖f‖2. (39)
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We have therefore proved that

∥∥1R2≤|x|≤R3R(z, h)1|x|≤R1

∥∥ ≤
Ch−N/2

√
d(z, h)

, (40)

where R0 ≤ R1 � R2 < R3. A similar estimate holds for ∇R. In order to complete the proof of the theorem,
it is enough to apply (10) and (7) and we obtain the required estimate with N replaced by N/2 − 1. 2

Remark. Estimate (40) can be considered as an intermediate estimate between Burq’s bound (4) that in
Proposition 4.

Finally, we present a quasi-example showing that in some cases, the estimate in Theorem 3 should be
optimal up to the polynomial factor. We call it quasi-example, because it is about a non-compactly supported
perturbation of the Laplacian, while in proving our results we consider compactly supported perturbations
only.

Consider the following situation: Let 0 < E1 < E2 be fixed and assume that z0(h) is a simple resonance
with E1 ≤ Re z0(h) ≤ E2 and that −Im z0(h) = O(h∞). Assume also that z0(h) is isolated in the following
sense: dist{z0(h),R(P (h))} ≥ hM for some M > 0. Then R(z, h) has the form (34) in |z − z0(h)| < h−M .
Next, applying the semi-classical maximum principle to (z − z0(h))χR(z, h)χ and using essentially the fact
that z0(h) is isolated, we get as in [TZ2],

‖χRres(h)χ‖ + ‖χRhol(z, h)χ‖ = O(h−N ), z ∈ [Re z0(h) − hM/2,Re z0(h) + hM/2], (41)

where χ is a cut-off function with compact support, and N > 0 depends on M . Let us use the representation
(10) of ψsc combined with (34). We assume that z is real and belongs to the interval specified in (41).
By the estimate (41) above, the holomorphic part Rhol(z, h) contributes to polynomially bounded term
ψhol

sc when estimating ψsc in a compact set, so it is enough to study the contribution of the singular term
(z − z0(h))−1u+(h) ⊗ u+(h) in (34) to ψsc in (10). We therefore get

ψres
sc (x, θ, h) = u+(x, h)

∫
u+(y, h)[h2∆, χ1]ei

√
zθ·y/h dy = u+(x, h)

(
E+(z0(h), h)[h2∆, χ1]u+

)
(θ)

Note that by (15), (16), E+[h2∆, χ1]u+ above is, up to multiplication factors, the far field pattern of the
resonant state u+. Using the notation in section 6, we get that

(
E+(z0(h), h)[h2∆, χ1]u+

)
(θ) = a(θ, h), thus

ψres
sc (x, θ, h) = u+(x, h)a(θ, h). (42)

We need an estimate of ‖u+‖R from below. The simplest thing to do is to work with the complex scalled
operator Pθ0 at this point, see e.g., [SjZ]. Here the angle θ0 of complex scalling is choosen small enough
and fixed. Then z0(h) is an eigenvalue of the non self-adjoint operator Pθ0 and the residue Rres

θ0
(z, h) of

the resolvent Rθ0(z, h) = (Pθ0 − z)−1 at z0(h) is a (non-orthogonal) projector. Therefore, ‖Rres
θ0

(z, h)‖ ≥ 1.
The representation (34) is valid for the scaled resolvent as well, with the same polynomial estimate on the
holomorphic part and with u+(x, h) replaced by its scaled version uθ0(x, h). Therefore, ‖uθ0(x, h)‖ ≥ 1. By
Theorem 3.1 in [St4] and the remark after it, ‖u(x, h)‖R ≥ 1 −O(h∞) for R� 1. Therefore, by (42),

1
2
|a(θ, h)| ≤ ‖ψres(•, θ, h)‖R. (43)

Assume now that the estimate in Theorem 3 can be improved in this particular case, in the sense that

ψ(x, θ, z, h) =
O(h∞)√

dist{z,R(P (h))}
for all x ∈ B(0, R0), θ ∈ Sn−1, z ∈ [Re z0 − hM/2,Re z0 + hM/2].

(44)
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Apply the semi-classical maximum pronciple to ψ again as in (23), (24), (25). Then we get

‖ψres‖R = ‖ψres
sc ‖R = O(h∞)

√
−Im z0(h)

This, combined with (43) gives
a(θ, h) = O(h∞)

√
−Im z0(h), ∀θ.

By (35),
Ares(ω, θ, h) = O(h∞)|Im z0(h)|, ∀ω, θ. (45)

Now, consider the situation studied by Lamahr-Benbernou and Martinez [BeM]. Let P (h) = −h2∆ +
V (x), where V (x) = O(1 + |x|)−τ , τ > 0 for |x| → ∞, V is real analytic and extends holomorphically in
a conic neighborhood of Rn in Cn. Assume that V (x) has a non-degenerate local minimum λ0 = V (x0)
at x0. This is known as a well in the island V (x) ≥ λ0. Then under some additional assumptions one can
show that for some potential like that, there is unique simple resonance z0(h) in [λ0 − δh, λ0 + δh] − i[0, δ]
for some δ > 0. It is known [HSj] that −Im z0(h) = f(h)e−2S0/h, where f(h) is an elliptic symbol of finite
order, and S0 is the Agmon distance from x0 to the boundary of the “island”. Then for some directions
(ω, θ), Lahmar-Benbernou and Martinez [BeM] showed that

Ares(ω, θ, h) = O(hN )e−2S0/h (46)

with a finite N , while for some other directions it may happen that N = ∞. Estimate (46) is optimal under
additional assumptions in the sense that for some ω, θ, the factor O(hN ) above admits a full asymptotic
expansion with non-zero first term. Thus (45) cannot hold for all ω, θ. As we mentioned above, this is not
a real counterexample to (44), because we managed to prove (45) for compactly supported perturbations of
the Laplacian, while the example in [BeM] is about non-compactly supported potential.
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