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ABSTRACT. We propose the novel augmented Gaussian random field (AGRF),
which is a universal framework incorporating the data of observable and deriva-
tives of any order. Rigorous theory is established. We prove that under cer-
tain conditions, the observable and its derivatives of any order are governed
by a single Gaussian random field, which is the aforementioned AGRF. As
a corollary, the statement “the derivative of a Gaussian process remains a
Gaussian process” is validated, since the derivative is represented by a part
of the AGRF. Moreover, a computational method corresponding to the uni-
versal AGRF framework is constructed. Both noiseless and noisy scenarios
are considered. Formulas of the posterior distributions are deduced in a nice
closed form. A significant advantage of our computational method is that the
universal AGRF framework provides a natural way to incorporate arbitrary
order derivatives and deal with missing data. We use four numerical examples
to demonstrate the effectiveness of the computational method. The numerical
examples are composite function, damped harmonic oscillator, Korteweg-De
Vries equation, and Burgers’ equation.

1. Introduction. Gaussian random field (GRF) has been widely used in scien-
tific and engineering study to construct a surrogate model (also called response
surface or metamodel in different areas) of a complex system’s observable based
on available observations. Especially, its special case Gaussian process (GP) has
become a powerful tool in applied math, statistics, machine learning, etc. [25]. Al-
though random processes originally refer to one-dimensional random fields [1], e.g.,
models describing time dependent systems, the terminology GP is interchangeable
with GRF now in most application scenarios that involve high-dimensional systems.
Also, in different areas, GRF-based (or GP-based) methods have different names.
For example, in geostatistics, GP regression is referred to as Kriging, and it has
multiple variants [26, 13].

To enhance the prediction accuracy of the GRF-based surrogate model, one can
incorporate all the additional information available, such as gradients, Hessian,
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multi-fidelity data, physical laws, and empirical knowledge. For example, gradient-
enhanced Kriging (GEK) uses gradients in either direct [20] or indirect [4] way to im-
prove the accuracy; multi-fidelity Cokriging combines a small amount of high-fidelity
data with a large amount of low-fidelity data from simplified or reduced models,
in order to leverage low-fidelity models for speedup, while using high-fidelity data
to establish accuracy and convergence guarantees [12, 10, 16, 22]; physics-informed
Kriging takes advantage of well-developed simulation tools to incorporate physical
laws in the resulting GRF [31, 30, 32]; GP-based numerical ordinary/partial dif-
ferential equation solver intrinsically imposes the equations in the structure of the
GP, and it is one of the most important tools in probabilistic scientific comput-
ing [27, 11, 3, 23, 24, 5]; inequality constraints that are not explicitly reflected in
governing equations, e.g., positivity, monotonicity, can also be imposed to enhance
accuracy and reduce uncertainty in the prediction [7, 17, 19, 21].

Despite the success in applying the aforementioned GRF-based methods to the
construction of surrogate models for practical problems, the theory related to the
accuracy, convergence, uncertainty, etc. of these methods is not well developed in
general. Especially, when using the observable and its derivatives (such as gradient)
jointly, e.g., to solve differential equations, one usually assumes that the random
field representing the derivative is also a GRF, and its mean and covariance func-
tions can be calculated by taking derivatives of the mean and covariance functions of
the GRF representing the observable. Also, the correlation between the observable
and its derivative is calculated accordingly [25, 2]. Intuitively, this is correct, be-
cause a linear combination of multiple Gaussian random variables is still a Gaussian
random variable. However, taking limit of a linear combination is a critical step in
the definition of derivative, which makes the theoretical guarantee of using deriva-
tives in GRF-based methods less obvious. To the best of our knowledge, there is no
comprehensive theory on the validity of the aforementioned assumption on the ran-
dom field representing the derivative nor on its relation with the observable. Most
literature uses the linearity of the derivative operator to validate this assumption
(e.g., [28]), which is questionable.

In this work, we propose the novel augmented Gaussian random field (AGRF),
which is a universal framework incorporating the observable and its derivatives of
any order. Rigorous theory is established. Under certain conditions, the observ-
able and its derivatives of any order are governed by a single GRF, which is the
aforementioned AGRF. As a corollary, the assumption “the derivative of a Gauss-
ian process remains a Gaussian process” in [28] is validated, since the derivative
is represented by a part of the AGRF. Furthermore, we construct a computational
method corresponding to the universal AGRF framework. Both noiseless and noisy
scenarios are considered. Formulas of the posterior distributions are deduced in a
nice closed form. A significant advantage of our computational method is that the
universal AGRF framework provides a natural way to incorporate arbitrary order
derivatives and deal with missing data, e.g., the observation of the observable or its
derivative is missing at some sampling locations.

This paper is organized as follows. The theoretical framework is presented in Sec-
tion 2, the computational framework is given in Section 3, the numerical examples
are provided in Section 4, and the conclusion follows in Section 5.



AUGMENTED GAUSSIAN RANDOM FIELD: THEORY AND COMPUTATION 933

2. Theoretical framework. In this section, we briefly review some fundamental
definitions and an important theorem for GRF. Then we present our main theoret-
ical framework, i.e., the AGRF, that unifies the GRFs representing the observable
and its derivative. Finally, we extend it to the general case to incorporate informa-
tion of derivatives of arbitrary order. For notation brevity, we consider the system’s
observable as a univariate function of the physical location or time. The extension
to the multivariate case is straightforward. Therefore, our theoretical framework is
applicable to GP methods that use the information of gradient as well as arbitrary
order derivatives of the observable.

2.1. Basic concepts. In this paper, the Euclidean space R refers to R equipped
with Euclidean metric and Lebesgue measure on Lebesgue-measurable sets. We
begin with the definition of random fields.

Definition 2.1. Let (Q,F,P) be a probability space and X be a set. Suppose
f: Q2 x X — R is a mapping such that for each z € X, f(-,z) : @ = R is a random

variable (or measurable function). Then f is called a real-valued random field on
X.

We note that, in practical problems, X is typically a subset of the d-dimensional
Euclidean space R?, i.e., X C R%. Here, X is considered as a general set as in [9].
Next, we define Gaussian random fields as follows:

Definition 2.2. Suppose f is a real-valued random field on X such that for ev-
ery finite set of indices x1,---,2, € X, (f(w,z1), -+, f(w,zp)) is a multivariate
Gaussian random variable, or, equivalently, every linear combination of f(w,x1),
-+« f(w,zp) has a univariate Gaussian (or normal) distribution. Then f is called
a Gaussian random field on X.

Here w is an element in the sample space ). A Gaussian random field is charac-
terized by its mean and covariance functions:

Definition 2.3. Given a Gaussian random field f on X, its mean function is defined
as the expectation:

m(x) =

E[f(w, z)], (1)

and its covariance function is defined as:
k(z,2") = E[(f(w, ) = m(2))(f(w, 2") — m(z"))]. (2)

Here, the covariance function is also called the kernel function. On the other
hand, the following theorem provides a perspective in the converse way:

Theorem 2.4 (Kolmogorov consistency theorem). Let X be any set, m : X —
R any function, and k : X x X — R such that k is symmetric and nonnegative
definite. Then there exists a Gaussian random field on X with mean function m
and covariance function k.

Proof. See [14] (p. 176) or [9] (p. 443). O

2.2. Main results. We start our theoretical results with a limit in a Gaussian
random field related to the derivative of its realization. The following theorem is
a classic result with a proof in [6] (p. 84). Here, we adapt the statement into our
framework and reorganize the proof.
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Theorem 2.5. Let f be a Gaussian random field on R with mean function m(x)
and covariance function k(x,x’) such that m(z) is differentiable and k(z,z") is twice
continuously differentiable. Then there exists a real-valued random field Df on R
such that for each fived x € R,

f(w,x + 6) - f(w,x) m.s.
) §—0

Df(w, ). (3)

Remark 2.6. Here “m.s.” stands for mean-square convergence, i.e., convergence
in L?. Since mean-square convergence implies convergence in probability and con-
vergence in distribution, the limit in Theorem 2.5 also holds in probability and in
distribution.

Proof of Theorem 2.5. We use the notations

m'(x) := %m(az) (4)
and 52
kio(z,2') == axax,k(x,x’). (5)

Let 2 € R be fixed. For any § € R — {0}, define
f(w,x+5) — f(w,x)

& =&(w) = 5 : (6)
Suppose 4,7 € R — {0}. Then
E[¢5¢-]
_gp|fwatd) f(wydf)g(Tf(w,1?+T) — flw,z))

= (L, 7 + ) (w4 7)] ~ Blf(w,+ )/ (w, )]
—Elf (w,2)f(w,z +7)] + E[f (w, 2) f (w, 2)]}

= %{k(w +ox+7)+m(z+o)m(z+7) — k(x4 6,2) —m(x + d)m(z)
—k(z,z+ 1) —m(z)m(z + 1) + k(z, z) + m(z)m(z)}

= = {k{a + 6,04 7) — bz +6,0) — k(a7 +7) + bz, )}

1
+ g{m(a: +d)m(x +7) — m(x + §)m(x) — m(z)m(z + 7) + m(z)m(x)}.
Since m(z) is differentiable and k(x,2’) is twice continuously differentiable,
lim E[é5&,] = kia(z, z) +m/ (x)m/ (x). (8)
6,7—0
Therefore,

Jim Ellgs — & °) = lim {Blésts] + Blgo¢] —2Blgst b =0 (9)

Choose a sequence 7; — 0 (i = 1,2, ---) such that

Eller,, — 7] < 5 (10)

Then
E|§7—i+1 - gﬂ'

< E[|§T«;+1 _gTi

2 < 2& (11)
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By monotone convergence theorem,

E Z ‘STH»I - fn ] = ZEléTiJrl - gTi

i=1 i=1

<1< oo. (12)

Thus,

P (Z €risr — & < oo> = 1. (13)
i=1

So the random variable 1 = &, + 3777, (&r,., — &) is well defined, and it is a
candidate to be the limit in Eqn. (3). Now, by monotone convergence theorem and
Cauchy-Schwarz inequality, for any j > 1,

2 2
oo

E[‘n_57j|2] =E Z(§7i+1 _é-'ri) <E Z|§T1+1 gﬂ
i=j

=E Z |£T1‘,+1 - E‘H Z |£‘ri/+1 - g‘ri/ |
i=j

i'=j
=k [ f‘ril+1 - g‘ri/
2;;; | (14)

= Z Z E|£Ti+1 - €7'i 57,/+1 - €Ti/

i=j i'=j
<33 Bl — &Pl ,, — & ]

i1=j i'=j

2

<ZZ~/221221 Z21221’Z<2j 1) :

i=j i'=j

Since

Elln — &%) < E[2ln — &, * + 2I&, — &%) = 2E[ln — &, %] + 2E[&r, — &), (15)

we have

lim E|n — &/ =0, (16)
6—0
or
1
& E) UE (17)
Let Df(w,x) =0, do the same for every x, and the proof is complete. O

Remark 2.7. For § € R — {0}, let

w,r+90)— flw,x
fo = oy = £ = florn
be a random field on R. One could also consider the convergence of the family
{fs | 6§ € R—{0}} to Df. We have refrained from getting into this type of
consideration for the sake of conciseness.

(18)

The next lemma indicates that the limit of a series of Gaussian random variables
is still a Gaussian random variable.
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Lemma 2.8. Let (Q,F,P) be a probability space and & (6 € R) be a family of
random variables such that &5 (5 # 0) are Gaussian random variables with mean fis

and variance Ug, and

s ?j{? &o- (19)

Then & has Gaussian distribution with mean po and variance o3, and

li =
62}% Hs Ho,

gi_r% o3 =ap. (20)
Proof. Suppose §, 7 € R — {0}. Since
tim E[lés — &) = 0 (21)
and
E[|¢s — &%) < 2E[|&s — &ol*) + 2E[|¢- — &), (22)
we have
Jim Bles — &[7] = 0. (23)
Thus,

s = 1| = [Elés — &1 < Blé — & < VE[G — &P, (24)

which indicates

lim |ps — pr| = 0. (25)
§,7—0
Hence, there exists g € R such that
li = lg- 2
lim p15 = po (26)
By Eqn. (23), there exists A > 0 such that for any § (0 < |0] < A), we have
E[|& - &al’] < 1. (27)
So
E[¢5] < 2E[|& — €al”] + 2B[€3] < 2+ 2B[G3]. (28)

Since €a is Gaussian, E[¢2] is finite. Now, for any 6 (0 < |§| < A) and 7 (0 < |7] <
A), by Cauchy-Schwarz inequality,

|0F — 02| = [(E[63] — 13) — (BIEX) — 13)]|
< [E[63] — E[€Z]] + |pg — 3]
< Bl — ] + |5 — 13
= E[|& — & 1€ + &) + |ug — 12|

(29)
< VE[& — &PIVEIIE + & 2] + |1j — 1]
< VE[& — & |?]y/2E[&5] + 2B[€2] + |15 — pi7|
< VE[lG — & Ply/8 + SEIEA] + 12 — 122,
By Eqns. (23), (26), and (29), we have
lim |0} — 02| = 0. (30)

§,7—0
Since ¢ > 0 for all § € R — {0}, there exists o > 0 such that

- N
gli%aé = 0}. (31)
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If ¢ = 0, then
El§o — ol < Eléo — &) + Elés — ps| + Elps — 1o
< VE[& — &P+ VEIE — usl?] + s — ol (32)
= VE[|& — &2 + /07 + s — pol-

Let § — 0 and we have

E[¢o — po| =0, (33)
or

P(§ = po) = 1. (34)
Therefore, & has degenerate Gaussian distribution with mean py and variance 0.
If 62 > 0, then there exists A’ > 0 such that for any § (0 < |§| < A’), we have

03 >03/2>0. (35)
For all § (]6] < A’), define
_ S

g5

Then when 0 < |6] < A’, ns has the standard Gaussian distribution. Now,

s (36)

€ — s Eo— ol
E[|775—7702]:El os 000 -
r 2 2
<op || S| op ||k _to ]
ags§ g0 ags§ g0
r 2 2 2
<ap |8 S Lp || _ S| gt ko (37)
os oo oo oo as o]
2 2
1 1 4 5
—4 (5 - o) Bl + pElles - o) 2|20 - 2
ags g0 [e3) g (o)
(o0 — 05)2 2 2 4 2 Ms Mo ?
U(%CT(Q) (05 + :ué) + Ug H&i 50‘ ] + s o0
Thus,
lim E[|ns — no[?] = 0. (38)
§—0
Let
1 z 2
P(z) = — e 24t 39
==/ (39)

be the cumulative distribution function (CDF) of the standard Gaussian distribu-
tion. For any z € R and any € > 0,

E[lns — m0|?]

P(no <z) <Ps < z4¢€) +P(Ins —mo| >¢€) < P(2+¢) + 5

(40)

Let § — 0 and we have

Let € — 0 and we have
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On the other hand,
P(no > 2z) <P(ns >z —€) + P(Ins —no| > ¢€)

31—¢>(z_€>+EH%€7;770|2}_ (43)

Let 6 — 0 and we have

P(no>2) <1—®(z—e). (44)
Let € — 0 and we have
P(no > 2) <1—®(z2), (45)
or
P(no < z) = ©(2). (46)
Combining Equs. (42) and (46), we have
P(no < z) = ®(2). (47)
Thus, 79 has standard Gaussian distribution, which implies that &y has Gaussian
distribution with mean po and variance o3. O

Now we define an augmented random field consisting of a Gaussian random field
f and the D f associated with it. Then we prove that this augmented random field
is a Gaussian random field.

Definition 2.9. Let f be a Gaussian random field on R with mean function m(z)
and covariance function k(z, ') such that m(z) is differentiable and k(x,2’) is twice
continuously differentiable. The real-valued random field D f defined in Theorem 2.5
is called the derivative random field of f. Define a real-valued random field on
R x {0,1}:

f:OxRx{0,1} =R (48)
such that

fN(wv‘raO) = f(w, ) (49)
fw,z,1) = Df(w,x).

We call f as the augmented random field of f.

Theorem 2.10. Let f be a Gaussian random field on R with mean function m(x)
and covariance function k(x,x") such that m(z) is differentiable and k(z,z") is twice

continuously differentiable. Then the augmented random field f of f is a Gaussian
random field on R x {0,1}.

Proof. For any p,q € N* U {0} such that p+¢ > 1, any @1, -+ ,2p, Y1, - ,Yq € R,

and any ci, -+ ,¢p,d1, -+ ,dg € R, we have the linear combination:
P q ~
> eif(w i, 0)+ > dif(w,y;,1)
i=1 j=1

d;Df(w,y;)

d; lim flw,y; +65) — flw,y)
6;—0 5j

p q
= lim-~~lim0 Zcif(wﬁi)-i-Zdjf(w’yj—'_égj_f(w’yj) 7
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where the limits are taken in mean-square sense. Since f is a Gaussian random

field,

p

Zcz’f(waxi)“!‘idjf(w,yj—’—&j)_f(w,yj) (51)

5
i=1 J

has Gaussian distribution for any dy,--- ,d; € R—{0}. By Lemma 2.8, the limit has

Gaussian distribution. As this holds for every linear combination, f is a Gaussian
random field. O

After proving the augmented Gaussian random field is well defined, we calculate
its mean and covariance functions.

Theorem 2.11. Let f be a Gaussian random field on R with mean function m(x)
and covariance function k(x,x’) such that m(z) is differentiable and k(z,z") is twice
continuously differentiable. Then the augmented random field f of f has mean
function:

m:Rx{0,1} = R (52)
such that
m(z,0) = m(z),
d (53)
ey = L
e, 1) = <m(e),
and covariance function:
E:Rx{0,1} xRx{0,1} =R (54)
such that ~
k(z,0,2",0) = k(z,2'),
~ 0
') = /
k(x,0,2',1) &U/k(x,x ), -
~ 0
1.2 _ Y /
k(xz,1,2',0) &Uk‘(x,x ),
7. ! 82 /
1 1) = —— .
k(z,1,2',1) 8$ax/k(x,x)
Proof. We use the notation
m'(z) := %m(x) (56)

By the definition of f , we have

(e, 0) = E[f(w,2,0)] = E[f(w,2)] = m(a). (57)

By Theorem 2.5 and Lemma 2.8, we have

Th(l‘, 1) = E[f(w,a; 1” = E[Df(wvx)]

_ . f(w,m—l—é)—f(w,x)
=F [?i% 5 }
1 f(w,:r+§)—f(w,x)
_§5%E[ 5 } (58)
~ lim m(x + 0) — m(x)
6—0 )

=m'(z).
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Similarly, by definition,

k‘(.’L‘, 0, x/’ 0) = E[(f("W T, 0) - fn(m, O))(f(wa x/’ 0) - ﬁl(l‘/, 0))]
(f(w,z) = m(2))(f(w, ") = m(z"))] (59)

=E _f(w,a:) (Df(w,x’)—
N k(z,2' +6) — k(z,2') () (m(x' —&-(5();— () L > .

Since

Similarly,

Finally,

k(z,1,2',1)
— BDf(w,2) D (w,2')] — () ()

E [Df(w,x) (Df(w,m’) Sfer el f(w’x/))]
flw, 2’ + 535 — flw, w’)}

+E [D f(w,2) — m/(z)m (2')



AUGMENTED GAUSSIAN RANDOM FIELD: THEORY AND COMPUTATION 941

~E [Dfoe) (Dr(ws) - L2 D S]]
E[DS (w,2)f (.7’ +8)] ~ E[Df (w,2)  (w,2")]
1)

=B [Df(w,x) (Df(ww’) ) f<w»w’)>}
+ sek(@ ' +0) +m/(@)m(2’ +0) — Fk(z,a") —m/(x)m(z’)
1
) (64

_B [Df(w,x) (Df<w7x’) ey 52 - f(w’x/)ﬂ

Lk(z, 2" +0) — Zk(z,2’) , m(z' +6) — m(z') p
+ 9 5 < +m(:c)< 5 m(ﬂﬂ))

Let § — 0 and use the fact that k(z,2’) is twice continuously differentiable,

+ —m/(z)m/(2)

2
k(z,1,2',1) = 4

oxox’

k(z,z"). (65)
O

Corollary 2.12. Let f be a Gaussian random field on R with mean function m(x)
and covariance function k(x,z') such that m(x) is differentiable and k(x,z’) is
twice continuously differentiable. Then the derivative random field Df of f is a
Gaussian random field on R with mean function dm(z)/dx and covariance function

0?k(x,2')/0x0z’ .

Sketch of proof. This is a direct conclusion from Theorem 2.5, Theorem 2.10, and
Theorem 2.11. O

2.3. Extensions. The definition of the aforementioned augmented Gaussian ran-
dom field can be extended to more general cases involving higher order derivatives.

Definition 2.13. Let f be a Gaussian random field on R such that the derivative
random field D f is a Gaussian random field on R with differentiable mean function
and twice continuously differentiable covariance function. By Corollary 2.12, the
derivative random field D(Df) of Df is a Gaussian random field on R. Define the
second order derivative random field of f as D?f = D(Df). Recursively, define
the n'® order derivative random field of f as D"f = D(D""'f) when D" 1f is a
Gaussian random field on R with differentiable mean function and twice continu-
ously differentiable covariance function.

Corollary 2.14. Let f be a Gaussian random field on R with mean function m(x)
and covariance function k(x,x’) such that m(x) is n times differentiable and k(x, x")
is 2n times continuously differentiable (n € NT). Then Df,--- ,D"f are well-
defined and are Gaussian random fields on R.

Sketch of proof. This corollary is proved by applying Corollary 2.12 recursively. [

Now we can define the general augmented Gaussian random field involving higher
order derivatives.
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Definition 2.15. Let f be a Gaussian random field on R with mean function m(z)
and covariance function k(z, z’) such that m(x) is n times differentiable and k(x, 2’)
is 2n times continuously differentiable (n € N*). Define the n*® order augmented
random field of f as:

ff:OxRx{0,1,--- ,n} =R (66)
such that
f(w,2,0) = f(w,z)
fYw,z,1) = Df(w,z)

fM(w,z,n) = D" f(w, x).

Theorem 2.16. Let f be a Gaussian random field on R with mean function m(x)
and covariance function k(x,x’) such that m(x) is n times differentiable and k(x, x")
is 2n times continuously differentiable (n € Nt ). Then the n'" order augmented
random field f* of f is a Gaussian random field on R x {0,1,--- ,n}.

Sketch of proof. This is proved in a similar way to the proof of Theorem 2.10. [

The following theorem calculates the mean and covariance functions of the n*®
order augmented Gaussian random field.

Theorem 2.17. Let f be a Gaussian random field on R with mean function m(x)
and covariance function k(x,x’) such that m(x) is n times differentiable and k(x, x")
is 2n times continuously differentiable (n € N*). Then the n'" order augmented
random field f™ of f has mean function:

" Rx{0,1,---,n} >R

d (68)
dxi m(x),

m"(z,i) =

and covariance function:

" Rx{0,1,--- ,n} xRx{0,1,--- ,n} - R
3 oiti (69)
n . o\ /
k (Z,Z,Z,])— axzax/jk(xVT)
Sketch of proof. When i, j € {0,1}, by Theorem 2.11, the formulas hold. Then this
theorem can be proved by using induction and following a similar way to the proof
of Theorem 2.11. O

Furthermore, we can extend the augmented Gaussian random field to the infinite
order case, and calculate the mean and covariance functions accordingly.

Definition 2.18. Let f be a Gaussian random field on R with mean function m(z)
and covariance function k(x, 2’) such that m(x) and k(z,z’) are smooth. Define the
infinite order augmented random field of f as:

fPOxRxN-=R (70)
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such that ~
[P (w,z,0) = f(w, )
foo(w,z, 1) =Df(w,x)

f®(w,z,n) = D" f(w,x)

Theorem 2.19. Let f be a Gaussian random field on R with mean function m(x)
and covariance function k(x,x') such that m(x) and k(z,x") are smooth. Then the
infinite order augmented random field f°° of f is a Gaussian random field on R x N.

Sketch of proof. This is proved in a similar way to the proof of Theorem 2.10. O

Theorem 2.20. Let f be a Gaussian random field on R with mean function m(x)
and covariance function k(z,z’) such that m(z) and k(z, ') are smooth. Then the
infinite order augmented random field f>° of f has mean function:
m>: RxN-—=R,
a (72)

7 (2,1) = (),

and covariance function:
E*: RxNxRxN-=R,

S oi+i / (73)
k> (i, 2, j) = Wk(xam )
Sketch of proof. When i, € {0,1}, by Theorem 2.11, the formulas hold. Then the
result is proved by induction and in a similar way to Theorem 2.11. O

3. Computational framework. In this section, we describe the computational
framework for the AGRF prediction. Noiseless and noisy scenarios are considered.
Since we use univariate observable in the theoretical framework, we illustrate the
same scenario here for consistency and conciseness. Formulations for the multi-
variate cases can be deduced based on our results and the gradient-enhanced Krig-
ing/Cokriging methods (see, e.g., [29, 15, §]).

3.1. Prediction using noiseless data. As in the conventional GP regression, we
aim to condition the joint Gaussian prior distribution on the observations, as such to
provide a posterior joint Gaussian distribution. In our framework, the observations
include the collected data of the observable and its derivatives of different orders.
Suppose we are given a finite collection of real-valued data pairs:

Observable:  (xo1,%01) (T02,%02) - (Topes Yopo)
First order derivative: (x11,%11) (Z12,¥12) -+ (T1pys Y1p,)
Second order derivative: (w21, y21) (Z22,y22) - (T2pys Y2p,) (74)
n*™ order derivative: (Tn1,Yn1) (Tn2,Un2) - (Topns Ynp,)
with n > 0 and pg,p1,p2, - ,pn = 0. Here, x;; are locations and y;; are the

data collected at this location. Of note, we consider a general case, and it is not
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necessary that z;; = z(;41);. In other words, it is possible that the observable and
its derivatives are sampled at different locations. We assume that a mean function
and a covariance function are given for the Gaussian random field f that describes
the observable:

m:R—R (75)
and

k:RxR—R (76)

such that m is n times differentiable and k is symmetric, nonnegative definite, and
2n times continuously differentiable. By Theorem 2.4 and Theorem 2.16, there
exists a Gaussian random field f* on R x {0,1,--- ,n} whose mean function and
covariance function are given by Theorem 2.17. We use the augmented Gaussian
random field f” to model the data such that

f”(w,xij,i) =y;; fori € {0,1,--- ,n} and j € {1,--- ,p;}. (77)

The prediction of the ¢'" (0 < ¢ < n) order derivative at any Zq« € R s the posterior
mean of the random variable f™(w, Zgx, q) (denoted by yg.), and the uncertainty in
the prediction can be described by the confidence interval based on the posterior
variance (or standard deviation).

We introduce the notations:

T
Lo = [$017$027"' ,$0p0]
T
Ty = [5511,3012,"' )xlpl]
(78)
T
Ty = [xnlaxn% e axnpn]
and
T
Yo = [y01,y02, s ,iUOpo]
T
Y1 = [yll,yu, T 7y1p1]
(79)

T
Yn = [ynh Yn2, - aynpn]

Since f™ is a Gaussian random field, we have the following multivariate Gaussian
distribution:

Yqx M, K. K*O K*n
Yo M Ko« Koo -+ Kon
where
M, = mn(xq*7Q)
T (81)
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and
K, = ];n(xq*’ 45 Lgx, Q)
K*i’ = |:];n($q*7 q,Ti'1, i/)7 Tty ]::n(xqw q, xi’pi/ ) Zl)}
- _ - . T
Ki - |:kn(1'i17 1y Lgxs 11)7 Y kn(zlpl 3 Uy Ty Q):| (82)
z"n(milvi7xi'17i/) z‘ln(xihivxi'pi/ail)
Ky = :
]%n(xipwivxi’lyil) o ]%n(xipwi7xi/pi/ai/)
for i,i’ € {0,1,--- ,n}. Here, m™ and k™ are calculated according to Theorem 2.17.

Then, the posterior distribution of y4. is also a Gaussian distribution:

(yq* | Yo, - 7yn) NN(N”UQ)? (83)
where
-1
Koo KOn Yo 7M0
KnO to K'rm B Yn — MTL (84)
KOO KOn KO*
0'2:K**—[K*07"';K*n]
K -+ Knpn K.

In practice, we usually assume the form of the mean function m and the covari-
ance function k, which involve hyperparameters. We denote these parameters by a
vector 6. For instance, in the widely used squared exponential covariance function
k(z,2') = a®exp(—(x — 2')%/(21?)), a and | are hyperparameters. Similarly, the
mean function m may include hyperparameters as well. For example, if m is a
polynomial as in the universal Kriging, the coefficients of the polynomial are hy-
perparameters. Similar to the standard GP method, the AGRF method identifies
the hyperparameters via maximizing the following log-likelihood:

logp(yOa"' 7yn}m03"' 7mn;0)

Koo -+ Kon
= —w log(27) — %log det : .
Ko - K
T —1
) Yo — Mo Koo -+ Kon Yo — Mo
-5 : : - : : (85)
Yn — M, Kno -+ Kpy Yn — M,

After identifying 8, we obtain the posterior distribution in Eqn. (83).
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OUtpUtS Zo1 Z02 ZOpo ann Zq*
Augmented

) D O D O DD
Random

Field

Inputs X01 X02 oos xopo oos xnpn xq*

Figure 1. Graphical illustration of augmented Gaussian
random field prediction with measurement noise. There
are three layers: input layer, hidden layer, and output layer. The
hidden layer is dominated by augmented Gaussian random field.
The observable and its derivatives of different orders are integrated
into the same field to make predictions.

3.2. Prediction using noisy data. Suppose we are given a finite collection of
real-valued noisy data pairs:

Observable: (3701, 2’01) (1‘02, Zoz) e (Zliopo, ZOpo)
First order derivative: (211, 2z11) (Z12,212) -+ (Z1py, Z1py)
Second order derivative: (221, 221) (Z22,222) -+ (T2p,s 22p,) (86)
n®™ order derivative: (@n1, 2n1) (Tn2, 2n2) -+ (Tnp,s Znp,.)
with n > 0 and pg,p1,p2, -+ ,pn = 0. Here z;; are locations and z;; are the noisy

data collected at this location. Assume that z;; can be decomposed into the sum
of noiseless part y;; and noise €;;, where y;; are governed by AGRF and ¢;; are
Gaussian random variables independent of each other and independent of all the

Yij:
Zij = Yij T € (87)
eij ~ N(0,87),
where §; is the noise intensity of the i*" order derivative. We use different noise
intensities for different order derivatives because different order derivatives might
have different magnitudes. Then, we have

Var[z;;] = Var[y;;] + 67

S (88)

Cov(zij, 2irj1] = Covlyij, yirjr] for (i,5) # (7', 5).
See Figure 1 for the graphical illustration. Note that our framework allows z;; # z;;/
while z;; = z;; for j # j'. In other words, two measurements of the same order
derivative at the same location may have different values due to measurement noise.
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We introduce the notations:

2o = [201, 202, "+, Z0po)
z1 = [211, 212, 7+ 5 21py]
(89)
T
Zn = [Z’ﬂla Zn2; e 72"1’”]

By Eqns. (80), (87), and (88), we have the multivariate Gaussian distribution:

Zgn M} [Kue+ 682 K. " Kun
z20 MO Ko* K()o + 521 e Ko,
A TS B et Y O .L . (90)

where I; represents the j x j identity matrix, and M., M;, K., Kyir, Ky, K30 are
defined the same as in Eqn. (80). Then, the posterior distribution of zg. is also a
Gaussian distribution:

(Zq* } Z0, 7zn) ~ N(Nla 0/2)’ (91)
where
Koo+ 01p, Kon 20— Mo
NIZM*+[K*Oa"'7K*n]
Kno o Kon + 5721]1711, zn — M,
Koo + 03y, -+ Kon ' [Ko.
KnO e Knn + 53111", K"*
(92)

Similar to the noiseless scenario, the hyperparameters can be identified via maxi-
mizing the following log-likelihood:

logp (207"' y2n | Lo, " awn70760a"' 7671) = _WIOg(ZW)
) Koo+ 631y, -+~ Kon ]
— §1og det :

Ko oo Kpp + 621, |
T ~1 r

1 zo — My Koo + 58-7;70 ce Kon zo — My

zn — M, Ko oo Ky + 621, | zn — M,

The difference is that we also identify the noise intensities dg,- - - ,d, in the opti-

mization.

4. Numerical examples. In this section, we present four examples to illustrate
the AGRF framework. In all examples, we use the zero mean function

m(z) =0 (94)
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and the squared exponential covariance function
_ 12
k(x’x/) — a2 exp ((1‘21233)) (95)

to construct the GRF representing the observable. The hyperparameters to identify
are @ = (a,l). We use the following relative Lq error (RLE) to evaluate the accuracy
of the prediction by different GRF-based methods:

R (e
[l

where u is the exact function and 4 is the approximation.

(96)

4.1. Composite function (noiseless). Consider the following function:
y(x) = x?sin(162 — 6) (97)

onz € [0,1]. The available data may include the observable at 2 € {0.0,0.4,0.6,1.0},
its first order derivative at x € {0.2,0.5,0.8}, and its second order derivative at
x € {0.1,0.5,0.9}. We consider the following cases:

Case 1: the data include the observable only.

Case 2: the data include the observable and first order derivative.

Case 3: the data include the observable and second order derivative.

Case 4: the data include the observable, first order derivative, and second order

derivative.

See Figure 2 for the prediction by AGRF. The observable, first order derivative,
and second order derivative are predicted in each case. In Case 1, the AGRF
model for the observable is the same as the conventional GP model, because the
former is a generalization of the latter. However, the conventional GP regression
does not provide the prediction of derivatives. In Case 2, the AGRF prediction
matches the true function and its derivatives better than Case 1. This is because
the derivative information is incorporated in the model. Similarly, in Case 3, the
prediction is enhanced by incorporating the second order derivative, and thus is
better than Case 1. In Case 4, AGRF has the best prediction among all four cases.
It is not surprising that by using all the available information we can construct the
most accurate surrogate model. See Figure 3 for a quantitative comparison of the
prediction accuracy.

In this example, we can see that AGRF is able to integrate the observable and
derivatives of any order, regardless of the location where they are collected. As one
might expect, the AGRF prediction improves when more information is available.

4.2. Damped harmonic oscillator (noiseless). Consider the following damped

harmonic oscillator: .
F=—-ky—cy
{anu (98)

where y is the displacement, 3’ is the velocity, 3" is the acceleration, —ky is the

restoring force, and —cy’ is the frictional force. This system can be simplified to:

y" + 2Cwoy’ + wiy = 0, (99)
where wg = /k/m is the undamped angular frequency and { = ¢/v4mk is the
damping ratio. When ¢ < 1, it has the solution:

y(t) = Aexp(—Cwot) sin (\/ 1 — CPwot + qﬁ) , (100)
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Figure 2. [Composite function (noiseless)] Prediction of
the observable, first order derivative, and second order
derivative by AGRF. Case 1: the data include the observable
only. Case 2: the data include the observable and first order de-
rivative. Case 3: the data include the observable and second order

derivative. Case 4: the data include the observable, first order de-
rivative, and second order derivative. AGRF is able to integrate
the observable and derivatives of any order, regardless of the lo-
cation where they are collected. The AGRF prediction improves

when more information is available.
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Figure 3. [Composite function (noiseless)] Comparison of
the prediction accuracy of AGRF in different cases. See
Figure 2 for more explanations.

where the amplitude A and the phase ¢ determine the behavior needed to match
the initial conditions. Now, consider a specific example:

y(t) = exp(—0.1-22 - ) sin ( 1-012-22- t) (101)

ont € [0,1]. The available data may include the observable, its first order derivative,
and its second order derivative at « € {0.0,0.25,0.5,0.75,1.0}. We use conventional
Gaussian process regression (GP, the same as AGRF using the data of observable
only), gradient-enhanced Kriging [15] (GEK, the same as AGRF using the data of
observable and first order derivative at the same location), or AGRF (using the
data of observable and all derivatives available) to construct the surrogate model:

GP: the data include the observable and first order derivative; the observable
data are used to predict the displacement and the first order derivative data
are used to predict the velocity, respectively.

GEK: the data include the observable and first order derivative; all the data are
used jointly in the same random field to predict the displacement and velocity
at the same time.

AGRF: the data include the observable, first order derivative, and second order
derivative; all the data are used together in the same random field to predict
the displacement and velocity at the same time.

See Figure 4 for the prediction by different methods. The displacement, velocity,
and phase-space diagram are predicted by each method. GEK produces better
prediction than GP, while AGRF predicts more accurately than GEK. By using all
the available information together in the same random field, we can construct the
most accurate surrogate model. See Figure 5 for a quantitative comparison of the
prediction accuracy.

4.3. Korteweg-De Vries equation (noisy). Consider the following Korteweg-
De Vries (KdV) equation:
ou  Ou Pu

onz € [0,1] and ¢ € [0, 00) with an initial condition u(z,0) = cos(2mx) and periodic
boundary condition. The solution at t = 0.5 is studied. We try to approximate the
observable, its first order derivative, and its second order derivative. The data are
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Figure 4. [Damped harmonic oscillator (noiseless)] Pre-
diction of the displacement, velocity, and phase-space di-
agram by different methods. GP: the data include the observ-
able and first order derivative; the observable data are used to pre-
dict the displacement and the first order derivative data are used
to predict the velocity, respectively. GEK: the data include the
observable and first order derivative; all the data are used jointly
in the same random field to predict the displacement and velocity
at the same time. AGRF: the data include the observable, first
order derivative, and second order derivative; all the data are used
together in the same random field to predict the displacement and
velocity at the same time. GEK produces better prediction than
GP, while AGRF predicts more accurately than GEK. By using
all the available information together in the same random field, we
can construct the most accurate surrogate model.
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Figure 5. [Damped harmonic oscillator (noiseless)] Com-
parison of the prediction accuracy by different methods.
See Figure 4 for more explanations.

randomly chosen from the observable, first order derivative, and second order de-
rivative; 20 from each, 60 in total. Then, noise is added to the data. We study the
performance of AGRF under different levels of noise: 10% noise, 20% noise, and
40% noise. See Figure 6 for the prediction. As one might expect, the AGRF predic-
tion is better when the noise is lower. See Figure 7 for a quantitative comparison
of the prediction accuracy.

4.4. Burgers’ equation (noisy). Consider the following Burgers’ equation:

Ou  Ou 0u

5 + us 0.01 2 0 (103)
onz € [0,1] and ¢ € [0, 00) with an initial condition u(z,0) = sin(27z) and periodic
boundary condition. The solution at ¢ = 0.5 is studied. We try to approximate
the observable, its first order derivative, and its second order derivative. The data
are randomly chosen from the observable, first order derivative, and second order
derivative; 20 from each, 60 in total. Then, 10% noise is added to the data. We

study the performance of AGRF when it is calibrated in different ways:

No §: noiseless formulation is used despite the presence of noise in the data,
ie., 0g =01 = d2 =0 in Eqn. (87).
One §: the same noise intensity is used for different order derivatives, i.e., §o =
01 = 02 in Eqn. (87).
Multiple §: different noise intensities are used for different order derivatives,
i.e., the same as Eqn. (87).
See Figure 8 for the prediction by different calibrations. When the noiseless formu-
lation is used despite the presence of noise in the data, overfitting is an issue. When
the same noise intensity is used for different order derivatives, the uncertainty in
the prediction is incompatible with the data since different order derivatives have
different scales. When the formulation is exactly the same as Eqn. (87), AGRF has
the best performance. See Figure 9 for a quantitative comparison of the prediction
accuracy.

5. Conclusion. In this work, we propose the novel augmented Gaussian random
field (AGRF), which is a universal framework incorporating the observable and its
derivatives of any order. A comprehensive theoretical foundation is laid. We prove
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Figure 6. [Korteweg-De Vries equation (noisy)] Top: the
solution at ¢ = 0.5 is studied. Bottom: prediction of the
observable, first order derivative, and second order deriv-
ative by AGRF under different levels of noise. AGRF has
good performance even when the noise is as high as 40%. As one
might expect, the AGRF prediction is better when the noise is

lower.

that given the smoothness of the mean and covariance functions, the observable and
all its derivatives are governed by a single GRF, which is the aforementioned AGRF.
As a corollary, the intuitive yet subtle statement “the derivative of a Gaussian
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Figure 7. [Korteweg-De Vries equation (noisy)] Compar-
ison of the prediction accuracy under different levels of
noise. See Figure 6 for more explanations.

process remains a Gaussian process”, which is widely used in probabilistic scientific
computing and GP-based regression methods, is validated.

Furthermore, the computational method corresponding to the universal AGRF
framework is constructed. Both noiseless and noisy scenarios are considered. For-
mulas of the posterior distributions are deduced in a nice closed form. In the noisy
scenario, we use different noise intensities for different order derivatives because dif-
ferent order derivatives might have different magnitudes. We provide four numerical
examples to demonstrate that: (1) AGRF is able to integrate the observable and
derivatives of any order, regardless of the location where they are collected. The
AGRF prediction improves when more information is available. (2) By using all
the available information together in the same random field, we can construct the
most accurate surrogate model. (3) AGRF has good performance even when the
noise is as high as 40%. The AGRF prediction is better when the noise is lower.
(4) When the noiseless formulation is used despite the presence of noise in the data,
overfitting is an issue. When the same noise intensity is used for different order
derivatives, the uncertainty in the prediction is incompatible with the data since
different order derivatives have different scales. When the formulation is exactly
the same as described in this paper, AGRF has the best performance.

A significant advantage of our computational method is that the universal AGRF
framework provides a natural way to incorporate arbitrary order derivatives and
deal with missing data. New research directions and applications may be opened up
following this universal framework. Although one-dimensional systems are demon-
strated in this paper, our conclusion can be extended to multi-dimensional systems.

Similar to the conventional Gaussian process regression, the bottleneck of AGRF
is that the computational formula involves solving linear systems and calculating
determinant, both of which have cubic complexity to data size. Approximation
methods for Gaussian process regression may be adapted to the AGRF framework
to improve its scalability. A review of such methods is presented in [18].
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in Eqn. (87). Omne §: the same noise intensity is used for differ-
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