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Abstract
In this paper, we consider an anticipative nonlinear filtering problem, in which the
observation noise is correlated with the past of the signal. This new signal-observation
model has its applications in both finance models with insider trading and in engi-
neering. We derive a new equation for the filter in this context, analyzing both the
nonlinear and the linear cases. We also handle the case of a finite filter with Volterra
type observation. The performance of our algorithm is presented through numerical
experiments.

Keywords Nonlinear filtering · Anticipative systems · Asymptotic stability ·
Volterra-type integral equations

1 Introduction

In its most classical setting, the filtering problem can be summarized as follows: let
(�,F ,P) be a complete probability space, let (Ft , t ≥ 0) be an increasing family
of sub σ -fields of F , and suppose that all P-null sets belong to F0. We assume the
existence of an underlying signal process (Xt )t≥0 with values inRm which can not be
observed directly, and we are given an observation process (Zt )t≥0 with values in Rn

which is related to (Xt )t≥0 and disturbed by the noise process (Nt )t≥0. A main task
in the filtering theory is to estimate the signal process (Xt )t≥0 based on the (Zt )t≥0.
To give an example close enough to the situation which will be handled in the current
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paper, a model for the dynamics of both X and Z can be given as:

Xt = X0 +
∫ t

0
a(Xs)ds + Wt ,

Zt =
∫ t

0
h(Xs)ds + Nt , (1.1)

where X and Z are respectively the signal and the observation process, and W and N
are standard Brownian motions (or martingales), both adapted to the filtration Ft . In
(1.1), we also assume that the noises W and N are decorrelated for convenience.

We refer to [8, Chapters 2, 3], [17, Chapter 8] and [22] for a detailed account on the
classical model (1.1) in full generality. Although we cannot give a real overview of
the vast literature on filtering in this short introduction, let us mention that a first basic
step in order to solve the nonlinear filtering problem (1.1) is to obtain an equation for
the unnormalized conditional density of the signal Xt given Z . This equation turns
out to be a linear stochastic PDE called Zakai’s equation (see [29]), which is one of
the most classical objects studied in stochastic analysis. Then the numerical methods
either rely on a particle representation of Zakai’s equation (see [10,19]) or on a direct
discretization of Zakai’s equation [13,23]. The reader is sent to [8] for the abundant
literature on this topic. We should also mention a different direction which aims at
taking into account possible time correlations for both the signal and observation
noises. This is mainly achieved by considering a fractional Brownian motion model
for the noisesW and N (see e.g [7,18]), for which a complete answer in the nonlinear
case is still a challenging issue.

In the current contribution, we wish to go back to one of the fundamental assump-
tions in Eq. (1.1), namely the fact that the initial condition X0 and the observation noise
N are independent (which follows from the fact that N isFt -Brownianmotion).While
this assumption seems to be natural at first sight, one can argue that this hypothesis is
violated in many interesting situations. Among the possible applications we have in
mind, let us mention the following:
(i) Consider a classical target tracking problem (see e.g. [14, Chapter 5]). Suppose that
themisspecification of the initial condition occurs due to temperature, wind conditions
or other environmental variables. Since the observation noise of the system is usually
influenced by the same factors, it is often an oversimplification to assume that the
initial conditions and the observation noise are completely independent.
(ii) Another important context in which X0 and N cannot be assumed to be indepen-
dent concerns finance models with insider trading (see e.g. [2,6,21] for the insider
problem and [27, Sect. 1.1.2 and Example 5.8] for applications of filtering to finance
models), where some investors of a public company’s stock have access to nonpublic
information about the company. In suchmodels the signal is the nonpublic information
of that company, and the observation is stock price and other public information. In
this situation, we expect the observation noise to be related with X0, since the initial
nonpublic information creates some fluctuations on the stock price.
With those potential applications in mind, in the sequel we will see how the classical
filtering problem is modified when X0 and N are correlated, by considering X0 as an
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anticipative random variable (the reader might think of X0 as a Wiener integral of the
form

∫ ∞
0 φs dNs for a deterministic function φ ∈ L2(R+) in order to have a concrete

example in mind). Notice that explicit real-valued optimal filters for this anticipative
filtering problem have been obtained only recently; see [1], where the authors assume
that the signal Xt = X0 is constant in time and correlated to the observation noise,
and where the observation is linearly dependent on X .

The aim of this paper is thus to consider the aforementioned anticipative filtering
problem in the general setting given by (1.1), where we just assume the following
general correlation property between the initial condition X0 and the noise N .

Hypothesis 1.1 Let X0, W and N be given as in Eq. (1.1). We assume that the family
(X0,Wt , Nt , 0 ≤ t ≤ T ) is Gaussian, such that the correlation

ρN (t) := E(Nt X
T
0 ), 0 ≤ t ≤ T (1.2)

is a function in C2([0, T ],Rn×m).

Within this general framework, we will focus on the following issue concerning the
filtering problem:

(i) In the general nonlinear case given by Eq. (1.1), we derive a Zakai type equation
for the unnormalized filter, as well as a Kushner-FKK type stochastic equation
for the normalized filter. As the reader will see, the anticipative nature of our
problem will affect all the coefficients of those equations.

(ii) Whenever a linear situation is considered in the system (1.1), we get a modi-
fied version of the Kalman-Bucy filter. As in the general case alluded to in (i),
the coefficients of the linear filter are nontrivially affected by the correlation
ρN . However, the Kalman-Bucy filter derived in Sect. 4 is very convenient to
implement numerically.

(iii) If we further assume that the correlation ρN defined by (1.2) is compactly sup-
ported, then as expected, we will be able to give some stability results for the
anticipative Kalman-Bucy filter. More specifically, we show that for large times
the difference between the anticipative and non-anticipative Kalman-Bucy filters
converges exponentially fast to 0.

(iv) Still in the linear case, we handle the case of a weighted Volterra type observa-
tion Z and get the corresponding expression for the anticipative finite dimensional
optimal filter. This should be seen as an alternative point of view on [7], where
a nonlinear Voterra type signal-observation system had been considered. Our
method yields a straightforward implementation for the computation of the con-
ditional mean and variance of the signal X .

(v) Our simulation section will be focused on a classical radar-tracking example,
where the vehicle’s initial location is correlated with the observation noise. The
simulations showa significant improvement on the estimation accuracywhenever
the anticipative filter is used.

Remark 1.2 Our anticipative filtering problem can be considered as a particular
instance of filtering problems with path-space valued signal and observation pro-
cesses. These path-space models allow to consider diffusion-type signal-observation
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processes that depend on the whole history of the process. For discrete time problems
these path-space filtering models and their genealogical tree based particle approx-
imations are rather well understood, see for instance [11]. A stochastic analysis for
the continuous time version of path-space models have been developed in [12] for
filtering purposes, and in [5,16,26] in a mathematical finance context. These papers
are based on elegant functional approaches allowing to write the analog of the tra-
ditional Kallianpur-Striebel formula, as well as the Kushner-Stratonovich equations,
with innovations processes and generators of processes evolving on path spaces.

However, we should mention that our methods yield an algorithm which does not
require the introduction of genealogical trees. In particular, in case of a linear system
our filtering equation will be finite dimensional (as opposed to the genealogical trees
obtained in the path-space valued SPDEs context [3]). An interesting task is thus to
evaluate the numerical performance of our algorithm in a linear situation (see Sect. 6
for an implementation). In the general nonlinear case, however, both our algorithm
and the path-dependent algorithm are based on infinite dimensional filtering equations.
Hence a careful numerical algorithm comparison is required. We will deal with this
problem in some subsequent papers.

The basic technique we will resort to in order to deal with the anticipative filtering
framework given by (1.1) can be summarized as follows.
(a) We first rely on a general result concerning enlargements of filtrations. Namely,
we will show that one can modify N by a simple enough drift so that it becomes a Ft -
Brownianmotion (let us insist again on the fact that the systemfiltrationF includes the
information on X0). This general additional drift is then reflected in the coefficients of
the filtering equations. Note that the general enlargement of filtration result we invoke
is interesting in its own right. It can be seen as a multidimensional generalization of
[15] and is detailed in Sect. 2.
(b) Once the enlargement of filtration result is obtained, another key ingredient in the
construction of the filter is a convenient introduction of some auxiliary signal process.
Therefore, at the price of increasing slightly the dimension of our system and changing
its coefficients, we will be able to go back to a more standard filtering setting.

Notation 1.3 For any integrable process Gt , t ≥ 0, we denote by FG
t , t ≥ 0 the

filtration σ(Gs, s ∈ [0, t]). For convenience, we also write Ĝt := E[Gt |F Z
t ] and

G̃t := Gt − Ĝt , where Z is the observation process.

2 Enlargement of Filtration

When we consider an anticipative model like (1.1) under Hypothesis 1.1, one of the
main problems is the following: while N can be seen as a standard Brownianmotion in
FN , it is no longer a Brownian motion with respect to the system filtration F . Having
this problem in mind, in this section we show that there is a simple transformation
of N that makes it a Brownian motion in the enlarged filtration. This result will be
first handled in a general framework. As mentioned in the introduction, it should be
considered as a multidimensional generalization of [15].
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Lemma 2.1 Let (Bt , 0 ≤ t ≤ T ) be a standard n-dimensional Brownian Motion,
and let X = (X1, X2, . . . , Xm)T be a centered (mean zero) Gaussian random vector
in R

m with covariance � ∈ R
m×m. Suppose that E[Bt XT ] = ρ(t), where ρ ∈

C2([0, T ];Rn×m). In addition, we assume that the family {X , Bt ; 0 ≤ t ≤ T } is
jointly Gaussian. We consider a function g(t) ∈ C([0, T ];Rn×m) defined on [0, T ]
(see Lemma 2.2 for the existence of such a function) such that

g′(t)
(

� −
∫ t

0
ρ′(u)T ρ′(u)du

)
= ρ′(t), g(0) = 0. (2.1)

Let also λ = {λ(t, s); 0 ≤ s ≤ t ≤ t} be the two-parameter Rn×n-valued function
defined by

λ(t, s) = g(t)p(s) + q(s), (2.2)

where p ∈ C([0, T ];Rm×n) and q ∈ C([0, T ];Rn×n) are respectively given by
p(s) = ρ′′(s)T and q(s) = −g(s)ρ′′(s)T − g′(s)ρ′(s)T . Then the process B̃ defined
by

B̃t = Bt −
∫ t

0
λ(t, u)Budu − g(t)X (2.3)

is a n-dimensional (Gt )-Brownian motion, where (Gt ) is the augmented filtration
σ(X , Bs; 0 ≤ s ≤ t), 0 ≤ t ≤ T .

Proof We are going to show that B̃t is a G-martingale. Then, taking into account
Lévy’s characterization and the continuity of B̃, we can conclude immediately that B̃
is a standard G-Brownian motion.

On a Gaussian space, it is well known that decorrelation implies independence.
Therefore, in order to show that B̃ is a G-martingale, it suffices to show that

E{(B̃t − B̃s)X
T } = 0 and E{(B̃t − B̃s)B

T
r } = 0, 0 ≤ r ≤ s ≤ t . (2.4)

Note that by (2.3) and the identities E[XXT ] = � and E[Bt XT ] = ρ(t), the first
equation of (2.4) is equivalent to

0 =
(

ρ(t) −
∫ t

0
λ(t, u)ρ(u)du − g(t)�

)

−
(

ρ(s) −
∫ s

0
λ(s, u)ρ(u)du − g(s)�

)
. (2.5)

We will now focus on the proof of (2.5). To this aim observe that, due to the fact that
ρ(0) = 0 and g(0) = 0 (see relation (2.1)), Eq. (2.5) is equivalent to

0 = ρ(t) − ∫ t
0 λ(t, u)ρ(u)du − g(t)� . (2.6)

We are now reduced to the proof of (2.6).
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Denote by ∂s the partial derivative with respect to the parameter s. Thanks to the
definition (2.2) of λ(t, s), the reader can easily check that λ satisfies the following
relation:

λ(t, s) = ∂s

(
g(t)ρ′(s)T − g(s)ρ′(s)T

)
. (2.7)

Substituting (2.7) into the right side of (2.6) and then by integration by parts (together
with the fact that ρ(0) = 0) we obtain

ρ(t) −
∫ t

0
λ(t, u)ρ(u)du − g(t)� = ρ(t)

+
∫ t

0
[g(t)ρ′(u)T − g(u)ρ′(u)T ]ρ′(u)du − g(t)�

= ρ(t) +
∫ t

0
[g(t) − g(u)]ρ′(u)T ρ′(u)du − g(t)�. (2.8)

We now apply integration by parts again to U (u) = g(t) − g(u) and dV (u) =
ρ′(u)T ρ′(u)du, which yields

∫ t

0
[g(t) − g(u)]ρ′(u)T ρ′(u)du =

∫ t

0
g′(u)

∫ u

0
ρ′(s)T ρ′(s)dsdu. (2.9)

Substituting (2.9) into (2.8) and writing g(t)� = ∫ t
0 g

′(u)�du we obtain

ρ(t) −
∫ t

0
λ(t, u)ρ(u)du − g(t)� = ρ(t)

+
∫ t

0
g′(u)

(∫ u

0
ρ′(s)T ρ′(s)ds − �

)
du. (2.10)

Recalling that g satisfies (2.1), it is now readily checked that the right-hand side of
(2.10) vanishes. Hence we have proved our claim (2.6), which in turn proves the first
assertion of relation (2.4).

Let us turn to the second equation of (2.4). Similarly to (2.5) and recalling that λ is
a Rn×n-valued function, the second equation of (2.4) can be written as

0 = −
∫ t

0
λ(t, u)

⎡
⎢⎣
u ∧ r 0

. . .

0 u ∧ r

⎤
⎥⎦ du +

∫ s

0
λ(s, u)

⎡
⎢⎣
u ∧ r 0

. . .

0 u ∧ r

⎤
⎥⎦ du

−g(t)ρ(r)T + g(s)ρ(r)T

= −r
∫ t

r
λ(t, u)du −

∫ r

0
λ(t, u)udu + r

∫ s

r
λ(s, u)du +

∫ r

0
λ(s, u)udu

−g(t)ρ(r)T + g(s)ρ(r)T . (2.11)
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In the following, we show that (2.11) holds. Note that, owing to the fact that g(0) =
0, it is clear that (2.11) holds for r = 0, so Eq. (2.11) is equivalent to

0 = −
∫ t

r
λ(t, u)du +

∫ s

r
λ(s, u)du − g(t)ρ′(r)T + g(s)ρ′(r)T , (2.12)

which is obtained by differentiating both sides of (2.11) with respect to r . Furthermore,
along the same lines as for (2.6) and invoking the fact that

∫ s
r λ(s, u)du = 0 when

s = r , it is easy to see that Eq. (2.12) is equivalent to

0 = − ∫ t
r λ(t, u)du − g(t)ρ′(r)T + g(r)ρ′(r)T . (2.13)

Now relation (2.13) follows immediately from (2.7). Plugging this information in our
previous considerations, we get that (2.12) and therefore (2.11) hold true. This proves
that the second equation of (2.4) is satisfied. The proof is complete. �	

WithLemma2.1 in hand, notice that one can derive an explicit formula for g(t) from
(2.1) if the symmetric matrix � − ∫ t

0 ρ′(s)T ρ′(s)ds is non-singular. The following
result provides an equivalent condition to the non-singularity of�−∫ t

0 ρ′(s)T ρ′(s)ds.

Lemma 2.2 Let the assumptions be as in Lemma 2.1. Then
(a) The following identity holds for all t ≥ 0:

� −
∫ t

0
ρ′(s)T ρ′(s)ds = E

((
X − E(X |F B

t )
) (

X − E(X |F B
t )

)T
)

.

(b) The matrix � − ∫ t
0 ρ′(s)T ρ′(s)ds is non-singular for all t ∈ [0, T ] whenever

X /∈ F B
T .

(c) If ρ′(t0) 
= 0 for some t0 > 0, then � − ∫ t
0 ρ′(s)T ρ′(s)ds is non-singular for

all t ∈ [0, t0].
Proof Note first that the F B-Gaussian martingale E(X |F B

t ) can be represented as a
Wiener integral

∫ t
0 fsdBs , where fs ∈ L2([0, T ],Rm×n). By the definition of ρ(t) it

is easy to show that ft = ρ′(t)T . Therefore, we have

E

((
X − E(X |F B

t )
) (

X − E(X |F B
t )

)T
)

= � − E

(
E(X |F B

t )E(X |F B
t )T

)

= � −
∫ t

0
ρ′(s)T ρ′(s)ds,

which finishes the proof of our assertion (a).
We turn to the proof of (b).Note that thematrixE{[X−E(X |F B

t )][X−E(X |F B
t )]T }

is singular if and only if there exists a constant vector (k1, k2, . . . , km) 
= 0 such that
�m
i=1ki Xi ∈ F B

t . In other words, E{[X −E(X |F B
t )][X −E(X |F B

t )]T } is nonsingular
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if and only if �m
i=1ki Xi /∈ F B

t for any (k1, k2, . . . , km). But this holds whenever
X /∈ F B

t . This completes the proof of (b).
In order to prove (c), suppose now that ρ′(t0) 
= 0 for some t0 > 0. Then invoking

the continuity of ρ′ we can find a positive number ε > 0 such that ρ′(s) 
= 0 for
s ∈ [t0, t0 + ε]. On the other hand, we have shown at the beginning of the proof that

E(X |F B
t0+ε) =

∫ t0+ε

0
ρ′(s)dBs =

∫ t0

0
ρ′(s)dBs +

∫ t0+ε

t0
ρ′(s)dBs .

Consider now a given t ∈ [0, t0] and note that since ρ′(s) 
= 0 for s ∈ [t0, t0 + ε],
we have E(X |F B

t0+ε) /∈ F B
t . Therefore it is readily checked that X = E(X |F B

t0+ε) +
(X − E(X |F B

t0+ε)) /∈ F B
t . We can now apply directly item (b) and we conclude that

� − ∫ t
0 ρ′(s)T ρ′(s)ds is non-singular for all t ∈ [0, t0]. The proof is complete. �	

We can now give an explicit version for the relation (2.1) of g under non-degeneracy
assumptions in terms of ρ. This follows immediately from Lemma 2.2 (c).

Corollary 2.3 Let the assumptions be as in Lemma 2.1. Let T0 = sup{t ≥ 0 : ρ′(t) 
=
0} ∈ [0,∞]. For t < T0 we consider a function g defined by g(0) = 0 and

g′(t) = ρ′(t)
(

� −
∫ t

0
ρ′(u)T ρ′(u)du

)−1

.

We also set g′(t) = 0 for t ≥ T0. Then the function g satisfies Eq. (2.1). In particular,
it is always possible to find a function g such that (2.1) is satisfied.

3 Anticipative Filtering Equation: Nonlinear Case

In this section, we go back to the anticipative filtering problem (1.1), which is recalled
here for the reader’s convenience:

Xt = X0 +
∫ t

0
a(Xs)ds + Wt ,

Zt =
∫ t

0
h(Xs)ds + Nt , (3.1)

where the family (X0,Wt , Nt ; 0 ≤ t ≤ T ) satisfies Hypothesis 1.1. In particular, we
assume that ρN (t) := E(Nt XT

0 ), 0 ≤ t ≤ T is a function in C2([0, T ],Rn×m).
In order to derive an equation for the optimal filter, let us first see how Lemma 2.1

allows us to reduce our computations to an adaptive signal-observation system with
modified coefficients.

Lemma 3.1 Let (X , Z) be the solution of (3.1) and assume that Hypothesis 1.1 is
satisfied. Let p, q, λ, and g be functions defined as in Lemma 2.1 with ρ replaced by
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ρN . Set

Ñt = Nt −
∫ t

0
λ(t, u)Nudu − g(t)X0. (3.2)

The following statements holds:

(a) Ñ is a Rn-valued F-Brownian motion.
(b) Consider the Rm-valued process (X̄t )t≤T defined by:

X̄t = X0 +
∫ t

0
p(s)Nsds. (3.3)

In addition, denote

r(t) = λ(t, t) = −g′(t)ρ′(t)T , (3.4)

and observe that r(t) ∈ R
n×n for all t ≤ T . We define a process (Ut )t≤T such

that Ut ∈ R
m × R

m × R
n and some coefficients b, σ , c as follows:

U =
⎡
⎣ X
X̄
N

⎤
⎦ , b(Ut ) =

⎡
⎣ a(Xt )

p(t)Nt

g′(t)X̄t + r(t)Nt

⎤
⎦ ,

σ =
⎡
⎣ Im

0
0

⎤
⎦ , c =

⎡
⎣ 0

0
In

⎤
⎦ . (3.5)

Eventually, define a Rm-valued coefficient k by:

k(Ut ) = h(Xt ) + g′(t)X̄t + r(t)Nt . (3.6)

Then (X , Z) satisfies a signal-observation system expressed in terms of (U , Z):

dUt = b(Ut )dt + cd Ñt + σdWt (3.7)

dZt = k(Ut )dt + d Ñt . (3.8)

(c) The augmented system (3.7)–(3.8) is now governed by (W , Ñ ), which is a F-
Brownian motion.

Proof Item (a) follows from a direct application of Lemma 2.1 with B = N , X = X0
and ρ = ρN .

We turn to the proof of (b). First, plugging (3.2) into (3.1) we can write

Zt =
∫ t

0
h(Xs)ds +

∫ t

0
λ(t, s)Nsds + g(t)X0 + Ñt . (3.9)
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Recall that in (2.2) we have defined λ as λ(t, s) = g(t)p(s) + q(s). Therefore, we
can write the second and third terms of the right side of (3.9) as

∫ t

0
λ(t, s)Nsds + g(t)X0 = g(t)

(∫ t

0
p(s)Nsds + X0

)
+

∫ t

0
q(s)Nsds

= g(t)X̄t +
∫ t

0
q(s)Nsds,

where the second relation stems from (3.3). We now apply the elementary relation
αtβt = α0β0 + ∫ t

0 α′
sβsds + ∫ t

0 αsβ
′
sds to the C1-functions αt = g(t) and βt = X̄t ,

which yields

∫ t

0
λ(t, s)Nsds + g(t)X0 =

∫ t

0
g′(s)X̄sds +

∫ t

0
g(s)p(s)Nsds +

∫ t

0
q(s)Nsds

=
∫ t

0
g′(s)X̄sds +

∫ t

0
r(s)Nsds, (3.10)

where the last equality is due to the definition (3.4) of r . Reporting (3.10) into (3.9),
and taking the definition (3.6) of k into account,

Zt =
∫ t

0
h(Xs)ds +

∫ t

0
g′(s)X̄sds +

∫ t

0
r(s)Nsds + Ñt

=
∫ t

0
k(Us)ds + Ñt ,

which is equation in (3.8).
In the following, we derive the Eq. (3.7) for U . Note again that by (3.2) and taking

into account (3.10) we obtain

Nt =
∫ t

0
λ(t, s)Nsds + g(t)X0 + Ñt

=
∫ t

0
g′(s)X̄sds +

∫ t

0
r(s)Nsds + Ñt . (3.11)

In order to get the equation for the process U given by (3.5), it is thus sufficient to
combine Eq. (3.1) for X , Eq. (3.3) for X̄ and relation (3.11) for N . �	

In Lemma 3.1, let us highlight again the fact that the new system (3.7)–(3.8) is
governed by a F-Brownian motion (W , Ñ ). Hence we have reduced our anticipative
problem to a classical filtering equation with modified coefficients. In order to give
specific statements in this context, we now recall some basic notation.

Notation 3.2 In the context of Lemma 3.1, set

Mt = exp

(∫ t

0
k(Us)

T dZs − 1

2

∫ t

0
|k(Us)|2ds

)
.
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We also denote by P̃ the measure on � that is absolutely continuous with respect to P
with a Radon-Nickodym derivative on (�,Ft ) given by:

dP̃

dP

∣∣∣Ft
= M−1

t ,

where recall that Ft is the system filtration.

With our modified setting in hand, the classical filtering results contained e.g. in
[27] yield the following result.

Theorem 3.3 Let (X , Z) be the solution of (3.1) and let U be as in Lemma 3.1. Then
(a) The optimal filter πt : 〈πt , f 〉 = E( f (Ut )|F Z

t ) satisfies the following nonlinear
stochastic differential equation on [0, T ]:

〈πt , f 〉 = 〈π0, f 〉 +
∫ t

0
〈πs, L f 〉ds

+
∫ t

0
(〈πs,∇ f c + f kT 〉 − 〈πs, f 〉〈πs, k

T 〉)dνs, (3.12)

for all f ∈ C2
b (R

2m+n), where ν is the innovation process defined by νt = Zt −∫ t
0 〈πs, k〉ds and where ∇ f stands for the vector ∇ f = (∂1 f , . . . , ∂d f ).
(b) Let Vt be the unnormalized filter, defined by:

〈Vt , f 〉 = Ẽ(Mt f (Ut )|F Z
t ),

where Ẽ refers to the expectation with respect to the measure P̃. Then V satisfies the
following linear stochastic differential equation (usually called Zakai’s equation):

〈Vt , f 〉 = 〈V0, f 〉 +
∫ t

0
〈Vs, L f 〉ds +

∫ t

0
〈Vs,∇ f c + f kT 〉dZs,

where the second order differential operator L is defined by

L f = 1

2

d∑
i, j=1

Ai j∂
2
i j f +

d∑
i=1

bi∂i f . (3.13)

In (3.13), we have also set A = ccT + σσ T , and d is the dimension of U.

Remark 3.4 In (3.12) we have obtained an equation for the augmented signalUt , while
we are originally interested in the optimal filter π̃t (·) := P(Xt ∈ ·|F Z

t ). However,
one can easily derive an equation for π̃ by taking f ∈ C2

b (R
m) in Eq. (3.12) (that is

freezing the X̄ and N components in (3.12)). Therefore the equation for π̃t is in the
same form as (3.12), and it still depends on X̄ and N .
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Remark 3.5 The uniqueness of the solution for the filtering Eq. (3.12) can be obtained
by applying some classical uniqueness results for nonlinear SPDEs (see e.g. [19]). For
sake of conciseness, we leave to the patient reader the task of checking that the usual
conditions of [19] are satisfied in our case.

4 Anticipative Filtering Equation: Linear Case

This section is devoted to a particularization of problem (3.1) to a linear context. As
usual in filtering theory, wewill see that more explicit solutions to the filtering problem
can be computed in this case. We also study the asymptotic stability of the filter in this
framework.

4.1 Filter Equations

Let us specify the filtering system we consider in this linear case. Namely, the couple
(X , Z) is assumed to satisfy the following system:

Xt = X0 +
∫ t

0
a(s)Xsds + σ0Wt , (4.1)

Zt =
∫ t

0
h(s)Xsds + Nt , (4.2)

where Xt ∈ R
m , Zt ∈ R

n , Wt ∈ R
l , a(s) ∈ R

m×m , σ0 ∈ R
m×l , and h(s) ∈ R

n×m .
In our linear context, we still define X̄ by (3.3). We also define an R

2m+n-valued
augmented signal U and some augmented coefficients b, σ , c and k by

U =
⎡
⎣ X
X̄
N

⎤
⎦ , b(t) =

⎡
⎣a(t) 0 0

0 0 p(t)
0 g′(t) r(t)

⎤
⎦ , σ =

⎡
⎣σ0

0
0

⎤
⎦ , c =

⎡
⎣ 0

0
In

⎤
⎦ ,

and

k(t) = (h(t), g′(t), r(t)),

where a is defined by (4.1), p and g are introduced in Lemma 2.1 and r is given in
Lemma 3.1. It then follows from Lemma 3.1 that the linear system (4.2) is equivalent
to the following regular Kalman-Bucy signal-observation system:

dUt = b(t)Utdt + cd Ñt + σdWt

dZt = k(t)Utdt + d Ñt . (4.3)
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Let us also recall that for the linear filtering problem (4.3), the optimal filter πt is
obtained as the following regular conditional law:

πt = N (Ût , Pt ), (4.4)

where Ût = E[Ut |F Z
t ] and Pt = E((Ut − Ût )(Ut − Ût )

T |F Z
t ) designates the con-

ditional variance of Ut given F Z
t . The following theorem specifies the expressions of

Û and P:

Theorem 4.1 Let Û and P be the conditional mean and covariance of U given by
(4.4). Then:

(i) Ût solves the equation

Ût = Û0 +
∫ t

0
b(s)Ûsds +

∫ t

0
(c + Psk(s)

T )dνs, (4.5)

where the innovation process ν is given by νt = Zt − ∫ t
0 k(s)Ûsds.

(ii) TheR2m+n,2m+n-valued conditional variance P satisfies a Riccati equation of the
form:

P ′
t = Ptb(t)

T + b(t)Pt + A − (c + Ptk(t)
T )(c + Ptk(t)

T )T , (4.6)

where A = ccT + σσ T as in Eq. (3.13).

Proof Once expression (4.3) is given for the augmented Kalman filter, our result is
obtained as in the standard case, see e.g. [27, Chapter 9]. �	

4.2 Asymptotic Stability

We now particularize our situation to a linear context with constant coefficients. That
is, we consider the following signal-observation system:

Xt = X0 +
∫ t

0
aXsds + Wt ,

Zt =
∫ t

0
hXsds + Nt , (4.7)

where a ∈ R
m×m and h ∈ R

n×m are constant matrices. In order to state and prove our
asymptotic stability result, we first need to recall some classical notions which can be
found in [20, Theorem 4.11] or [27, Chapter 9].

Definition 4.2 In the following, A stands for a m × m matrix, while D ∈ R
n×m and

B ∈ R
m×l for given integers l,m, n.

(i) We define the stable subspace of matrix A as the direct sum of the (right) kernels
of (λi I − A)mi , where λi are negative eigenvalues of A and mi is the multiplicity of
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λi . We define the unstable subspace of A as the orthogonal of the stable subspace of
A.
(ii) We call the couple of matrices (A, D) detectable if the (right) kernel of

⎡
⎢⎢⎢⎣

D
DA
...

DAm−1

⎤
⎥⎥⎥⎦

is contained in the stable subspace of A.
(iii) We call the couple of matrices (A, B) stabilizable if the unstable subspace of A
is contained in the linear space spanned by the columns of (B, AB, . . . , Am−1B).

With the preliminary notions we have just introduced, we can state a result about
existence of solutions for Riccati equations.

Lemma 4.3 Let a and h be the coefficients given in (4.7). We assume that (a, h) is
detectable and (a, I ) is stabilizable. Then

(i) The algebraic Riccati equation

γ∞aT + aγ∞ + I − γ∞hT hγ∞ = 0 (4.8)

admits a unique solution γ∞ in Rm×m.
(ii)We have

λ0 ≡ inf{−Reλ : λ is an eigenvalue of the matrix a − γ∞hT h} > 0. (4.9)

In the classical situation (i.e. for X0 independent of N ) and for a system like (4.7),
it is well-known that the covariance of the optimal filter X̂t = E(Xt |F Z

t ) converges
exponentially fast to the solution of the algebraic Riccati equation (4.8); see [25]. The
stability problem has been further studied in the recent works [3,4], where the stability
of the optimal filter X̂t with respect to (X0, P) and the corresponding convergence
rate is obtained.

Our aim now is to prove that this convergence still holds true, and recover the rate
of convergence exhibited in [3,4], when the covariance between X0 and N vanishes
in finite time.

Theorem 4.4 Consider the signal-observation system given by (4.7) under the same
conditions as for Lemma 4.3. We also assume that there exists T0 > 0 such that
ρ′(t) = 0 for all t > T0. Then

(a) Let P11
t be the conditional variance of Xt given F Z

t . For all λ < λ0, where λ0 is
defined by (4.9), we have

lim
t→∞ eλt (P11

t − γ∞) = 0. (4.10)
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(b) Let (X̂0
t ) be the optimal conditional expectation of Xt given the observation

obtained when X0 and N are independent (that is, ρN = 0). Then for all λ < λ0
we have the convergence limt→∞ eλt (X̂t − X̂0

t ) = 0 almost surely.
(c) Let πt be the conditional Gaussian probability measure with mean X̂t and covari-

ance matrix Pt . In the same way, we define a conditional Gaussian measure π0
t

given as π0
t = N (X̂0

t , P
0
t ), where X̂0

t is defined in item (b) above and P0
t is the

conditional covariance of the usual Kalman filter(see e.g. [27, Eq. (9.8)]). Then
we have

lim dW (πt , π
0
t ) → 0, almost surely,

where dW denotes the Wasserstein metric in the space of probability measures.

Proof It follows from Theorem 4.1 that the filter equations for the augmented version
of Eq. (4.7) is:

dÛt = (b(t) − ck(t) − Ptk(t)
T k(t))Ûtdt + (c + Ptk(t)

T )dZt , (4.11)

Ṗt = Pt (b(t) − ck(t))T + (b(t) − ck(t))Pt + σσ T − Ptk(t)
T k(t)Pt , (4.12)

where U , b, σ and c are respectively defined by:

U =
⎡
⎣ X
X̄
N

⎤
⎦ , b(t) =

⎡
⎣a 0 0
0 0 p(t)
0 g′(t) r(t)

⎤
⎦ , σ =

⎡
⎣ Im

0
0

⎤
⎦ , c =

⎡
⎣ 0

0
In

⎤
⎦ ,

and k(t) is the matrix given by

k(t) = [h g′(t) r(t)].

Observe that the following elementary identities hold true:

ck(t) =
⎡
⎣ 0 0 0
0 0 0
h g′(t) r(t)

⎤
⎦ , b(t) − ck(t) =

⎡
⎣ a 0 0

0 0 p(t)
−h 0 0

⎤
⎦ . (4.13)

Moreover, recalling that Pt is aR(2m+n)×(2m+n) matrix, we decompose Pt into blocks
of size k× l with k, l ∈ {m, n} according to the 3 components ofU . Hence, projecting
Eq. (4.11) on the X component and recalling (4.13), it is readily checked that X̂t

satisfies

d X̂t = a X̂tdt − (P11hT + P12g′(t)T + P13r(t)T )(h X̂t + g′(t) ˆ̄Xt + r(t)N̂ )dt

+(P11hT + P12g′(t)T + P13r(t)T )dZt . (4.14)
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In the same way, projecting relation (4.12) on the first component ofU , we obtain that
P11 = E((Xt − X̂t )(Xt − X̂t )

T ) is

Ṗ11 = P11aT + aP11 + I

−(P11hT + P12g′(t)T

+P13r(t)T )(hP11 + g′(t)P21 + r(t)P31). (4.15)

Let us recall that the expression for g′ is obtained in Corollary 2.3 and r is defined
by (3.4). Therefore, since ρ′(t) = 0 for t ≥ T0, we easily get that for t > T0 we also
have g′(t) = 0 and r(t) = 0. Plugging this information into (4.14) and (4.15), the
equations for X̂ and P11 becomes:

d X̂t = a X̂tdt − P11h
T h X̂tdt + P11h

T dZt ,

Ṗ11 = P11aT + aP11 + I − P11hT hP11.

According to Lemma 4.3, if (a, h) is detectable and (a, I ) is stabilizable, then Eq.
(4.8) has a unique solution. Furthermore, it is shown in [20, Theorem 4.11] that under
the same conditions we have

lim
t→∞ eλt (P11

t − γ∞) = 0,

which is our claim (4.10). Observe also that Lemma 4.3 implies that the matrix a −
γ∞hT h is asymptotically stable. Items (b) and (c) in our Theorem thus follow from
the results in [25, Sect. 2] (see also [27, Sect. 9.5]). �	

5 A Finite Filter

In this section, we consider another application of themethods used for the anticipative
filter (1.1). Namely, inspired by e.g. [7,18], we wish to handle the case of a weighted
Volterra type observation.

To be more specific, we are now considering a signal (Xt )t≤T and an observation
(Zt )t≤T governed by the stochastic differential equations

Xt = X0 +
∫ t

0
a(s)Xsds + Wt , (5.1)

Zt =
∫ t

0
H(t, s)Xsds + Ns, (5.2)

where (X0,Wt , Nt ) is a Gaussian family and the three terms aremutually independent.
As in the previous sections, we assume that (Wt , Nt ) is a standard Brownian motion,
and a : [0, T ] → R

m×m, H : [0, T ]2 → R are continuous functions. The observation
information is given by the filtration of the observation process: F Z

t = σ(Zs; s ≤ t),
t ∈ [0, T ]. The initial condition X0 is assumed to be independent of N in this section.
However, the fact that Zt is governed by a Volterra type dynamics will force us to
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resort to the same augmented filtering equation as in the anticipative case. Observe
that an anticipative initial condition in (5.1) could also be treated with our methods.
We have refrained from going in this direction for sake of conciseness.

In order to ease our computations, we assume that the function H satisfies the
following conditions:

Hypothesis 5.1 Let H be the kernel appearing in the definition (5.2) of Z . We assume
the following holds true:

(i) H is a continuous function on [0, T ]2.
(ii) H admits the following decompositions:

H(t, s) =
∞∑
i=1

pi (t)qi (s), (5.3)

where pi , qi in (5.3) are such that pi ∈ C1([0, T ]) and qi ∈ C([0, T ]), and
where the convergence in (5.3) occurs in L1([0, T ]2).

(iii) For n ≥ 1, set

Hn(t, s) =
n∑

i=1

pi (t)qi (s), Ln(t, s) = d

dt
Hn(t, s) =

n∑
i=1

p′
i (t)qi (s). (5.4)

Then Ln converges in L1([0, T ]2) to a continuous function L(t, s).

Following is the main result of this section:

Theorem 5.2 Consider the signal-observation Eq. (5.2). Suppose that H satisfies
Hypothesis 5.1. For 0 ≤ t ≤ r we define the following augmented signal:

Vr ,t =
[

Xt∫ t
0 L(r , s)Xsds

]
,

as well as the augmented coefficients

Br (s) =
[

a(s)
L(r , s)

]
[Im 0], � =

[
Im
0

]
,

and an initial condition

P0 =
[

� 0
0 0

]
.

Then the conditional mean V̂r ,t = E[Vr ,t |F Z
t ] satisfies the equation

V̂r ,t = V̂r ,0 +
∫ t

0

[
a(s)
L(r , s)

]
X̂sds +

∫ t

0
Pr ,s[H(s, s) I ]T dν, (5.5)
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where νt = Zt −
∫ t
0 [H(s, s) I ]V̂r ,sds, and where the conditional covariance Pr ,t =

E((Vr ,t − V̂r ,t )(Vt,t − V̂t,t )T |F Z
t ) verifies the Riccati type equation

Pr ,t − P0 =
∫ t

0

(
PT
r ,s Bt (s)

T + Br (s)Pr ,s + ��T

−Pr ,s [H(s, s) I ]T [H(s, s) I ]PT
t,s

)
ds. (5.6)

Proof We proceed according to the approximation given in Hypothesis 5.1. This will
be done in two steps.

Step 1: High-dimensional augmented signal. Consider the signal X given by (5.1),
as well as the following approximation of the observation:

dXt = a(t)Xtdt + dWt ,

Zn
t =

∫ t

0
Hn(t, s)Xsds + Ns =

n∑
i=1

pi (t)X
i
t + Ns,

where we have set

Xi
t =

∫ t

0
qi (s)Xsds, i = 1, . . . , n.

Then an elementary product rule allows to write

Zn
t =

∫ t

0
Hn(s, s)Xsds +

n∑
i=1

∫ t

0
p′
i (s)X

i
sds + Ns . (5.7)

We now consider an augmented signal and some augmented coefficients as follows:

Ū n =
⎡
⎢⎣
X1

...

Xn

⎤
⎥⎦ , b̄n(t) =

⎡
⎢⎣
q1(t)

...

qn(t)

⎤
⎥⎦ , σ =

[
Im
0

]
,

h̄n(t) = [
p′
1(t) · · · p′

n(t)
]
, (5.8)

and we set

Un =
[

X
Ūn

]
, bn(t) =

[
a(t)
b̄n(t)

] [
Im 0

]
, hn(t) = [

Hn(t, t) h̄n(t)
]
. (5.9)

Then we obtain the following linear system for the observation Un :

dUn
t = bn(t)Un

t dt + σdWt . (5.10)
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In addition, it is easily seen that the process Zn defined by (5.7) verifies

Zn
t =

∫ t

0
hn(s)Un

s ds + Nt . (5.11)

As in Theorem 4.1, Eqs. (5.10) and (5.11) can now be seen as a classical Kalman-
Bucy filtering system. Hence we can invoke [27, Chapter 9] again, which yields the
following equation for Û n

t = E(Un|F Zn

t ):

Û n
t = Û n

0 +
∫ t

0
bn(s)Û n

s ds +
∫ t

0
Pn
s h

n(s)T dνn, (5.12)

where νnt = Zn
t − ∫ t

0 h
n(s)Û n

s ds is the corresponding innovation process. As far as

the covariance function Pn
t = E((Un

t − Û n
t )(Un

t − Û n
t )T ) is concerned, it satisfies the

following Riccati equation:

Pn
t − Pn

0 =
∫ t

0

(
Pn
s b

n(s)T + bn(s)Pn
s + σσ T − Pn

s h
n(s)T hn(s)Pn

s

)
ds. (5.13)

Step 2: Dimension reduction. In Step 1, the dimension of the augmented signal Un

grows with n. In order to go back to a low-dimensional signal, let us first compute the
quantity hn(t)Un

t in (5.11). Thanks to the definition (5.9) of hn and Un we have

hn(t)Un
t = Hn(t, t)Xt + h̄n(t)Ū n

t = Hn(t, t)Xt +
n∑

i=1

p′
i (t)

∫ t

0
qi (s)Xsds

= Hn(t, t)Xt +
∫ t

0
Ln(t, s)Xsds, (5.14)

where the second equality is due to the definition (5.8) of h̄n and the last equality stems
from (5.4). Interestingly enough, Eq. (5.14) suggests to consider the filtering for the
signal

Rt :=
∞∑
i=1

p′
i (t)

∫ t

0
qi (s)Xsds =

∫ t

0
L(t, s)Xsds.

To this aim, we consider a new process Rn
r ,t defined for 0 ≤ t ≤ r by

Rn
r ,t =

n∑
i=1

p′
i (r)

∫ t

0
qi (s)Xsds = h̄n(r)Ū n

t ,
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and we consider the following augmented signal (notice that the argument of h̄n is
frozen to r in the equation below; see Remark):

V n
r ,t :=

[
Xt

Rn
r ,t

]
=

[
I 0
0 h̄n(r)

]
Un
t . (5.15)

We will now get the filtering equations for the augmented signal V n
r ,t . In order to

get the equation for the conditional variance, we set

Pn
r ,t = E((V n

r ,t − V̂ n
r ,t )(V

n
t,t − V̂ n

t,t )
T |F Zn

t ) =
[
I 0
0 h̄n(r)

]
Pn
t

[
I 0
0 h̄n(t)

]T

,

where the second relation is obtained thanks to the definition (5.15) of V n and the fact
that Pn

t = E[(Un
t − Û n

t )(Un
t − Û n

t )T ].
Hence multiplying relation (5.13) by

[
I 0
0 h̄n(r)

]
on the left and by

[
I 0
0 h̄n(t)

]T

on

the right, we get

Pn
r ,t − P0

=
∫ t

0

(
(Pn

r ,s)
T Bn

t (s)T + Bn
r (s)Pn

r ,s + ��T

−Pn
r ,s [Hn(s, s) I ]T [Hn(s, s) I ] (Pn

t,s)
T
)
ds,

where the coefficients Bn and � are defined by

Bn
r (s) =

[
a(s)

Ln(r , s)

]
[Im 0], � =

[
Im
0

]
.

Sending n → ∞ on both sides of the equation and applying Lemma 5.3 we obtain
Eq. (5.6) for Pr ,t . The Eq. (5.5) for V̂r ,t can be derived in a similar way by multiply-
ing (5.12) by the proper factor given by (5.15). This completes the proof. �	

We now give some details about our auxiliary result needed in the proof of Theo-
rem 5.2. Let us now consider the following auxiliary result:

Lemma 5.3 Let (x, y), (x̃, y), (x, yn) and (x̃, yn) be joint Gaussian random vectors,
and suppose that yn converges to y in L2(�). Then

(i) E[x |yn] → E[x |y] in L2(�);
(ii) E[E(x |yn)E(x̃ |yn)] → E[E(x |y)E(x̃ |y)].
Proof Denote (x, y) ∼ N (μ,�), (x̃, y) ∼ N (μ̃, �̃), (x, yn) ∼ N (μn, �n), (x̃, y) ∼
N (μ̃n, �̃n). Since yn converges to y in L2(�), we have as n → +∞,

E(yn) → E(y) and E

{(
x
yn

) (
x yn

)} → E

{(
x
y

) (
x y

)}
,
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which implies (μn, �n) → (μ,�). On the other hand, writing

E

[(
x
y

)]
=

(
μ1
μ2

)
, and Cov

[(
x
y

)]
=

(
�11 �12
�21 �22

)
,

it is well known that

E(x |y) = E[x] + �12�
−1
22 (y − E[y]).

Taking into account the above two points, we have (i) and (ii). �	

6 Application to Radar Tracking

In this section we will apply the anticipative linear filter described in Sect. 4 to a
standard practical problem considered in the literature. Specifically, we consider an
anticipative version of the radar tracking system given in [14, Chapter 5]. We shall
observe how the algorithm induced by Theorem 4.1 improves the estimation, versus
a method using the classical Kalman filter and ignoring the anticipative problem.

In the radar tracking situation taken from [14] the signal X is governed by Eq. (4.1),
where a(s) is a constant matrix. Namely, Xt = [ rt ṙt u1t θt θ̇t u2t ] is a 6-dimensional
process, where (rt , θt ) describes the position of the tracked vehicle expressed in polar
coordinates in R

2 (r is called range and θ is called bearing in [14]). The coordinates
(u1t , u

2
t ) also stand for a maneuvering-correlated state noise, while ṙt and θ̇t respec-

tively represent the time derivatives for the range and the bearing.
In [14] the dynamics for the process X is supposed to be governed by the following

equation:

dXt =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 κ − 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 κ − 1

⎤
⎥⎥⎥⎥⎥⎥⎦
Xtdt +

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
σ1 0
0 0
0 0
0 σ2

⎤
⎥⎥⎥⎥⎥⎥⎦
dWt , (6.1)

where κ is a real valued constant, σ1, σ2 > 0 and W is a 2-dimensional Brownian
motion. Equation (6.1) can be interpreted in the following way: we write that rt =
r0 + ∫ t

0 ṙsds, where the velocity ṙt is equal to u1t and u1t is an Ornstein-Uhlenbeck
process driven by W 1

t . Similar assumptions are also in order for the bearing θ .
As far as the observation process is concerned, we write Eq. (4.2) under the fol-

lowing form:

dZt =
[

σ−1
θ 0 0 0 0 0
0 0 0 σ−1

θ 0 0

]
Xtdt + dNt , (6.2)
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whereσθ is a positive constant and N is a 2-dimensional Brownianmotion independent
of W . Note that according to (6.2), Z1

t (resp. Z2
t ) is a linear function of rt (resp. θt )

plus a noisy perturbation:

dZ1
t = σ−1

θ rtdt + dN 1
t , and dZ2

t = σ−1
θ θt dt + dN 2

t .

The anticipative nature of our system is enclosed in the following assumption: We
assume that the initial location X0 is influenced by the temperature, wind conditions
and other environmental variables, while at the same time these factors have an impact
on the observation. More precisely, we assume that

X0 :=

⎡
⎢⎢⎢⎢⎢⎢⎣

r0
ṙ0
u10
θ0
θ̇0
u20

⎤
⎥⎥⎥⎥⎥⎥⎦

= ξ + η, where η = γ

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
0 0
1 0
0 1
0 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
N1 = γ

⎡
⎢⎢⎢⎢⎢⎢⎣

N 1
1
0
N 1
1

N 2
1
0
N 2
1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (6.3)

where we recall that N j
1 stands for the j-th component of N evaluated at t = 1. In

Eq. (6.3) the vector ξ is a standard R6-valued Gaussian random variable independent
of (W , N ), and γ is a positive constant measuring the anticipation strength. Notice
that according to Eq. (6.3) the anticipation of X0 is only felt on the components r0,
θ0 and u0 of X0. Moreover in (6.3) we assume that r0 and u10 depend on N 1

1 , while θ0
and u20 depend on N 2

1 , which is natural in our context. For our numerical simulations
we take κ = 0.5, σθ = 0.017 rad, σ1 = 103/3 and σ2 = 1.3.

As the reader might expect, our new filter (4.5)–(4.6) provides a much better esti-
mation for the anticipative signal-observation system (6.1)–(6.2). This is attested by
the following simulation. Namely, in the figures below the blue curve represents the
signal path, the yellow curve is drawn according to the classical Kalman filter, and
the orange curve is drawn thanks to our new filter. We have zoomed in the picture for
comparison purposes, so that the signal curve appears to be linear.
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In this set of figures we successively take γ = 1000, 100, 10, 1, in order to observe
the effect of the anticipation strength on the filter performance.
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Remark 6.1 As our simulation shows, the improvement of the new filter from the
classical Kalman filter becomes more significant as the anticipation gets stronger.

Denote by X̂ i
t , i = 1, . . . , 6 the optimal filter, i.e. X̂ i

t = E(Xi
t |F Z

t ), and denote
by X̄ i

t the estimate obtained while the anticipation is ignored. The following tables
present the ratio Ri between the error deviations of these two estimates at time t , that

123



422 Applied Mathematics & Optimization (2021) 84:399–423

is,

Ri (t) =
⎛
⎝E

[
|Xi

t − X̂ i
t |2

]

E
[|Xi

t − X̄ i
t |2

]
⎞
⎠

1/2

For t = 1, we consider the anticipation strength γ = 1, 10, 100.

t=1 R1 R2 R3 R4 R5 R6

γ = 1 0.0100 0.0361 0.0608 0.0141 0.0400 0.0616
γ = 10 0.0100 0.0265 0.0574 0.0100 0.0316 0.0574
γ = 100 0.0100 0.0265 0.0574 0.0100 0.0316 0.0574

For t = 3/4, we consider the anticipation strength γ = 1, 10, 100, 1000.

t=3/4 R1 R2 R3 R4 R5 R6

γ = 1 0.3670 0.3684 0.3688 0.3670 0.3686 0.3689
γ = 10 0.4603 0.4609 0.4615 0.4574 0.4610 0.4615
γ = 100 0.4965 0.4969 0.4981 0.4953 0.4970 0.4981
γ = 1000 0.5007 0.5011 0.5023 0.4997 0.5012 0.5023

As the reader can see, our ratios are small regardless of the values of t and γ . This
indicates that our filter performs well compared with a filter ignoring the anticipative
nature of the signal.

We end this section with a remark on the stability of our new filter (4.5) and (4.6):

Remark 6.2 In our numerical experiments, we find that the stability of the original
system (4.1) and (4.2) and the new system (4.3) can be quite different. As η gets
smaller the stability of the new system usually decreases, and therefore finer mesh is
needed in the simulations in order to capture the accuracy improvement achieved by
our new filter.
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