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a b s t r a c t

In this article, we analyze a system modeling bacteriophage treatments for infections in a noisy context.
In the small noise regime, we show that after a reasonable amount of time the system is close to a bac-
teria free equilibrium (which is a relevant biologic information) with high probability. Mathematically
speaking, our study hinges on concentration techniques for delayed stochastic differential equations.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Lately Bacteriophage therapies are attracting the attention of
several scientific studies. They can be seen as a new and powerful
tool to treat bacterial infections or to prevent them in food, animals
or even humans. Generally speaking, they consist in inoculating a
(benign) virus in order to kill the bacteria known to be responsible
for a certain disease. This kind of treatment is known since the
beginning of the 20th century, but has been in disuse in the
Western world, erased by antibiotic therapies. However, a small
activity in this domain has survived in the USSR, and it is now
re-emerging (at least at an experimental level). Among the reasons
for this re-emergence we can find the progressive slowdown in
antibiotic efficiency (antibiotic resistance). Reported recent exper-
iments include animal diseases like hemorrhagic septicemia in
cattle or atrophic rhinitis in swine, and a need for suitable mathe-
matical models is now expressed by the community.

Let us be a little more specific about the (lytic) bacteriophage
mechanism: after attachment, the virus’ genetic material pene-
trates into the bacteria and uses the host’s replication mechanism
to self-replicate. Once this is done, the bacteria is completely

spoiled while new viruses are released, ready to attack other bac-
teria. It should be noticed at this point that among the advantages
expected from the therapy is the fact that it focuses on one specific
bacteria, while antibiotics also attack autochthonous microbiota.
Generally speaking, it is also believed that viruses are likely to
adapt themselves to mutations of their host bacteria.

At a mathematical level, whenever the mobility of the different
biological actors is high enough, bacteriophage systems can be
modeled by a kind of predator–prey equation. Namely, set SðtÞ
(resp. QðtÞ) for the non-infected bacteria (resp. bacteriophages)
concentration at time t. Consider a truncated identity function
r : Rþ ! Rþ, such that r 2 C1;rðxÞ ¼ x whenever 0 6 x 6 M and
rðxÞ ¼ M þ 1 for x > M þ 1. Then a model for the evolution of the
couple ðS;QÞ is as follows:

dSðtÞ ¼ a� krðQðtÞÞ½ �SðtÞdt

dQðtÞ ¼ d�mQðtÞ � krðQðtÞÞSðtÞ þ kbe�lfrðQðt � fÞÞSðt � fÞ
h i

dt;

(
ð1Þ

where a is the reproducing rate of the bacteria and k is the adsorp-
tion rate. In Eq. (1), d also stands for the quantity of bacteriophages
inoculated per unit of time, m is their death rate, we denote by b the
number of bacteriophages which are released after replication with-
in the bacteria cell, f is the delay necessary to the reproduction of
bacteriophages (called latency time) and the coefficient e�lf repre-
sents an attenuation in the release of bacteriophages (given by the
expected number of bacteria cell’s deaths during the latency time,
where l is the bacteria’s death rate). A given initial condition
fS0ðsÞ;Q0ðsÞ;�f 6 s 6 0g is also specified.

Some comments on the model described above are in order:
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(i) Several models describing phages dynamics have already
been considered in the literature (see, for instance
[6,15,16,18,23]), many elaborated variants being introduced
for instance in [7,20]. We are dealing here with a basic system,
except for two points:
� In most of the models alluded to above, the coefficient r in

(1) is simply the identity function. We have considered here
the truncation of the identity r in order to manipulate
bounded coefficients in our equations, but our parameter
M can also be interpreted as a maximal phage attack rate.
This feature is also present in [20], where the author argues
that the saturation in the phage attack rate is due to multiple
phage binding to a cell (the likelihood of this event being
higher in case of high density of phages).

� To the best of our knowledge, none of the articles mentioned
above contemplates the possibility of a continuous injection
of phages into the system (represented by us by the constant
d in (1)). This variant corresponds to the practical problem
we are starting from, which has been brought to our atten-
tion by the Molecular Biology Group of the Department of
Genetics and Microbiology at Universitat Autònoma de Barce-
lona. This situation corresponds to a treatment for cattle
against Salmonella,1 for which phages are inoculated through
food, with an approximate constant rate d.

Let us point out that those changes with respect to the standard
deterministic models induce some additional mathematical difficul-
ties, which are handled at Section 2. In particular, the exponential
convergence of the solution to (1) towards its equilibrium has to
be worked out carefully.

(ii) The range of parameters in Eq. (1) obviously varies with the
bacteriophage treatment being dealt with. We shall keep in
mind the values corresponding to our Salmonella experiment,
recorded in Section 4. However, generally speaking, one should
be aware of the fact that delay is an important feature in our
system. Indeed, reported values for the lysis timing parameter
f ranges from 15 min (such a short latency time has been
observed in the adsorption of a phage called C78 by a strain
of Salmonella enterica) up to 45 min in the case of other Salmo-
nella phages for instance, while the total length of experiments
we had access to is measured in hours.
(iii) According to the values of the different parameters of the
system and of the initial conditions, different types of equilibri-
ums for Eq. (1) might emerge. Indeed, given a large enough M
(or taking r the identity function), an elementary analysis
(not included in this article for sake of conciseness) shows
that:

� When kd=m > a, there exists a unique stable steady state
E0 ¼ ð0; d=mÞ for our system (in particular bacteria have been
eradicated).
� When kd=m < a, the point E0 is still an equilibrium but it

becomes unstable, while another coexistence equilibrium
Ec ¼ ð

ma
k �d

aðb�1Þ ;
a
kÞ emerges.

On Section 2.1 we will conduct a short study on the existence and
stability of the equilibrium E0 for any given M > 0, but we will not
give any result on the other equilibrium Ec since we only study re-
sults concerning the bacteria-free equilibrium E0 along this paper.

Indeed, the case of a unique stable equilibrium E0 makes the math-
ematical analysis easier, and let us stress the fact that it corresponds
to the main practical situation we have in mind, where high doses of
phages are usually introduced in the cattle food. One should also
mention a natural generalization of our problem: Consider the ac-
tion of several varieties of bacteriophages, which is an option widely
considered among practitioners. We have restricted our analysis
here to a simplified situation for sake of readability.

This being recalled for the deterministic system, the main aim
of this article is to deal with a noisy version of Eq. (1). This stochas-
tic modeling can be justified by several effects:

(a) It is perfectly assumable that noise will appear when collect-
ing data from laboratory tests.
(b) When one wishes to go from in vitro to in vivo modeling, it
is commonly accepted that noisy versions of the differential
systems at stake have to be considered. Indeed, random fluctu-
ations in parameters like temperature or exposure to sun, rain
and other environmental elements yield an important variabil-
ity in the coefficients of our system. These fluctuations can be
accurately summarized by a noisy random coefficient.
(c) Some quantities which were assumed to be deterministic in
(1) are in fact random, such as the latency time f (see e.g. [5,7]
for contributions in this direction) and the number of phages b
which are released from the lytic mechanism.

Those random effects are present in other biological systems,
and stochastic equations have been introduced e.g. for HIV dynam-
ics in [10] and for bacteriophages in marine organisms in [9]. In
those references it is always assumed that the noise enters in a
bilinear way, which is quite natural in this situation and ensures
positivity of the solution. We shall take up this strategy here, and
consider system (1) with a small random perturbation of the form

dSeðtÞ ¼ a� krðQ eðtÞÞ
� �

SeðtÞdt þ erðSeðtÞÞ � dW1ðtÞ

dQ eðtÞ ¼ d�mQ eðtÞ � krðQ eðtÞÞSeðtÞ þ kbe�lfrðQ eðt � fÞÞSeðt � fÞ
h i

dt þ erðQ eðtÞÞ � dW2ðtÞ;

8<:
ð2Þ

where e is a small positive coefficient and W ¼ ðW1;W2Þ is a 2-
dimensional Brownian motion defined on a complete probability
space ðX;F ;PÞ equipped with the natural filtration ðF tÞtP0 associ-
ated to the Wiener process W. Let us add the following remarks
in order to further justify our model (2):

(i) Instead of giving a detailed model for all the random effects
recalled above, we have decided to summarize them in a global
stochastic term represented by the Wiener process W. This is
obviously a first approximation, where one assumes that a
sum of many small effects gives raise to a Gaussian random var-
iable (as suggested by the central limit theorem). Let us men-
tion however that more complex situations, were quantities
like b are modeled e.g. by Ornstein–Uhlenbeck processes, might
be the object of future extensions of the current paper. More
specifically, let us examine the dynamics of S. According to
the fact that this process can be expressed as an exponential,
it is reasonable to think that its relative increments (namely
dSðtÞ=SðtÞ) are governed by a trend a� krðQðtÞÞ plus a small
Gaussian perturbation edWðtÞ. We shall thus assume this addi-
tive noise perturbation for the relative increment dSðtÞ=SðtÞ,
which yields the first equation in (2). The second relation of
our system (2) can be obtained thanks to the same kind of
hypothesis. Let us recall at this point that similar interpreta-
tions of random effects by an analysis of the relative increments
are implicit in [9,10]. Furthermore, in spite of the fact that we
cannot reproduce the data we had access to for this study (for
the patent reasons alluded to above), it should also be

1 We refer to [8] for a preliminary study on this topic lead at Universitat Autònoma
de Barcelona, and to the PhD theses [4,21] where the bacteriophages have been
characterized. It should be mentioned however that the data we had access to cannot
be reproduced in this article for patent reasons.
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mentioned that the curves t # logðSðtÞÞ and t # logðQðtÞÞ
based on real measurements are compatible with a stochastic
model in which the noise enters in an additive way. We thus
believe that our bilinear noisy model is a natural one, though
the exploration of alternative stochastic modeling strategies
as explained in [1–3] would obviously be extremely interesting.
We defer these developments to a subsequent publication for
sake of conciseness.
(ii) We have chosen to work with Stratonovich differentials,
denoted by �dW , instead of Itô type differentials. This is harm-
less in terms of mathematical analysis and we believe this
model to be physically accurate, in spite of the fact that it differs
from the Itô type modeling of [9,10]. Indeed, our starting point
here is the macroscopic system of Eq. (1), in which the internal
noise due to individual phage and bacteria fluctuations has
already been averaged. Then all the randomness sources
alluded to at points (a)–(c) above can be considered as external
contributions. We refer to [22, Chapter 5] for a thorough
justification of the fact that Stratonovich type noises are appli-
cable in this kind of situation. Let us also stress the fact that
Stratonovich equations can be seen as limits of smooth noisy
equations, according to the celebrated Wong–Zakai theorem
[24].

With these considerations in mind, the main aim of the current
paper can be summarized as follows: we wish to prove that for a
time s0 within a reasonable range, the couple Zeðs0Þ :¼
ðSeðs0Þ;Q eðs0ÞÞ is not too far away from the stable equilibrium E0

of Eq. (1). Note that reasonable range is meant here as a time which
corresponds to the order of both the latency delay and the time
when the immune system of the animal can cope with the remain-
ing bacteria.

As we shall see in the sequel, the treatment of Eq. (2) involves
the introduction of some rather technical assumptions on our coef-
ficients. For sake of readability, we have thus decided to handle
first the following system without delay:

dSeðtÞ ¼ a� krðQ eðtÞÞ
� �

SeðtÞdt þ erðSeðtÞÞ � dW1ðtÞ
dQ eðtÞ ¼ d�mQ eðtÞ þ kðb� 1ÞrðQ eðtÞÞSeðtÞ

� �
dt þ erðQ eðtÞÞ � dW2ðtÞ;

(
ð3Þ

where we notice that the only difference between (2) and (3) is that
we have set f ¼ 0 in the latter.

The main advantage of Eq. (3) lies in the fact that we are able to
work under the following rather simple set of assumptions:

Hypothesis 1.1. We will suppose that the coefficients of Eq. (3)
satisfy:

(i) The initial condition ðS0;Q 0Þ of the system lies into the region

R0 :¼ 0;
mM � d

kðb� 1ÞM

� �
� ½d=m;M�:

(ii) The coefficient c ¼ kd=m� a is strictly positive and
M > d=m.

We shall also use extensively the following notation:

Notation 1.2. The letters c; c1; c2; . . . will stand for universal
constants, whose exact value is irrelevant. For a continuous
function f, we set kfk1;I ¼ supx2Ijf ðxÞj.

Then the previous loose considerations about convergence to E0

can be summarized in the following theorem, which is the main re-
sult of our paper for our bacteriophage system without delay:

Theorem 1.3. Given positive initial conditions, Eq. (3) admits a
unique solution which is almost surely an element of CðRþ;R2

þÞ.
Assume furthermore Hypothesis 1.1, set g ¼ m=2 ^ c and consider 3
constants 1 < j1 < j2 < j3. Then there exists q0 such that for any
q 6 q0 and any interval of time of the form I ¼ ½j1 lnðc=qÞ=g;j2

lnðc=qÞ=g�, we have

P kZe � E0k1;I P 2q
� �

6 exp � c1q2þk

e2

� 	
; ð4Þ

where k is a constant satisfying k > j3=g.

Remark 1.4. Relation (4) can be interpreted in the following man-
ner: assume that we observe a noise with intensity e. Then the kind
of deviation we might expect from the noisy system (3) with
respect to the equilibrium E0 is of order e2# with # ¼ 2g=j3. This
range of deviation happens at a time scale of order lnðq�1Þ=g.

A second part of our analysis is then devoted to the more real-
istic delayed system (2), for which we have to impose some addi-
tional technical assumptions:

Hypothesis 1.5. We will suppose that the coefficients of Eq. (3)
satisfy the following conditions, valid for any t 2 ½�f;0�:

(i) The initial condition ðS0ðtÞ;Q0ðtÞÞ of the system lies into the
region

R0 :¼ 0;M½ � � d
m
;M

� �
:

(ii) We have be�lfQ0ðtÞS0ðtÞ > d
m S0ð0Þ, and be�lf

> 1.
(iii) The condition S0ðtÞ < mM�d

kbe�lfM
is satisfied.

With these hypotheses in hand, we obtain a result which is
analogous to Theorem 1.3:

Theorem 1.6. Eq. (4) still holds for the delayed system (2), under
Hypothesis 1.5.

Theorem 1.6 can be seen as the main result of the current paper,
and deserves some additional comments:

(1) We have produced a concentration type result instead of a
large deviation principle for Eq. (3), because it seemed more
adapted to our biological context. Indeed, in the current situa-
tion one wishes to know how far we might be from the desired
equilibrium at a given fixed time, instead of producing asymp-
totic results as in the large deviation theory. At a technical level
however, we rely on large deviation type tools, and in particular
on an extensive use of exponential inequalities for martingales.
(2) Let us compare our result with [9,10], which deal with clo-
sely related systems. The interesting article [9] is concerned
with a predator–prey system similar to ours, but it assumes that
a linearization procedure around equilibrium in the highly non-
linear situation (3) can be performed. The analysis relies then
heavily on this unjustified step. As far as [10] is concerned, it
roughly shows that if the noise intensity of the system is high
enough, then HIV epidemics can be kept under control (in terms
of exponential stability). This is valuable information, but far
away from our point of view which assumes a low intensity
for the noise. We should mention again the related thorough
deterministic studies [7,12,14,20], as well as the enlightening
alternative stochastic modeling [1–3].
(3) Mathematically speaking, it would certainly be interesting to
play with the rich picture produced by Eq. (1) and its perturbed
version in terms of stable and instable equilibrium. We have
not delved deeper into this direction because it did not seem
directly relevant to the biological problem we are starting from.

X. Bardina et al. / Mathematical Biosciences 241 (2013) 99–108 101
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Our article is structured as follows: Section 2 is devoted to some
preliminary considerations (convergence to equilibrium for the
deterministic equations, and then existence and uniqueness results
for our stochastic systems). Then we show our concentration re-
sults in Section 3. Finally, our theoretical results are illustrated
by some numerical simulations presented in Section 4.

2. Preliminaries

In this section, we give some basic results concerning our com-
petition system. This is done in increasing order for the complexity
of the system under consideration:

1. Exponential convergence to equilibrium for the deterministic
counterpart of the non delayed Eq. (3).

2. Same problem for the deterministic counterpart of the delayed
Eq. (2).

3. Existence and uniqueness for the solution to the perturbed sys-
tem (2), starting from the simpler system (3).

Before going on with our preliminary considerations, let us label the
following set of hypothesis on our coefficient r as well as the initial
conditions:
Hypothesis 2.1. The coefficients of our differential systems satisfy
the following assumptions:

(i) The function r : Rþ ! Rþ is such that r 2 C1, and satisfies
rðxÞ ¼ x for 0 6 x 6 M and rðxÞ ¼ M þ 1 for x > M þ 1. We also
assume that 0 6 r0ðxÞ 6 C for all x 2 Rþ, with a constant C such
that C > 1.
(ii) As far as the initial condition is concerned, we assume that it
is given as continuous positive functions fS0ðsÞ;Q0ðsÞ;�f
6 s 6 0g. In case of the non delayed systems, f ¼ 0, it is simply
given by two positive constants ðS0;Q 0Þ.

2.1. Analysis of the deterministic non delayed system

This section is devoted to the analysis of the non perturbed sys-
tem corresponding to (3). Namely, we shall consider the following
dynamical system:

dSðtÞ ¼ a� krðQðtÞÞ½ �SðtÞdt

dQðtÞ ¼ d�mQðtÞ þ kðb� 1ÞrðQðtÞÞSðtÞ½ �dt:



ð5Þ

We will give some sufficient conditions for the existence of a unique
stable equilibrium E0 and then show exponential convergence to
this equilibrium.

Let us start with the basic results we shall need about equilibria
of (5).

Theorem 2.2. If either M þ 1 < a
k or M > a

k and kd
m P a, system (5) has

a unique (positive) steady state E0 ¼ ð0; d
mÞ. Moreover, the bacteria-

free equilibrium E0 is asymptotically stable for kd
m > a and M > d

m.

Proof. To obtain equilibria, we have to find the solution to the fol-
lowing equation:

0 ¼ ða� krðQ̂ÞÞŜ
0 ¼ d�mQ̂ þ kðb� 1ÞrðQ̂ÞŜ;

(
ð6Þ

where Ŝ; Q̂ are positive constants.
Owing to the first equation we have either Ŝ ¼ 0 or

a� krðQ̂Þ ¼ 0. Since Ŝ ¼ 0 and the second equation imply Q̂ ¼ d
m,

we have that bacteria-free equilibrium E0 exists for any value of
the parameters. In the case M þ 1 < a

k one can observe that no other
equilibrium exists (since a� krðQ̂Þ > 0 for any Q̂).

Taking M > a
k ;a� krðQ̂Þ ¼ 0 if and only if Q̂ ¼ a

k. Then, using the
second equation in (6), we have

0 ¼ d�m
a
k
þ ðb� 1ÞaŜ) Ŝ ¼ ma� kd

kðb� 1Þa ;

which is positive only for a > kd
m. Elsewhere, this last equation gives

us another equilibrium that we shall not consider along the paper.
So we have proved the first part of the result.

For the second part, the Jacobian matrix of system (5) at E0 is

A0 :¼
a� krðd

mÞ 0

kðb� 1Þrðd
mÞ �m

 !
:

The eigenvalues of this matrix are easily shown to be k0 ¼ a� krðd
mÞ

and k1 ¼ �m, which are negative for kd
m > a and M > d

m. h

We now wish to study the rate of convergence towards the E0

equilibrium in the stable case (i.e., when kd=m > a and M > d
m).

The main result we obtain to this respect is:

Theorem 2.3. Under Hypothesis 1.1 and 2.1, the solution of system
(5) with initial condition

ðS0;Q 0Þ 2 0;
mM � d

kðb� 1ÞM

� �
� ½d=m;M�

exponentially converges to the equilibrium E0:

jðSðtÞ;QðtÞÞ � E0j 6 ce�gt ; with g ¼ c ^m
2
; ð7Þ

where we recall that c ¼ kd
m � a > 0.

Proof. In order to prove our claim, we first have to show that the
region R :¼ ½0; mM�d

kðb�1ÞM� � ½dm ;M� � ½0;M�
2 is left invariant by Eq. (5).

Towards this aim, we can invoke the same method we will use in
Proposition 2.4, and we let the reader check the details.

Now, since we have QðtÞ 6 M for all t, we can consider rðxÞ ¼ x
in Eq. (5). We will consider a version of this system centered at E0

by means of the change of variables eS ¼ S; eQ ¼ Q � d=m. This leads
to the system

eS0ðtÞ ¼ �ceSðtÞ � k eQ ðtÞeSðtÞeQ 0ðtÞ ¼ �m eQ ðtÞ þ kd
m ðb� 1ÞeSðtÞ þ kðb� 1ÞeQ ðtÞeSðtÞ:

(
ð8Þ

Notice that, according to our set of assumptions concerning the ini-
tial conditions, we have eS0 P 0 and eQ 0 P 0. Thus the solution to (8)
will remain positive for all t > 0 (it can be deduced from R being
invariant, or can be proved just like in Proposition 2.8).

Now, from the first equation in (8), we have that eS0ðtÞ 6 �ceSðtÞ.
This implies eSðtÞ 6 eS0e�ct , proving that eSðtÞ exponentially con-
verges to zero.

Owing to the second equation in (8) and using positivity
properties of the solution, we also get

eQ 0ðtÞ 6 �meQ ðtÞ þ kðb� 1ÞeS0e�ct d
m
þ eQ ðtÞ� 	

:

Finally, the variation of constants method will lead to the stated re-
sult, following the same steps we will detail later in the proof of
Theorem 2.6. h

2.2. Analysis of the deterministic delayed system

We now try to generalize the results of Section 2.1 to our deter-
ministic delayed system (1). To this aim, recall that we work under
the additional Assumptions 1.5.

102 X. Bardina et al. / Mathematical Biosciences 241 (2013) 99–108
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A first step towards exponential stability is then the invariance
of a certain region under our dynamical system:

Proposition 2.4. Under Hypothesis 1.1, 2.1 and 1.5, the region

R :¼ 0;
mM � d

kbe�lfM

� �
� d

m
;M

� �
� ½0;M�2

is left invariant by Eq. (1).

Proof. We separate the analysis of S and Q in two steps.
Step 1: boundedness of S. Since S is obviously positive (along the

same lines as for Eq. (11)) and owing to the fact that
S0ðtÞ ¼ a� krðQðtÞÞð ÞSðtÞ we obtain that

S0ðtÞ 6 0 whenever QðtÞ > a
k
; and

S0ðtÞP 0 whenever QðtÞ < a
k
:

Furthermore, our system starts from an initial condition
Q0ð0ÞP d

m >
a
k. Thus S is non increasing as long as Q remains in

the interval ½dm ;1Þ.
Let us now observe what happens in the limiting case

Q0ð0Þ ¼ d
m: recalling that our initial conditions are denoted by

S0ðtÞ;Q0ðtÞ for t 2 ½�f;0�, we have

Q 00ð0Þ ¼ �k
d
m

S0ð0Þ þ kbe�lfrðQ 0ð�fÞÞS0ð�fÞ

¼ k be�lfQ 0ð�fÞS0ð�fÞ � d
m

S0ð0Þ
� 	

> 0;

where we have used the fact that be�lfQ0ð�fÞS0ð�fÞ > d
m S0ð0Þ.

According to this inequality, we obtain the existence of a strictly po-
sitive e such that QðtÞ > d

m for all t 2 ð0; eÞ. We thus introduce the
quantity t0 ¼ infft > 0 : QðtÞ ¼ d

mg, and notice that we have

Q 0ðt0Þ ¼ �k
d
m

Sðt0Þ þ kbe�lfrðQðt0 � fÞÞSðt0 � fÞ:

We can now distinguish two cases:

1. If t0 > f, since SðtÞ is non-increasing in ½0; t0�, Sðt0 � fÞP Sðt0Þ
and hence

Q 0ðt0ÞP kSðt0Þ be�lfrðQðt0 � fÞÞ � d
m

� 	
> 0;

due to the fact that be�lf
> 1;M > d

m and Qðt0 � fÞ > d
m.

2. If t0 6 f, since Sðt0Þ 6 S0ð0Þ we obtain

Q 0ðt0ÞP �k
d
m

S0ð0Þ þ kbe�lfrðQ 0ðt0 � fÞÞS0ðt0 � fÞ

¼ k be�lfQ 0ðt0 � fÞS0ðt0 � fÞ � d
m

S0ð0Þ
� 	

> 0;

where we have used the fact that be�lfQ0ðtÞS0ðtÞ > d
m S0ð0Þ for all

t 2 ½�f; 0�.

This discussion allows thus to conclude that t0 cannot be a finite
time. Indeed, we should have Q 0ðt0Þ > 0 and hence Q increasing in
a neighborhood of t0, while Q should be decreasing in a neighbor-
hood of t0 according to its very definition. We have thus reached
the following partial conclusion:

QðtÞP d
m
; t # SðtÞ decreasing; SðtÞP 0:

In particular, any interval of the form ½0; L� for L P 0 is left invariant
by t # St .

Step 2: boundedness of Q. Our claim is now reduced to prove that
for ðS0ðtÞ;Q0ðtÞÞ 2 R we have QðtÞ 6 M for all t P 0.

To this aim notice that, whenever Q0ð0Þ ¼ M we have

Q 0ð0Þ ¼ d�mM � kMS0ð0Þ þ kbe�lfrðQ 0ð�fÞÞS0ð�fÞ
6 d�mM þ kbe�lfMS0ð�fÞ < 0;

where we recall that S0ð�fÞ < mM�d
kbe�lfM

according to Hypothesis 1.5.

This yields the existence of e > 0 such that QðtÞ < M for all
t 2 ð0; eÞ.

We now define t1 ¼ inf t > 0 : QðtÞ ¼ Mf g. It is readily checked
that

Q 0ðt1Þ ¼ d�mM � kMSðt1Þ þ kbe�lfrðQðt1 � fÞÞSðt1 � fÞ
¼ d�mM � kMSðt1Þ þ kbe�lfQðt1 � fÞSðt1 � fÞ
6 d�mM þ kbe�lfMSðt1 � fÞ;

and we can distinguish again two cases:

1. If t1 > f, thanks to the fact that t # SðtÞ is non-increasing on
½0; t1�, we have

Q 0ðt1Þ 6 d�mM þ kbe�lfMS0ð0Þ < 0;

since we have assumed that S0ð0Þ < mM�d
kbe�lfM

.
2. If t1 6 f then

Q 0ðt1Þ 6 d�mM þ kbe�lfMS0ðt1 � fÞ < 0;

thanks to the fact that S0ðtÞ < mM�d
kbe�lfM

for all t 2 ½�f; 0�.

As for the discussion of the previous step, this allows thus to con-
clude that t1 cannot be a finite time, due to the contradiction
Q 0ðt1Þ < 0 and QðtÞ < Qðt1Þ for all t 2 ð0; t1Þ. We have thus shown
QðtÞ 6 M for all t P 0, which finishes the proof. h

Remark 2.5. Before stating the exponential convergence to the
bacteria-free equilibrium result, let us observe that Theorem 2.2
still holds true for the delayed system (1). This can be easily
checked, exactly along the same lines as for the non-delayed
system.

We are now ready to state our result on exponential conver-
gence of the delayed system:

Theorem 2.6. Assume Hypothesis 1.1, 2.1, and 1.5 are satisfied, and
let R be the region defined at Proposition 2.4. Then the solution of
system (1) with initial condition ðS0;Q0Þ 2 R exponentially converges
to the equilibrium E0:

jðSðtÞ;QðtÞÞ � E0j 6 ce�gt ; with g ¼ c ^m
2
; ð9Þ

where we recall that c ¼ kd
m � a > 0.

Proof. According to Proposition 2.4, we have QðtÞ 6 M for all
�f 6 t <1 under our standing assumptions. Hence one can recast
Eq. (1) as

dSðtÞ ¼ a� kQðtÞð ÞSðtÞdt

dQðtÞ ¼ d�mQðtÞ � kQðtÞSðtÞ þ kbe�lfQðt � fÞSðt � fÞ
� �

dt

(

Let us perform now the change of variables ~Q ¼ Q � d
m. This trans-

forms the previous system into

dSðtÞ ¼ a� kð~QðtÞ þ d
mÞ

� �
SðtÞdt

d ~QðtÞ ¼ d�mð~QðtÞ þ d
mÞ � kð~QðtÞ þ d

mÞSðtÞ þ kbe�lfð~Qðt � fÞ þ d
mÞSðt � fÞ

� �
dt:

8><>:
Equivalently, our new system is:

X. Bardina et al. / Mathematical Biosciences 241 (2013) 99–108 103



Author's personal copy

dSðtÞ ¼ � cSðtÞ þ k ~QðtÞSðtÞ
� �

dt

d eQ ðtÞ ¼ �m ~QðtÞ � k d
m SðtÞ � k ~QðtÞSðtÞ þ k d

m be�lfSðt � fÞ
�
þkbe�lf ~Qðt � fÞSðt � fÞ

�
dt:

8>>>><>>>>:
Observe now that Proposition 2.4 asserts that QðtÞP d

m for all t P 0,
which means that eQ ðtÞP 0. With our change of variables, we have
also shifted our equilibrium to the point ð0;0Þ. We now wish to
prove that SðtÞ and ~QðtÞ exponentially converge to 0.

The bound on SðtÞ is easily obtained: just note that

dSðtÞ 6 �cSðtÞdt;

which yields SðtÞ 6 S0ð0Þe�ct . As far as ~QðtÞ is concerned, one gets
the bound

d ~QðtÞ
dt

6 �m ~QðtÞ þ k
d
m

be�lfS0ð0Þe�cðt�fÞ þ kbe�lf ~Qðt � fÞS0ð0Þe�cðt�fÞ

6 �m ~QðtÞ þ kbe�lfS0ð0Þe�cðt�fÞ d
m
þM � d

m

� 	
¼ �m ~QðtÞ þ ce�ct ;

with c ¼ kbMS0ð0Þeðc�lÞf, and where we have used the fact that
QðtÞ 6 M uniformly in t.

Invoking now the variation of constant method, it is readily
checked that equation _xðtÞ ¼ �mxðtÞ þ ce�ct with initial condition
x0 ¼ ~Q0ð0Þ can be explicitly solved as

xðtÞ ¼ e�mt ~Q0ð0Þ þ
c

m� c
eðm�cÞt � 1
� �� 	

¼ ~Q0ð0Þ �
c

m� c

� 	
e�mt þ c

m� c
e�ct:

By comparison, this entails the inequality ~QðtÞ 6 c1 e�gt , where
c1 ¼max ~Q0ð0Þ � c

m�c ;
c

m�c

� �
and g ¼ m ^ c. Our proof is now

finished. h

2.3. Properties of the stochastic system

Recall that we are considering the perturbed problem (2), with a
coefficient r and some initial conditions satisfying Hypothesis 2.1.
In particular, due to the fact that we have assumed a bounded coef-
ficient r, the existence and uniqueness of the solution to our differ-
ential system is a matter of standard considerations.

Theorem 2.7 (Global existence of solution). For any positive initial
condition there exists a unique solution of (2), which is defined for all
t P 0.

Proof. It is readily checked that the coefficients of the equation are
locally Lipschitz with linear growth. The existence and uniqueness
of the solution is then a direct consequence of classical results (see
e.g. [13, Section 5.2] for the non delayed system and [17] for the
delayed one). h

Positivity of the solution is also an important feature, if we want
the quantities SðtÞ;QðtÞ to be biologically meaningful. Moreover,
part of our analysis will rely on this property, that we label for fur-
ther use:

Proposition 2.8. (Positivity) If we take positive initial conditions
S0ðtÞP 0; Q0ðtÞP 0 for all t 2 ½�f;0� for the system (2), then the
solution fulfills SeðtÞP 0; Q eðtÞP 0 for all t > 0.

Proof. Let us first consider the system with rðxÞ ¼ x for all x,
namely:

dSeðtÞ ¼ a� kQ eðtÞ
� �

SeðtÞdt þ eSeðtÞ � dW1ðtÞ

dQ eðtÞ ¼ d�mQ eðtÞ � kQ eðtÞSeðtÞ þ kbe�lfQ eðt � fÞSeðt � fÞ
h i

dt þ eQ eðtÞ � dW2ðtÞ;

8<:
ð10Þ

with initial condition ðS0ðtÞ;Q0ðtÞÞ. Assuming existence and unique-
ness of the solution to (10), we shall prove that SeðtÞ;Q eðtÞP 0 for
all t P 0 almost surely.

Indeed, after the change of variables xðtÞ ¼ e�eW1ðtÞSeðtÞ;
yðtÞ ¼ e�eW2ðtÞQ eðtÞ, we can recast (10) into the following system
of differential equations with random coefficients:

x0ðtÞ ¼ a� keeW2ðtÞyðtÞ
� �

xðtÞ

y0ðtÞ ¼ de�eW2ðtÞ �myðtÞ � keeW1ðtÞxðtÞyðtÞ

þkbe�lf�eðW2ðtÞ�W2ðt�fÞ�W1ðt�fÞÞyðt � fÞxðt � fÞ;

8>>><>>>: ð11Þ

with initial conditions x0ðtÞ ¼ S0ðtÞP 0; y0ðtÞ ¼ Q0ðtÞP 0 for all
t 2 ½�f;0�. Then, the positivity of xðtÞ is immediate from the
representation

xðtÞ ¼ x0ð0Þ exp
Z t

0
ða� keeW2ðsÞyðsÞÞds


 

P 0:

In order to see the positivity of yðtÞ let us observe that for y0ð0Þ ¼ 0
we have y0ð0Þ ¼ dþ kbe�lf�eðW2ð0Þ�W2ð�fÞ�W1ð�fÞÞyð�fÞxð�fÞ > 0.
Therefore, for all initial condition yð0ÞP 0 there exists d > 0 such
that yðtÞ > 0 for all t 2 ð0; dÞ. Let us suppose now that yðtÞ < 0 for
some t > 0, and let t0 ¼ infft > 0jyðtÞ < 0g. Due to the continuity
of the solution we have that yðt0Þ ¼ 0. Then

y0ðt0Þ ¼ de�eW2ðt0Þ þ kbe�lf�eðW2ðt0Þ�W2ðt0�fÞ�W1ðt0�fÞÞyðt0 � fÞxðt0 � fÞ
> 0;

which is impossible since it would yield yðtÞ > 0 for t 2 ðt0; t0 þ dÞ
for d small enough. This contradiction means exactly that yðtÞP 0
for all t P 0.

Now that we have the positivity for system (10), we can prove
the positivity for (2) in the following way. Let us first handle the
case of SeðtÞ, and assume that the initial condition is such that
S0ð0ÞP M. Set then s0

M;S ¼ infft P 0 such that SeðtÞ 6 M=2g, and
observe that s0

M;S is a F t- stopping time (recall that F t stands for
the natural filtration of the Brownian motion W), such that Se has
remained positive until s0

M;S. Furthermore, the strong Markov
property for ðSe;Q eÞ entails that the process

Seðs0
M;S þ tÞ;Q eðs0

M;S þ tÞ
� �

; t P 0
n o
also satisfies (2) on the set XM;S ¼ fx 2 X; s0

M;S <1g, with an initial
condition S0ð0Þ ¼ M=2. With these considerations in mind, we can
assume that the initial condition of our differential system satisfies
S0ð0Þ < M.

With such an initial condition we can conclude the positivity of
SeðtÞ until the stopping time ŝ0

M;S ¼ infft P 0 such that SeðtÞP Mg
as we have done for the system (10), since up to time ŝ0

M;S we have
rðSeðtÞÞ ¼ SeðtÞ. Then, invoking again the strong Markov property,
we can also guarantee positivity until time
s1

M;S ¼ infft P ŝ0
M;S such that SeðtÞ 6 M=2g as above. We are now

in a position to obtain the positivity of Se
t until time

ŝ1
M;S ¼ infft P s1

M;S such that SeðtÞP Mg, once again with the
same reasoning than for the system (10). The global positivity of
SeðtÞ on any interval of the form ½sk

M;S; s
kþ1
M;S � for k P 0 now follows

by iteration of this reasoning.
It remains to show that limk!1sk

M;S ¼ 1. This is easily obtained
by combining the following two ingredients:

(i) The increments fskþ1
M;S � sk

M;S; k P 0g form a i.i.d sequence by a
simple application of the strong Markov property.

104 X. Bardina et al. / Mathematical Biosciences 241 (2013) 99–108



Author's personal copy

(ii) Owing to the specific coefficients we have for Eq. (2), it can
be checked that for any g2 > 0 one can find g1 > 0 small enough
such that Pðs1

M;S > g1ÞP 1� g2. Details of this assertion are
omitted for sake of conciseness.

We let the reader check that the positivity of Q eðtÞ can be ob-
tained along the same lines, which ends the proof. h

Remark 2.9. Using the a priori positivity properties stated above,
we could have also obtained existence and uniqueness of the
solution for system (10). We did not include those developments
for sake of conciseness.

3. Fluctuations of the random system

Here again we shall proceed gradually, and work out the follow-
ing cases:

1. Fluctuations for the non delayed system.
2. Extension to the delayed system.

Towards this aim, let us first summarize the information we have
obtained up to now in the non delayed case: we are considering
the system

dSeðtÞ ¼ a� krðQ eðtÞÞ
� �

SeðtÞdt þ erðSeðtÞÞ � dW1ðtÞ
dQ eðtÞ ¼ d�mQ eðtÞ þ kðb� 1ÞrðQ eðtÞÞSeðtÞ

� �
dt þ erðQ eðtÞÞ � dW2ðtÞ:

(
ð12Þ

Under Hypothesis 1.1 and 2.1, we have shown the existence of a un-
ique equilibrium E0 ¼ ð0;d=mÞ for the deterministic system (5), cor-
responding to (12) with e ¼ 0. Furthermore, we have constructed a
region R 2 R2

þ such that for any initial condition ðS0;Q0Þ 2 R, the
solution converges exponentially to E0, with a rate g ¼ c ^ m

2. We
now wish to obtain a concentration result for the perturbed system
(12), that is give a proof of Theorem 1.3. To this aim, we shall divide
our proof into several subsections.
Notation 3.1. We will set ZeðtÞ for the couple ðSeðtÞ;Q eðtÞÞ, and
Z0ðtÞ for the solution to the deterministic Eq. (5).

3.1. Reduction of the problem

Recall that Theorem 1.3 states an exponential bound (valid for q
small enough) of the form

P kZe � E0k1;I P 2q
� �

6 exp � c1q2þk

e2

� 	
; ð13Þ

on any interval of the form I ¼ ½j1 lnðc=qÞ=g;j2 lnðc=qÞ=g� and
1 < j1 < j2 < j3 such that k > j3=g.

A first step in this direction is to consider a generic interval of
the form bI ¼ ½a; b�, and write

P kZe � E0k1;bI P 2q
� �

¼ P ðkZe � E0k1;bI P 2qÞ \ ðkZ0 � E0k1;bI P qÞ
� �
þ P ðkZe � E0k1;bI P 2qÞ \ ðkZ0 � E0k1;bI 6 qÞ

� �
;

which yields

P kZe � E0k1;bI P 2q
� �

6 A1 þ A2;

with

A1 ¼ P kZ0 � E0k1;bI P q
� �

; and

A2 ¼ P kZe � Z0k
1;bI P q

� �
: ð14Þ

Moreover, the term A1 is easily handled: owing to (9), we have
A1 ¼ 0 as soon as a ¼ j1 lnðc=qÞ=g with j1 > 1. In order to prove
(13), it is thus sufficient to check the following identity:

P kZe � Z0k1;I P q
� �

6 exp � c1q2þk

e2

� 	
; ð15Þ

on any interval of the form I ¼ ½j1 lnðc=qÞ=g; j2 lnðc=qÞ=g� and
1 < j1 < j2 < j3. We shall focus on this inequality in the next
subsection.

3.2. Exponential concentration of the stochastic equation

We will now give a general concentration result for Ze � Z0 on
suitable time scales as follows:

Proposition 3.2. Let Ze be the solution to (12). Then there exists
e0 ¼ e0ðM; sÞ such that, for any q 6 1 and e 6 e0 we have

P kZe � Z0k1;½0;s� > q
� �

6 exp � c2q2

ej2se2

� 	
; ð16Þ

where c2;j2 are strictly positive constants which do not depend on q; e,
but both depend on our set of parameters a; k;r;d;m; b;M.

Proof. For notational sake, let us abbreviate kfk1;½0;s� into kfk1
throughout the proof. In order to bound Ze � Z0, we first seek a
bound for Se � S0. To this aim we notice that for the deterministic
function S0 and thanks to relation (9), one can find a constant
j1 ¼ j1ða; k;r; d;m; bÞ such that kS0k1 6 j1. Set also
J1ðtÞ :¼

R t
0 rðSeðsÞÞ � dW1ðsÞ. Then

jSeðtÞ � S0ðtÞj 6
Z t

0
a� krðQ eðsÞÞ
� �

SeðsÞ � a� krðQ 0ðsÞÞ
� �

S0ðsÞ
��� ���ds

þ e J1ðtÞ
��� ��� 6 Z t

0
a� krðQ eðsÞÞ
� �

ðSeðsÞ � S0ðsÞÞ
��� ���ds

þ
Z t

0
k rðQ eðsÞÞ � rðQ0ðsÞÞ
��� ���jS0ðsÞjdsþ ejJ1ðtÞj

6

Z t

0
ðaþ kMÞjSeðsÞ � S0ðsÞjdsþ j1k

Z t

0
jQ eðsÞ

� Q0ðsÞjdsþ ejJ1ðtÞj: ð17Þ

Analogously, setting J2ðtÞ :¼
R t

0 rðQ eðsÞÞ � dW2ðsÞ, we obtain

jQ eðtÞ � Q0ðtÞj 6
Z t

0
ðmþ kðb� 1Þj1ÞjQ eðsÞ � Q0ðsÞjds

þ
Z t

0
kðb� 1ÞMjSeðsÞ � S0ðsÞjdsþ ejJ2ðtÞj: ð18Þ

Hence, putting together (17) and (18), we get the existence of two
positive constants j2;j3 such that

jZeðtÞ � Z0ðtÞj2 6 j2e2 jJ1ðtÞj2 þ jJ2ðtÞj2
� �

þ j3

Z t

0
jZeðsÞ � Z0ðsÞj2ds;

and by a standard application of Gronwall’s lemma, we get for all
t 2 ½0; s�:

jZeðtÞ � Z0ðtÞj2 6 j2e2 jJ1ðtÞj2 þ jJ2ðtÞj2
h i

expðj3tÞ

6 j2e2 jJ1ðtÞj2 þ jJ2ðtÞj2
h i

expðj3sÞ: ð19Þ

Let us now go back to our claim (16): thanks to inequality (19), we
have
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P kZe � Z0k1 > q
� �

¼ P kZe � Z0k2
1 > q2

� �
6 P kJ1k2

1 þ kJ
2k2
1 >

q2

j2e2 expðj3sÞ

� 	
6 T1 þ T2;

with

T1 ¼ P kJ1k1 >
j4q

e expðj5sÞ

� 	
; and T2 ¼ P kJ2k1 >

j4q
e expðj5sÞ

� 	
:

We now proceed to bound the quantity T1, and to this aim we first
write J1ðtÞ in terms of Itô’s integrals: according to [13, Definition
3.13 p. 156],

J1ðtÞ ¼
Z t

0
rðSeðsÞÞdW1ðsÞ þ 1

2
hrðSeÞ; W1it ;

where h�; �i stands for the bracket of two semi-martingales. Invoking
Eq. (12) and ordinary rules of Stratonovich differential calculus, it is
also readily checked that

rðSeðtÞÞ ¼ rðSe
0Þ þ e

Z t

0
rr0ðSeðsÞÞdW1ðsÞ þ VðtÞ;

where V is a process with bounded variation. We thus end up with
the expression J1ðtÞ ¼ bM1ðtÞ þ V1ðtÞ, where

bM1ðtÞ ¼
Z t

0
rðSeðsÞÞdW1ðsÞ; and V1ðtÞ ¼ e

2

Z t

0
rr0ðSeðsÞÞds;

and decompose T1 accordingly into T1 6 T1;1 þ T1;2, with

T1;1 ¼ P k bM1k1 >
j4q

e expðj3sÞ

� 	
; and T1;2

¼ P kV1k1 >
j4q

e expðj3sÞ

� 	
:

We now bound the terms T1;1 and T1;2 separately.
The term T1;2 is easily bounded thanks to some deterministic

arguments. Indeed, since rr0ðxÞ 6 CðM þ 1Þ for any x 2 Rþ, we have
kV1k1 6 CðM þ 1Þes, so that for any q 6 1 and e 6 e1 :¼
ðj4=ðCðM þ 1Þs expðj3sÞÞÞ1=2, we have T1;2 ¼ 0. As far as T1;1 is
concerned, one can apply the exponential martingale inequality
(see, for instance, [11]) for stochastic integrals in order to get

T1;1 6 exp � j4q2

M2 expðj3sÞe2

 !
:

Putting together the estimates for T1;1 and T1;2, we have thus
obtained

T1 6 exp � j4q2

M2 expðj3sÞe2

 !
;

for any q 6 1 and e 6 e1 :¼ ðj4=ðCðM þ 1Þs expðj3sÞÞÞ1=2. We let the
reader check that the term T2 can be handled along the same lines,
which finishes our proof. h

3.3. Deviation from equilibrium

Let us now prove inequality (13): recall that we have decom-
posed PðkZe � E0k1;I P 2qÞ into A1 þ A2 defined by (14). Further-
more, A1 ¼ 0 when bI is of the form ½a; b� with a ¼ j1 lnðc=qÞ=g.

In order to complete our result, let us analyze the term A2 in the
light of inequality (16). Indeed, in order to go from (15) to (16), it is
sufficient to choose q; s; k such that

q2 expð�j2sÞ > q2þk;

which is achieved for s < b :¼ k lnð1=qÞ=j2. Hence our claim is
satisfied on the interval bI ¼ ½a; b�. We now have to verify that this

interval is nonempty, namely that a < b. This gives a linear equation
in lnð1=qÞ, of the form

j1

g
lnð1=qÞ þ lnðcÞ½ � 6 k

j2
lnð1=qÞ:

and the reader might easily check that the following conditions are
sufficient:

(i) The linear terms satisfy j1
g <

k
j2

, that is k > j1j2
g .

(ii) We take q small enough, namely q 6 q0 in order to compen-
sate the term lnðcÞ.

The proof of (13) is now finished.

3.4. Extension to the delayed system

Let us deal now with the delayed case: as mentioned in the
introduction, we consider the system

dSeðtÞ ¼ a� krðQ eðtÞÞ
� �

SeðtÞdt þ erðSeðtÞÞ � dW1ðtÞ

dQ eðtÞ ¼ d�mQ eðtÞ � krðQ eðtÞÞSeðtÞ
�

þ kbe�lfrðQ eðt � fÞÞSeðt � fÞ
i
dt þ erðQ eðtÞÞ � dW2ðtÞ;

8<:
ð20Þ

where for any t 2 ½�f; 0� and for any e > 0; ðSeðtÞ;
Q eðtÞÞ ¼ ðS0ðtÞ;Q0ðtÞÞ.

Under Hypothesis 1.1, 2.1 and 1.5 we have shown the existence
of a unique equilibrium E0 for the deterministic system (1), corre-
sponding to (20) with e ¼ 0. Following the non-delayed case, we
wish to obtain a concentration result for the perturbed system
(20), as is given in Theorem 1.6.

The proof of this result can be carried out almost exactly as for
Theorem 1.3. Let us only point out the main difference: how to get
an equivalent of inequalities (17) and (18). To this aim, we set
again J1ðtÞ :¼

R t
0 rðSeðsÞÞ � dW1ðsÞ and J2ðtÞ :¼

R t
0 erðQ eðsÞÞ� dW2ðsÞ.

Then in the delayed case, relations (17) and (18) become

jSeðtÞ � S0ðtÞj 6
Z t

0
ðaþ kMÞjSeðsÞ � S0ðsÞjdsþ j1k

Z t

0
jQ eðsÞ

� Q 0ðsÞjdsþ ejJ1ðtÞj; ð21Þ

and

jQ eðtÞ � Q 0ðtÞj 6
Z t

0
ðmþ kj1ÞjQ eðsÞ � Q 0ðsÞjds

þ
Z t

0
kMjSeðsÞ � S0ðsÞjdsþ ejJ2ðtÞj

þ
Z t

0
kbMe�lfjSeðs� fÞ � S0ðs� fÞjds

þ
Z t

0
kbk1e�lfjQ eðs� fÞ � Q 0ðs� fÞjds: ð22Þ

Using that for any t 2 ½�f;0� and for any e > 0,
ðSeðtÞ;Q eðtÞÞ ¼ ðS0ðtÞ;Q0ðtÞÞ we can write the bounds

Z t

0
kbMe�lfjSeðs� fÞ � S0ðs� fÞjds ¼

Z t�f

0
kbMe�lfjSeðsÞ � S0ðsÞjds

6

Z t

0
kbMe�lfjSeðsÞ � S0ðsÞjds;Z t

0
kbk1e�lfjQ eðs� fÞ � Q 0ðs� fÞjds ¼

Z t�f

0
kbk1e�lfjQ eðsÞ � Q0ðsÞjds

6

Z t

0
kbk1e�lfjQ eðsÞ � Q0ðsÞjds

Then, putting these last bounds in (21) and (22) we get the
existence of two positive constants j2;j3 such that

jZeðtÞ � Z0ðtÞj2 6 j2 jJ1ðtÞj2 þ jJ2ðtÞj2
� �

þ j3

Z t

0
jZeðsÞ � Z0ðsÞj2ds:
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Starting from this point, the proof follows exactly as for
Theorem 1.3.

4. Numerical simulations

This final section is devoted to a presentation of some numerical
simulations for the system described by Eq. (2). We have chosen
the parameters ða; k; d;m; b; fÞ according to some real data ob-
served in vitro by the Molecular Biology Group of the Department
of Genetics and Microbiology at Universitat Autònoma de Barcelona.
We have also chosen to compare theoretical and noisy dynamics in
order to see that the quantities S and Q are close to their equilib-
rium after a reasonable amount of time (in spite of randomness).
We believe that this study is justified because the noise is expected
to appear, either by the errors when collecting data, either by the
appearance of several factors that may affect the behavior of the
agents in vivo. Also, the lack of the rights to reproduce the data
in the current article (for the patent reason alluded to in the intro-
duction) does not allow us to consider other types of studies.

It is worth noticing at this point that the parameters we have
chosen for our simulations do not meet the conditions stated at
Hypothesis 1.5. Indeed, those conditions were imposed in order
to obtain our theoretical large deviations type results with a rea-
sonable amount of effort, but might be too restrictive to fit to real
data experiments. Nevertheless, our simulations turn out to be sat-
isfactory, since we observe that the solution ðSðtÞ;QðtÞÞ converges
to E0 for small values of e in a reasonable amount of time, regard-
less of the violation of Hypothesis 1.5.

Specifically, we have simulated trajectories with parameters
estimated on an experiment involving Salmonella ATCC14028 bac-
teria and UAB_Phi78 virus. From the experiments conducted by the
mentioned group we have chosen the parameters as:

ða; k;d;m; b; fÞ ¼ ð12:1622;27:36;0:1;0:1947;61;0:01875Þ:

We have also put M ¼ 10; l ¼ 0:5, and we have taken the initial
conditions S0ðtÞ ¼ 4:8eaðtþfÞ;Q0ðtÞ ¼ 0 for t 2 ½�f;0�. The time is ex-
pressed in days and the amount of virus and bacteria are expressed
in tens of millions of units.

Our simulations are summarized at Fig. 1, in which different
paths of the processes S and Q are computed. We have first ex-
pressed our Stratonovich type Eq. (2) into an Itô type equation plus
corrections, and then used an Euler type discretization scheme for
our equations implemented with the R software. We have then
plotted the deterministic case (e ¼ 0) plus the curves correspond-
ing to several values of e (namely e ¼ �3;1). As mentioned before,

the fluctuations of S and Q (which are obviously due to the ran-
domness we have introduced) do not prevent them to converge
to equilibrium. Observe that there alternative ways to Euler dis-
cretizations in order to simulate Stratonovich type equations, such
as the Runge–Kutta method introduced in [19]. Since our numeri-
cal context was not too demanding, we have chosen to resort to the
Euler scheme based on Itô type equations for sake of simplicity.
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