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Sampling linear inverse problems with noise

Plamen Stefanov ∗ and Samy Tindel
Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

Abstract. We study the effect of additive noise to the inversion of FIOs associated to a diffeomorphic canonical relation. We
use the microlocal defect measures to measure the power spectrum of the noise in the phase space and analyze how that power
spectrum is transformed under the inversion. In general, white noise, for example, is mapped to noise depending on the position
and on the direction. In particular, we compute the standard deviation, locally, of the noise added to the inversion as a function
of the standard deviation of the noise added to the data. As an example, we study the Radon transform in the plane in parallel
and fan-beam coordinates, and present numerical examples.
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1. Introduction

The purpose of this work is to study how noise in discrete measurements affects the reconstruction in
linear inverse problems

Af = g, (1.1)

where A is a Fourier Integral Operator (FIO). Examples are the Radon transform and the geodesic X-
ray transforms in two dimensions, at least, thermoacoustic tomography, and the linearization of some
non-linear inverse problems like boundary and lens rigidity. We assume that A is associated with a local
diffeomorphism (which condition can be relaxed to the clean intersection condition in principle), and
elliptic. Then a parametrix exists, which we will denote by A−1, also an FIO of the same type. One can
regard the problem as mapping noise by FIOs, rather than under by their inverses but we keep the former
point of view.

We want to emphasize that we are not trying to remove noise. That would be only possible with
a priori, say statistical information about f , but this is not the goal of this work. On the other hand,
understanding well the structure of the noise under the action of the inverse would allow for better
understanding of what part of f (in phase space) is most affected by noise and would hopefully allow
for more efficient noise reduction.

We study additive noise first. Such noise is typically created by noisy detectors which add certain
constant (but usually low) noise to the signal or by background noise. In Section 7 we study examples
of non-additive noise: multiplicative noise, Poisson noise as an example of modulation noise, and noise
appearing in CT scan. In case of additive noise, we are given the noisy data g + gnoise, where gnoise (a
function) is the noise. Then we are trying to solve

Af = g + gnoise (1.2)
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instead. The right-hand side (r.h.s.) may not be in the range of A so a solution may not even exist. What
is often done is to apply the adjoint (assuming some Hilbert structure)

A∗Af = A∗g + A∗gnoise,

which automatically cuts the part of gnoise perpendicular to the range of A, and then invert A∗A, assuming
that A is injective in the first place. If not, we invert A∗A on the range of A∗. This can be viewed also
as the least squares approximation, and it is what the Landweber iteration does, for example. So the
inversion is

frecovered = (
A∗A

)−1
A∗g + (

A∗A
)−1

A∗gnoise = f0 + (
A∗A

)−1
A∗gnoise, (1.3)

where f0 is the so described least-squares reconstruction of f without noise. Of course, we could do a
different “inversion”. One way to do it to choose a different Hilbert structure. What is described above
is very common however and it is known as the Moore–Penrose inverse. We do not have to assume that
the inversion is the Moore–Penrose inverse; it could be any parametrix of A, and the Moore–Penrose
inverse is such a parametrix under the assumptions we made on A.

With the above considerations in mind, we can think of the added noise as

fnoise := A−1gnoise, (1.4)

where, as above, A−1 is a parametrix, and A−1gnoise is well-defined even if gnoise is not in the range of A.
This is also the so described solution of

Afnoise = gnoise.

We can drop the fnoise and the gnoise notation now and just study (1.1) with g not necessarily in the range
of A, i.e., g is the noise now.

Example 1. The example we will use in this paper is the Radon transform R in R2

Rf (ω, p) =
∫

x·ω=p

f (x) d�, p ∈ R, ω ∈ S1, (1.5)

where d� is the Euclidean line measure. It is written in “parallel geometry” coordinates. We study this
example in more detail in Section 5; and in Section 6, we will study the same problem for the Radon
transform in fan-beam coordinates. It is known that R is an FIO of order 1/2 with a canonical relation
a graph of a local diffeomorphism (1-to-2). The most popular inversion formula is the “filtered back
projection”

f = 1

4π
R′|Dp|g, g = Rf, (1.6)

where R′ is the transpose in distribution sense; and its versions with adding an additional filter. We view
(1.6) as a unfiltered inversion and that with an additional filter, see (5.10), as a filtered one. Now, one
can define a norm in the g space by ‖|Dp|1/2g‖L2(R×S1). Then R∗ = R′|Dp| and (1.6) takes the form
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f = (4π)−1R∗g. Formula (1.6) is used all the time with noisy data not in the range of R. In addition,
we have R∗R = 4πId. Therefore, the relation f = (4π)−1R∗g can be recast as f = (R∗R)−1R∗g,
which is exactly (1.3).

On the other hand, we may assume that the natural space for g is L2(R ×S1). Then R∗R = 4π |D|−1;
then the inversion is

f = 1

4π
|D|R′g, g = Rf.

This inversion formula is equivalent to (1.6). Note that the inverse is a version of (1.3) again.

Assume that in discrete measurements, the added noise consists of random variables with a known
autocorrelation. The simplest case is independent identically distributed (i.i.d.) random variables at each
“pixel” (white noise). The distribution could be Gaussian, uniform, etc. We convert the discrete mea-
surements to a function on a “continuous”, space, i.e., locally a function on Rn. Then we invert the data
by applying a parametrix, as in (1.4). The discretization rate is assumed to be proportional to a small
parameter h > 0 and we are interested in the asymptotic properties as h → 0. Our main goal is a
characterization of the induced noise fnoise after the inversion.

The novelties of our approach are the following. First, we view discretization and the inverse process –
interpolation from a given discretization, as the step size tends to 0, in the semiclassical setting, where
the small parameter h > 0 is proportional to the step size. This point of view was proposed in the
first author’s paper [17]. This allows us to use tools from semiclassical analysis to estimate the sharp
sampling rate of Af , knowing the band limit of f , characterize aliasing artifacts during inversion if
Af is undersampled, give a sharp limit of the resolution, etc. In this paper, we assume that we do not
undersample Af .

The second novelty is moving the analysis of the spectral character of the noise to the phase space;
roughly speaking, instead of localizing in the dual variable ξ only, to localize in both the spatial one
x, and ξ . In the applied literature, there are two main ways to characterize noise: through its standard
deviation (which assigns just one number) and through its power spectral density (or power spectrum).
The latter is |f̂ (ξ)|2, where f is the noise, as a function of the frequency ξ . Knowing that, we can recover
the standard deviation as well, by Parseval’s identity. Even though not always explicitly stated, when the
noise is not expected to be homogeneous (translation invariant), one can localize in the base variable x by
taking the modulus squared of the windowed Fourier transform |φ̂f (ξ)|2 with some φ ∈ C∞

0 . We propose
going one step further: consider the power spectrum in the phase space of points x and (co)directions ξ .
With the presence of the small parameter h, the natural framework is the semiclassical analysis again.
The semiclassical version of localizing both in space and momentum is to localize near some x0 in the x

space with a smooth cutoff of size h1/2 and then take the Fourier transform with ξ replaced by ξ/h, see
[19] for a discussion. The natural candidate of the power spectrum in the phase space then would be the
so-called semiclassical defect measure dμ(x, ξ) which, roughly speaking, measures the spectral content
of f = fh(x) in the phase space. We call that measure power spectrum as well.

The third novelty is looking at the noise in ergodic sense, which we also call “spatial”, i.e., the noise in
one measurement. There are two ways to look at the statistical properties of the noise. First, one might
be interested in the expected value of the noise pointwise as we keep repeating the same experiment
over and over again (in our context, if we have a series of noisy data sets and do an inversion for each
one of them). We call this “temporal” view, and the analysis of the temporal properties is easier. In
applications, we have one such experiment however. Our goal is to analyze the statistics of the noise
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in the inversion for a single experiment, as the sampling rate gets smaller and smaller, hence the term
“spatial”. In statistics, an estimate with a single experiment is possible when the variables are i.i.d., and
we rely on the ergodic properties of the sequence.

We start with analysis of discrete white noise. The flatness of its spectrum in temporal sense, see (8.6),
is well-known, which justifies its name. In spatial (ergodic) sense, this is true only in a certain averaged
sense, see Theorem 8.1. For the white noise interpolated to a “continuous” function, we show that the
defect measure dμ is flat as well in Theorem 4.1. In Theorem 4.2 we study the spectrum of more general,
correlated noise.

Next, we study propagation of noise under FIOs A−1 (or simply A) of the mentioned type. With the
semiclassical view of noise and is power spectrum, the analysis of the power spectrum of the result
A−1g is reduced to the mapping property of a (semiclassical) defect measure under a (classical) FIO.
The answer is given by the Egorov’s theorem with some extra care of the zero section. Then the tools
described above would allow us the characterize the spectrum of the resulted noise in the reconstruction.
We want to emphasize that even if we start with white noise g, which has a flat spectrum, the noise A−1g

is not homogeneous in general – its power spectrum depends on the position x and the codirection ξ . In
particular, its standard deviation may change from a neighborhood of one point to another.

As we mentioned already, our analysis is not restricted to (additive) white noise only, see also Section 7
for non-additive noise. We can have data with added non-white noise as well, as long as its power density
in the general sense we consider it, is well defined. It could be pink, blue noise, if can be anisotropic
noise, varying from point to point, or even noise corresponding to a non-absolutely continuous defect
measure. For example, we may have the Radon transform Rf (p, ω) with added noise depending on one
of those two variables only, then the associated measure would be singular. Theorems 4.1 and 4.3 still
apply and describe the power density of the noise in the reconstruction.

Instead of developing the general abstract theory further, we present its application to the inversion of
the Radon transform in the plane. In “parallel geometry”, we show that the spectral density of the added
noise is independent of the position x and proportional to |ξ |1/2 up to the Nyquist limit (and the spectral
power, which is the square of the density, is proportional to |ξ |). In “fan-beam coordinates”, the noise
depends on the position x, on |ξ | proportional to |ξ |1/2 again but depends on the direction of ξ (relative
to x) as well. We present many numerical simulations.

Noise is a major concern in the applied inverse problems and has been considered in the literature;
nevertheless, we are not aware of directly related works. We will mention only a few more theoretical
works about noise and inverse problems. Reconstruction of Riemannian manifolds with noisy data has
been studied in [5]. Using noise a source for a reconstruction has been studied in [1,2,7,8].

The structure of the paper is as follows. In Section 2, we recall some basic facts about semiclassi-
cal analysis, needed for our exposition. We also study the relation between classical and semiclassical
FIOs. In Section 3, we summarize and develop further some of the results in [17] about sampling in the
semiclassical limit. In Theorem 4.1 in Section 4, we prove that the power spectral density of white noise
is uniform, by computing its microlocal defect measure. We also show that more general noise satisfy-
ing some assumptions, has a well defined microlocal defect measure as well. Then we apply Egorov’s
theorem to describe how that measure transforms under FIOs associated with a canonical diffeomor-
phism. Sections 5 and 6 are devoted to an application of the theory to the Radon transform on the plane
in parallel and to fan-beam coordinates. We present many numerical examples as well. Multiplicative
noise and other type of noise are analyzed in Section 7. Finally, in Section 8, we analyze discrete white
noise without converting it to noise of a continuous variable. We show that it has flat spectrum on aver-
age.
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2. Preliminaries on semiclassical analysis

We recall some basic facts from semiclassical analysis. For more details, we refer to [3,12,19]. Before
that, a few words about the notation. All norms ‖·‖ are in L2 unless indicated otherwise; also 〈ξ〉 := (1+
|ξ |2)1/2. We denote by S the Schwartz class; and E ′ is the space of the compactly supported distributions.
For a linear operator A, A′ is the transpose in distribution sense, while A∗ is the L2-adjoint.

2.1. Semiclassical wave front set

The semiclassical Fourier transform Fhf in Rn of a function depending also on h > 0 is given by

Fhf (ξ) =
∫

e−ix·ξ/hf (x) dx.

Its inverse is (2πh)−nF∗
h . We recall the definition of the semiclassical wave front set of a tempered

h-depended distribution first. In this definition, h > 0 can be arbitrary but in semiclassical analysis,
h ∈ (0, h0) is a “small” parameter and we are interested in the behavior of functions and operators as h

gets smaller and smaller. Those functions are h-dependent and we use the notation fh or fh(x) or just
f . The Sobolev spaces are the semiclassical ones defined by the norm

‖f ‖2
Hs

h
= (2πh)−n

∫
〈ξ〉2s

∣∣Fhf (ξ)
∣∣2

dξ.

Then an h-dependent family fh ∈ S ′ is said to be h-tempered (or just tempered) if ‖fh‖Hs
h

= O(h−N)

for some s and N . All functions in this paper are assumed tempered even if we do not say so. The
semiclassical wave front set of a tempered family fh is the complement of those (x0, ξ0) ∈ R2n for
which there exists a C∞

0 function φ so that φ(x0) 
= 0, and

Fh(φfh) = O
(
h∞)

for ξ in a neighborhood of ξ0

in L∞ (or in any other “reasonable” space, which does not change the notion). The semiclassical wave
front set naturally lies in T ∗Rn but it is not conical as in the classical case. Elements of the zero section
can be in WFh(f ).

Sjöstrand proposed essentially adding the classical wave front set to WFh by considering the latter in
T ∗Rn ∪ S∗Rn, where the second space (the unit cosphere bundle) represents T ∗Rn as a conic set, i.e.,
each (x, ξ) with ξ unit is identified with the ray (x, sξ), s > 0. Their points are viewed as “infinite” ones
describing the behavior as ξ → ∞ along different directions. An infinite point (x0, ξ0) does not belong
to the so extended WFh(f ) if we have

Fh(φfh) = O
(
h∞〈ξ〉−∞)

for ξ in a conical neighborhood of ξ0 (2.1)

with φ as above.
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2.2. Semiclassical pseudo-differential operators (h-�DOs)

We define the symbol class Sm.k of symbols in Rn as the smooth functions p(x, ξ) on R2n, depending
also on h, satisfying the symbol estimates∣∣∂α

x ∂
β

ξ p(x, ξ)
∣∣ � Cα,β,Khk〈ξ〉m−|β|, (2.2)

for x in any compact set K , see, e.g., [6]. In fact, we are going to work with symbols supported in a fixed
compact set in the ξ variable, so the behavior in ξ above does not matter; one may also work with the
symbol class hkSm(1), see [12,19] where Sm(1) is defined as (2.2) with k = m = 0. Given p ∈ Sm, we
write P = Ph = p(x, hD) with

Pf (x) = (2πh)−n

∫∫
ei(x−y)·ξ/hp(x, ξ)f (y) dy dξ, (2.3)

where the integral has to be understood as an oscillatory one. This is the standard quantization; some-
times it is convenient to work with the Weyl one pw(x, hD), where p(x, ξ) is replaced by p((x+y)/2, ξ)

in (2.3). Then real symbols correspond to symmetric operators, in particular. Negligible operators are
those with O(h∞) norms in any pair of Sobolev spaces.

2.3. Semiclassically band limited functions

In [19], it is said that a tempered fh is localized in phase space, if there exists p ∈ C∞
0 (R2n) so that(

Id − p(x, hD)
)
fh = O

(
h∞)

, in S
(
Rn

)
.

All functions in this paper will be of this type.
It is convenient to introduce the notation �h(f ) for the semiclassical frequency set of f .

Definition 2.1. For each tempered fh localized in phase space, set

�h(f ) = {
ξ ; ∃x so that (x, ξ) ∈ WFh(f )

}
.

In other words, �h is the projection of WFh(f ) to the second variable, i.e.,

�h(f ) = π2 ◦ WFh(f ),

where π2(x, ξ) = ξ . If WFh(f ) (which is always closed) is bounded and therefore compact, then �h(f )

is compact.
In [17], we gave the following definition.

Definition 2.2. We say that fh ∈ C∞
0 (Rn) is semiclassically band limited (in B), if (i) supp fh is con-

tained in an h-independent compact set, (ii) f is tempered, and (iii) there exists a compact set B ⊂ Rn,
so that for every open U ⊃ B, we have∣∣Fhf (ξ)

∣∣ � CNhN 〈ξ〉−N for ξ /∈ U (2.4)

for every N > 0.
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We showed in [17] that fh is semiclassical band limited if and only if it is localized in phase space and
if and only of WFh(f ) is finite (no points of the type (2.1)) and compact.

In applications, we take B to be [−B, B]n with some B > 0 or the ball |ξ | � B.
An example of semiclassically band limited functions can be obtained by taking any f ∈ E ′(Rn) and

convolving if with φh = h−nφ(·/h) with φ̂ ∈ C∞
0 . Then φh ∗ f is semiclassically band limited with

B = supp φ̂.

2.4. Classical �DOs as semiclassical �DOs

In the applications we have in mind, we deal with classical �DOs and FIOs and want to treat them as
semiclassical ones. The negligible operators in the classical calculus are the smoothing ones. We showed
in [17] that for every f ∈ E ′(Rn) and for every smoothing K , we have WFh(Kf ) ⊂ Rn×{0}. Next, every
classical �DO of order m can be written as an oscillatory integral of the kind (2.3) with h = 1 and a
symbol a(x, ξ) vanishing for |ξ | � 1, plus a smoothing operator. Then formally, that oscillatory integral
is an h-�DO with symbol a(x, ξ/h). Then we can replace 〈ξ〉 in (2.2) by |ξ | to obtain an equivalent
estimate, and∣∣∂α

x ∂
β

ξ a(x, ξ/h)
∣∣ � Cα,β,Kh−|β||ξ/h|m−|β| = Cα,β,Kh−m|ξ |m−|β|.

On the support of the symbol, we have |ξ | � h, therefore the factor |ξ |m−|β| is not uniformly bounded
near ξ = 0 when m < |β|. On the other hand, it is uniformly bounded when |ξ | � ε with ε > h. This
allowed us in [17], for every ε > 0, to split a(x, D) into an h-�DO with symbol a(x, ξ/h)(1−χ(ξ/ε))

with some cut-off function χ ∈ C∞
0 plus an operator mapping semiclassically band limited functions

into functions with semiclassical wave front set in an O(ε) neighborhood of the zero section. We show
below that we can do the same thing for FIOs associated with canonical diffeomorphisms.

Let A be a properly supported FIO with a canonical relation which is a graph of a homogeneous
canonical transformation. Then up to a smoothing operator, A is of the form

Af (x) = (2π)−n

∫∫
ei(φ(x,η)−y·η)a(x, η)f (y) dy dη, (2.5)

see [9, Section 25.3], with a a classical symbol and a phase φ(x, η) homogeneous in η of odder 1,
satisfying det φxη 
= 0, φx 
= 0 for η 
= 0. The smoothing “error” can still be written in this form with
φ(x, η) = x · η (a �DO) and an amplitude of order −∞, so the arguments below apply to it as well. Let
ψ ∈ C∞

0 have support in B(0, 2), ψ = 1 on B(0, 1), and fix ε > 0. Then A = Ah,ε + Rh,ε, where

Ah,εf (x) = [
A

(
Id − ψ(hD/ε)

)
f

]
(x)

= (2πh)−n

∫∫
ei(φ(x,η)−y·η)/ha(x, η/h)

(
1 − ψ(η/ε)

)
f (y) dy dη,

Rh,εf (x) = [
Aψ(hD/ε)f

]
(x) = (2πh)−n

∫∫
ei(φ(x,η)−y·η)/ha(x, η/h)ψ(η/ε)f (y) dy dη.

(2.6)
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Theorem 2.1. Under the assumptions above,

(a) The operator Ah,ε is an h-FIO with a (semiclassical) canonical relation the same as the (classical)
one of A. Moreover, for every semiclassically band limited f with WFh(f )∩ (Rn ×B(0, ε)) = ∅,
we have Af = Ah,εf + O(h∞).

(b) For every fh ∈ E ′(Rn) with support in some compact set independent of h, satisfying |Fhfh| �
Ch−N for some N , we have WFh(Rh,εf ) ⊂ Rn × B(0, Cε) with some C > 0.

Proof. Since A is properly supported, and f is either O(h∞) outside some fixed compact set in (a),
or vanishes in (b), we can assume that the x–support of a is compact and independent of h as well. It
follows from (2.2) that if a is a classical symbol of order m, then a(x, η/h) is a semiclassical one of
order (m, −m) for |η|/h > 1. Therefore our claim (a) is true for |η| > ε/2 and 0 < h < ε, which is
true on the support of the symbol a(x, η/h)(1 − ψ(η/ε)) of Ah,ε. Hence ã is a semiclassical symbol of
order (−m, m). The second part of (a) is immediate.

To prove (b), multiply Rh,εf by ρ ∈ C∞
0 and apply Fh:

FhρRh,εf (ξ) = (2πh)−n

∫∫
ei(φ(x,η)−x·ξ)/hρ(x)a(x, η/h)ψ(η/ε)Fhf (η) dη dx.

For the phase � := φ(x, η) − x · ξ we have �x = φx(x, η) − ξ . By the homogeneity of φ, for |η| � 2ε,
and |ξ | > Cε, we have �x 
= 0. Then a stationary phase argument implies FhρRh,εf (ξ) = O(h∞) for
such ξ . This proves (b). �

2.5. Semiclassical defect measures

Given fh with ‖fh‖ � C, one can show that there exists a sequence hj → 0 so that the limit

lim
h=hj →0+

(
p(x, hD)fh, fh

)
L2 =

∫
p(x, ξ) dμf (x, ξ) (2.7)

exists for every symbol p ∈ C∞
0 , see [12,19], and defines a Borel measure dμf (x, ξ) � 0 called

a semiclassical defect measure associated to f . That measure may not be unique. Note that dμf is
invariantly defined on T ∗Rn. On the other hand, its definition (2.7) depends on the choice of the measure
(respectively the coordinates) used to define the L2 space there. We can use every quantization of p in
(2.7), for example the Weyl one pw(x, hD) which guarantees that (2.7) is real when p is real-valued.

When f is semiclassically band limited, WFh(f ) is compact, hence dμf has compact support as well,
and

‖fhj
‖2

L2 =
∫

dμf + o(1). (2.8)

This in particular implies that our assumption guarantees that ‖fhj
‖L2 is asymptotically constant as

hj → 0. In fact, some authors require ‖fh‖ = 1, see [12].
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3. Sampling in the semiclassical limit

3.1. Sampling semiclassically band limited functions

We recall some results in [17] first. The classical Nyquist–Shannon sampling theorem says that a
function f ∈ L2(Rn) with a Fourier transform f̂ supported in the box [−B, B]n can be uniquely and
stably recovered from its samples f (sk), k ∈ Zn as long as 0 < s � π/B. More precisely, we have

f (x) =
∑
k∈Zn

f (sk)χk(x), χk(x) :=
n∏

j=1

sinc

(
1

s
(xj − skj )

)
, (3.1)

where we adopt the “engineering” definition of the sinc function

sinc(x) = sin(πx)/πx.

Moreover,

‖f ‖2 = sn
∑
k∈Zn

∣∣f (sk)
∣∣2

,

where ‖ · ‖ is the L2 norm, see, e.g., [14] or [4].
The proof is based on viewing the samples f (sk) as the (inverse) Fourier coefficients of f̂ , extended

as 2π/s-periodic function. We reproduce the proof below in the semiclassical case.
In [17], we formulated this, and related results in the semiclassical setting. One of those theorems is

the following. Recall that �h(f ) is defined in Definition 2.1.

Theorem 3.1. Let fh be semiclassically band limited with �h(f ) ⊂ ∏
(−Bj, Bj ) with some Bj > 0.

Let χ̂j ∈ L∞(R) be supported in [−π, π], and χ̂j (πξj/Bj ) = 1 for ξ ∈ �h(f ). If 0 < sj � π/Bj , then

fh(x) =
∑
k∈Zn

fh(s1hk1, . . . , snhkn)
∏
j

χj

(
1

sjh
(xj − sjhkj )

)
+ OS

(
h∞)‖f ‖, (3.2)

and

‖fh‖2 = s1 . . . snh
n

∑
k∈Zn

∣∣fh(s1hk1, . . . , snhkn)
∣∣2 + O

(
h∞)‖f ‖2. (3.3)

One could think of χj as somewhat better versions of the sinc function: they decay faster if we choose
χ̂j to be smooth. We can do this because �h(f ) (which is compact) is assumed to be included in the
interior of the closed

∏[−Bj, Bj ]. In case of an equality, we must take χj(x) = sinc(x).
Assume now for simplicity that all Bj and sj are equal to some B and s, respectively. We can always

choose a linear transformation y = Wx to get back to (3.2) or even more general sampling grids, and
the dual one ξ = W ∗η for the dual variables. Set χ(x) = χ1(x1) · · · χn(xn). Then (3.2) and (3.3) take
the form

fh(x) =
∑
k∈Zn

fh(shk)χk(x) + OS
(
h∞)‖f ‖, χk(x) := χ

(
1

sh
(x − shk)

)
(3.4)
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and

‖fh‖2 = (sh)n
∑
k∈Zn

∣∣fh(shk)
∣∣2 + O

(
h∞)‖f ‖2. (3.5)

The proof of Theorem 3.1 is based on the following observation. Since Fhf is supported in∏
(−Bj, Bj ) up to an O(h∞|ξ |−∞) error, and π/s > Bj , we have

(Fhf )ext(ξ) = (sh)n
∑

k

f (shk)e−isx·ξ + OS
(
h∞)

, (3.6)

where (Fhf )ext(ξ) is the periodic extension of Fhf (ξ) with period 2π/s in each 1D variable. Multiply
this by χ̂ (sξ) to get

Fhf (ξ) = (sh)nχ̂(sξ)
∑

k

f (shk)e−isξ ·k + OS
(
h∞)

.

If χk is the interpolating function in (3.4), then

Fhχk(ξ) = (sh)nχ̂(sξ)e−isξ ·k. (3.7)

Take F−1
h to complete the proof. The full details can be found in [17]. Also, χ does not need to be of

product type, as shown there.

Remark 3.1. In the limit case �h(f ) = (−B, B)n, which is not allowed by the theorem since �h(f ) is
compact, we have χ̂ = 1[−π,π]n , where 1[−π,π]n stands for the characteristic function of [−π, π]n. Then
χ is a product of sinc functions, see (3.1). We will use the notation

sinck(x) :=
n∏

j=1

sinc

(
1

sh
(xj − shkj )

)
. (3.8)

Then (3.7) takes the form

Fh sinck(ξ) = (sh)n1[−π/s,π/s]n(ξ)e−isk·ξ . (3.9)

The functions sinck form an orthogonal system, and

φk := (sh)−n/2 sinck (3.10)

is an orthonormal basis in the subspace 1[−π/s,π/s]n(hD)L2(Rn). For future reference, we want to mention
that for every m � 2 integer, if sinc(m)

k (ξ) is defined by

Fh sinc(m)
k (ξ) = (sh/m)n1[−mπ/s,mπ/s]n(ξ)e−isk·ξ (3.11)
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then

sinc(m)
k (x) =

∏
j

sinc

(
m

sh
(xj − shkj )

)
(3.12)

instead. Then

φ
(m)
k := (sh/m)−n/2 sinc(m)

k

is an orthonormal system in 1[−mπ/s,mπ/s]n(hD)L2(Rn) but not a basis. To make it a basis, notice that s

was replaced by s/m and k was replaced by mk there. Allowing the original k to run over all integer
points, i.e., replacing k by k/m there would complete (3.12) to a basis.

3.2. Constructing a semiclassically band limited function from a discrete sequence

The next question is how to associate a semiclassically band limited function to a set of numbers
f k, k ∈ Zn, which we view as its samples. Without the band limited requirement, this can be done in
infinitely many ways, of course, by various ways to interpolate between the samples. On the other hand,
if we fix the band limit B, then for B < π/s, such a function, if exists, would be oversampled, and those
samples can be shown to be dependent. We can only hope that this problem always has a solution when
B � π/s. The next proposition, proven in [17], shows that it can be done when B = π/s with a sinc
interpolation.

Proposition 3.1. Let � � �1 be both open. Fix s > 0. For 0 < h � 1, let K(h) ⊂ Zn be the set
of those k for which shk ∈ �. Then for every collection of complex numbers {f k,h}, k ∈ K(h) with∑

k |f k,h|2 tempered, there exists a semiclassically band limited fh with WFh(f ) ⊂ �1 × [−π/s, π/s]n
so that f (shk) = f k,h.

One such choice is given by

f̃h = ψfh, with fh(x) =
∑

k∈K(h)

f k,h sinck(x), (3.13)

where ψ ∈ C∞
0 (�1) is equal to 1 near �̄. Moreover, (3.5) holds.

Proof. With fh as above, we have fh(shk) = f h(k) and

Fhfh(ξ) = 1[−π/s,π/s]n(ξ)(sh)n
∑

k∈K(h)

f k,he
−isk·ξ , (3.14)

compare to (3.6) and (3.9). Then WFh(fh) ⊂ Rn × [−π/s, π/s]n. Let ψ be as in the theorem. Then
f̃h = ψfh has the required properties. �

By Theorem 3.1, (3.13) is the only such representation when fh is restricted to �, up to an O(h∞)

error, if we want to keep the band limit B to be the sharp one B = π/s.
The expansion (3.13) has the usual downsides associated with the presence of the sinc functions

there – they decay too slowly at infinity allowing the influence of each term to extend too far. When



342 P. Stefanov and S. Tindel / Sampling with noise

B > π/s (strictly), we can have the localized interpolation functions χk of Theorem 3.1 in principle.
The situation is different than that in Theorem 3.1 though. The functions χj in (3.2) do not necessarily
satisfy χk1(shk2) = δk1,k2 , where δk1,k2 stands for the Kronecker symbol. In the case under consideration,
they have to (up to an O(h∞) error). Also, when B > π/s, the corresponding function fh would be
undersampled rather than oversampled. Next, in interpolations like these, the desire is to make it as
smooth as possible.

One way to enforce fh(shk) = f k,h is to replace the sinc function in (3.12) with itself, multiplied
by some φ ∈ S with φ(0) = 1, φ̂ ∈ C∞

0 , i.e., to put a product of sinc(x)φ(x) for each point xj . Then
F(φ sinc) = (2π)−11[−π,π]∗φ̂ has support larger than [−π, π] which corresponds to a band limit greater
than π/s, compare with (3.14). One can also have a rapidly decreasing φ̂ instead of a C∞

0 one, and the
resulting error by replacing it with a suitable a C∞

0 one can be estimated easily.

3.3. Lanczos-3 interpolation and other convolution based interpolations

One practical and approximate realization of the idea above is the Lanczos-3 interpolation. It is part
of the family of the Lanczos-k interpolations with the number 3 below replaced by an integer k. In it, the
functions χj in (3.2) are taken to be

Lan3(x) := H
(
3 − |x|) sinc(x) sinc(x/3),

where H is the Heaviside function, and x stands for each coordinate function xi . Its Fourier transform is
not of compact support but decays like O(|ξ |−2) with a small leading term; and it is very small outside
|ξ | � 2π , see Fig. 1; as opposed to sinc(x) which Fourier transform is supported on |ξ | � π . The kernel
Lan3(x) is easy to compute numerically, has a small support, and preserves the property f (shk) = f k,h

because Lan3(k) = δk,0 for k an integer. So for all practical purposes, choosing χ in (3.13) to be Lan3,
provides an interpolation with a band limit no greater than B = 2π/s and even B = 1.5π/s; 1.5 to 2
times that of (3.13), see Fig. 1.

If the samples in (3.15) with χ a Lanczos-3 kernel, are those of a function with a band limit B = π/s

(the Nyquist limit for that step size), then the reconstruction will leave frequencies below B/2 mostly
unchanged, and will attenuate and alias those between B/2 and B as in Fig. 1. The resulting aliasing
will be “small” because the amplitude is “small” away from |ξ | � B (in Fig. 1, B = π). The created fh

will have an essential band limit larger than B, as explained above, and this is true even if the samples
are arbitrary.

The property of the Lanczos-3 kernel to be almost 1 in [−π/2, π/2] can be used to practical inter-
polations with an explicit kernel with small support approximating well enough χj in (3.2). For this, it
is enough to oversample twice or even 1.5 times only in each coordinate and use the Lanczos-3 kernel.

Fig. 1. The Lanczos-3 kernel Lan3 and its Fourier transform. The sinc kernel and its Fourier transform are shown as dashed
lines.
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We use this technique in the numerical computations later. This way, we work with a very well localized
kernel rather than with the sinc one.

The Lanczos-3 interpolation belongs to the family of the convolution based interpolations of the type

fh(x) =
∑

k∈K(h)

f k,hχk(x), χk(x) := χ

(
1

sh
(x − shk)

)
, (3.15)

with various compactly supported kernels χ . It is easy to see that this is the case when the interpolation
is translation invariant, has a finite domain of influence, and is a linear operator. The simplest examples
are the nearest neighbor (χk are characteristic functions of boxes in Rn) and the linear interpolation.
Some of the higher order ones are the third order cubic Catmull–Rom spline and a fourth order cubic
spline proposed by Keyes, see [11,13]. Without going into detail, we will mention that those two are very
similar to Lanczos-2 and Lanczos-3, respectively with the Keyes one being a bit more smoothing that
Lanczos-3. The Fourier transforms χ̂ related to the cubic interpolations and the Lanczos-3 ones decay
fast enough to be well approximated with compactly supported ones. Then we have the following.

Proposition 3.2. Let χ̂ ∈ L∞
comp. Then for fh given by (3.15) we have

‖fh‖2 � C(sh)n
∑

k∈K(h)

|f k,h|2, C := ‖χ̂‖2
L∞ .

Proof. Let 1 � m ∈ Z be such that supp χ̂ ∈ [−mπ, mπ]n. Let sinc(m)
k be defined by (3.12). Then

φk = (sh/m)−n/2 sinc(m)
k form an orthonormal system, see Remark 3.1. For

gh(x) :=
∑

k∈K(h)

f k,h sinc(m)
k (x) (3.16)

we have

‖gh‖2 = (sh/m)n
∑

k∈K(h)

|f k,h|2. (3.17)

Multiply (3.11) by χ̂ (sξ), we get

χ̂ (shD) sinc(m)
k = m−nχ̂k, (3.18)

where we used (3.7), valid for χk as in (3.15) with every χ as in the proposition. Therefore, fh =
mnχ̂(shD)gh. Hence it is easily seen that ‖fh‖ � mn‖χ̂‖L∞‖gh‖, where we recall that gh is defined by
(3.16). Combining this with (3.17), we complete the proof. �

3.4. Noisy samples

Let us say we restore a semiclassically band limited function from noisy samples. Assume oversam-
pling, i.e., B < π/s (strictly). Without noise, we would use the formula (3.4) where fh(·) are the samples
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which we call here f k,h. In other words, we would take fh as in (3.15) with χ so that

χ̂ = 1 on [−sB, sB]n, supp χ̂ ⊂ (−π, π)n, (3.19)

which we take to be in the Schwartz class; and we can do this since we can choose χ̂ to be in C∞
0 .

If we do the same thing with the noisy samples, the added noise will be given by (3.15) again. Then
f (shk) = f k,h would be true for the noise free samples since a priori, fh has a band limit B. This would
not be true for the noisy samples, in general, because they are not necessary samples of such a function.
In fact, one of the goals of the current contribution is to tackle this issue.

As in the proof of Proposition 3.2, note that (3.15) and the sinc reconstruction (3.13) are closely
connected: one can get the former from the latter by applying the convolution operator χ̂(shD) to it.

3.5. Delta type of expansion

We can view the convolution based interpolation (3.15) as a convolved delta type of expansion in
which χ is formally replaced by the Dirac delta. Indeed, start with

f δ
h (x) := (sh)n

∑
k∈K(h)

f k,hδ(x − shk), (3.20)

then fh = χh ∗ f δ
h with χh(x) = (sh)−nχ(x/(sh)). On the Fourier side, we have (3.14) without the

cutoff function 1 there.

4. Noise and defect measures

4.1. Microlocal defect measures as a generalization of power density

We start this section by specifying the kind of white noise considered in the sequel, see also Section 6.

Hypothesis 4.1. For every h > 0, the noise is modeled by a family {f k,h; k ∈ Zn} of independent
and identically distributed (i.i.d.) real valued random variables defined on the same probability space
(X,F,P). The random variables f k,h have zero expected values and a common finite variance σ 2. For
our computations we also make the following technical assumption on the common higher moments:
there exists a constant δ > 0 such that

E
(
f 4

k,h

(
log

(
1 + |f k,h|

))1+δ)
< ∞. (4.1)

The variables f k,h model the noise at each cell/pixel xk = shk, with the relative step s > 0 fixed, and
h > 0 a small parameter. In Hypothesis 4.1 we allow f k to depend on h, but h will often be omitted
for notational sake. In the numerical examples later, we use either normally distributed f k or uniformly
distributed ones. For a fixed bounded domain �, the number of sampling points xk = shk in it (we
called that index set K(h) in Proposition 3.1) is |�|(sh)−n(1 + o(h)). For each h > 0, only that many
f k,h’s will be used eventually; therefore, we have a triangular array of random variables f k,h, h > 0,
k ∈ K(h).
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As explained in the introduction, there are two types of statistical properties we are interested in. First,
what we call “temporal” mean, variance, etc., are the moments of each f k as a random variable. They
are determined by the process which creates them and in practical applications correspond to repeated
experiments, hence the term “temporal”. We use the notation E(f k), E(f 2

k), etc., for the expectation.
The second, and the more interesting kind of properties are for a single experiment as h → 0, i.e.,
when the number N ∼ h−n of f k grows. The mean is just the mean of those finitely many numbers,
and the variance is the mean of their squares. We call them empirical spatial mean and variance, using
the notation VAR for the latter and STD for the spatial standard deviation. Limit theorems for averaged
random quantities with certain invariances are called sometimes ergodic properties; we view them as
“spatial” ones, interpreting f k as samples of some function in space. By the strong law of large numbers,
the mean of ∼ h−n of f k’s converges to zero almost surely, and its spatial variance converges to σ 2

almost surely, as N → ∞. Below, we define similar quantities for continuous function-valued random
variables.

Our terminology could be confusing since for random processes, that is families {f (t)}t∈R of real-
valued random variables, t is naturally interpreted as a time parameter. However, in our case the param-
eter (denoted as x) is a spatial variable and f has to be considered as a random field.

With Hypothesis 4.1 in hand, we think of each discrete noise as identified with a function fh as in
(3.15) with some χ̂ ∈ C∞

0 without necessarily assuming (3.19) for now. Clearly, E(fh) = 0, which is a
temporal characteristic. We now state a lemma for the spatial mean and variance of fh.

Lemma 4.1. Let {f k,h; k ∈ Zn} be a noise satisfying Hypothesis 4.1, and define the function fh accord-
ing to (3.15). Then P-almost surely we have

MEAN(fh) := 1

|�|
∫

�

fh dx → 0, as h → 0. (4.2)

As far as the spatial variance of fh is concerned, we get the following P-almost sure limit,

VAR�(fh) := 1

|�|
∫

�

f 2
h dx → σ 2, as h → 0. (4.3)

Proof. We will only prove (4.3), the proof of (4.2) being similar. To this aim, starting from (3.15) and
using the fact that {χk; k ∈ K(h)} is an orthogonal system we get

‖fh‖2 =
∑

k∈K(h)

f 2
k,h‖χk‖2 = cχ(sh)n

∑
k∈K(h)

f 2
k,h, (4.4)

where cχ = ‖χ‖2. Plugging (4.4) into the definition (4.3) of VAR�(fh), we obtain

VAR�(fh) = cχ

(sh)n

|�|
∑

k∈K(h)

f 2
k,h. (4.5)

Taking limits in (4.5) now amounts to applying an almost sure limit theorem for the triangular array
{f 2

k,h; k ∈ K(h), h > 0}. This is ensured by the relation Card(K(h)) = |�|(sh)−n(1 + o(h)) and
classical theorems on strong law of large numbers for triangular arrays (see e.g [10, Corollary on p.
378]), as soon as the random variables f 2

k,h satisfy Hypothesis 4.1. The proof of our claim (4.3) is now
easily achieved. �
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By (4.3), fh is L2 bounded almost surely, therefore it almost surely has a microlocal defect measure
(possibly not unique) associated to it. In this paper, we consider every such semiclassical defect measures
dμf (x, ξ) � 0, defined in Section 2.5, as a spectral density of fh. In Theorem 4.1 below however, we
show that the limit is unique and it holds for every sequence h → 0 in the case we consider.

One can see that dμf makes sense as the variance density in the phase space. In fact for a domain �,
the quantity

VAR0
�(f ) := 1

|�|
∫∫

T ∗�
dμf (4.6)

corresponds formally to p being the characteristic function of �, divided by |�|, which would corre-
spond to the usual variance definition if limh→0 fh existed. We are not claiming that the latter limit exists
however but when f is white noise, the defect measure exists as a limit in mean square sense, as we
prove in Theorem 4.1 below. The superscript 0 in (4.6) is a reminder that this is a quantity in the limit
h → 0. We want to emphasize that VAR0 is just defined by (4.6) and (4.8) below for any f for which
dμf exists and it is not necessarily connected to any random f . When f is random (noise), VAR0(f ) is
related to it as in Theorem 4.1 below. We define the standard deviation STD(f ) as the square root of the
variance VAR(f ) (with or without the superscript 0).

Assume now

dμf = γf dx dξ (4.7)

with some continuous γf � 0. Then taking the limit as � converges to a point, we set

VAR0
x(f ) :=

∫
γf (x, ξ) dξ. (4.8)

Hence VAR0
x(f ) can be viewed as the asymptotic variance density of the noise at x.

4.2. A remark about the Wigner function

In this section, we will relate the Wigner function to the defect measures at a heuristic level. For a
noise f satisfying Hypothesis 4.1, we set

(
pw(x, hD)fh, fh

) =
∫

p(x, ξ)Wf (x, ξ) dx dξ, (4.9)

where Wf is the Wigner function, see [2],

Wh
f (x, ξ) = (2πh)−n

∫
e−iz·ξ/hfh(x + z/2)f̄h(x − z/2) dz.

Note that Wh
f dx dξ is h-dependent and not a measure in general since it may take negative values.

However, the existence theorem of defect measures says that there exits at least one sequence hj → 0
for which Wh

f converges to some dμ. Moreover, we have∫
Wh

f (x, ξ) dξ = ∣∣f (x)
∣∣2

,

∫
Wh

f (x, ξ) dx = (2πh)−n
∣∣Fhf (ξ)

∣∣2
. (4.10)



P. Stefanov and S. Tindel / Sampling with noise 347

In [2], de Verdière considers random vector fields f (x), x ∈ Rn, and defines their auto-correlation by

ACorf (x, y) = E
(
f (x)f̄ (y)

)
Then he defines the power spectrum of f by

Ph(x, ξ) = E
(
Wh

f (x, ξ)
)
.

This lifts the notion of power spectrum to the phase space but the limit h → 0 is not taken.
Following the steps of the forthcoming Theorem 4.1 and using crucially the fact that E(f kf l) =

σ 2δk,l , we let the patient reader check that

E
(
pw(x, hD)fh, fh

) = (sh)nσ 2 tr
(
Q(h)

)
= snσ 2

(2π)n

(∫∫ ∣∣χ̂ (sξ)
∣∣2

p(x, ξ) dx dξ + O(h)

)
, (4.11)

where Q is defined by (4.19). Thanks to (4.9), this leads to the expected value of the Wigner function
Wh

f up to an O(h) error in a weak sense; and eventually, it could lead to the expected value of the
defect measure, if we can take limits as h → 0 in any reasonable probabilistic sense. There are several
difficulties with this approach. We have to treat and estimate the remainder as a measure applied to p;
different subsequences hj could converge to different defect measures for a fixed f k while the expected
value applies to all such sequences, etc. The latter is the important reason we do not pursue this approach.
In addition, the Wigner function method characterizes the power spectrum of the noise after repeated
experiments (in temporal sense), while we want to study a single one (in ergodic sense).

4.3. The defect measure of white noise

Let f k, k ∈ Zn have values in R. As before, � ⊂ Rn is a bounded domain. In the theorem below,
given h > 0, we associate a semiclassically band limited function fh to {f k} by (3.15). This uses
|�|(sh)−n(1 + o(1)) terms of the sequence f k. We allow {f k} to depend on h. Then we get a triangular
array of random variables.

The following theorem is the main technical result of this paper.

Theorem 4.1. Assume that {f k,h; k ∈ Zn} is a noise satisfying Hypothesis 4.1, with L4 moments only.
Namely the random variables f k, k ∈ Zn take values in R and are created by a white noise process with
variance σ 2 > 0 and a bounded fourth moment.

(a) Let f δ
h be the associated distribution given by (3.20) with some fixed s > 0. Then for every

p ∈ C∞
0 (T ∗�),

(
pw(x, hD)f δ

h , f δ
h

)
L2 −→

∫
p(x, ξ) dμf δ (x, ξ),

as h → 0 + in mean square sense, (4.12)

where

dμf δ (x, ξ) = σ 2sn dx dξ

(2π)n
. (4.13)
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(b) Let fh be the associated function given by (3.15) with some fixed s > 0 and with χ̂ ∈ C∞
0 not

necessarily satisfying (3.19). Then for every p ∈ C∞
0 (T ∗�),

(
pw(x, hD)fh, fh

)
L2 −→

∫
p(x, ξ) dμf (x, ξ),

as h → 0 + in mean square sense, (4.14)

where

dμf (x, ξ) = σ 2sn
∣∣χ̂ (sξ)

∣∣2 dx dξ

(2π)n
. (4.15)

Proof. Notice first that the l.h.s. of (4.12) is well-defined in distribution sense since the Schwartz kernel
of pw(x, hD), see (4.33), is Schwartz class. Let χ̂ ∈ C∞

0 be such that p(x, ξ)χ̂(ξ) = p(x, ξ). Then f δ
h

can be replaced by χh ∗ f δ
h as in Section 3.5; which is (3.15). Therefore, we need to prove (b) only.

We start with the easier case when (3.19) is satisfied (with B < π/s). This corresponds to the practical
situation of restoring an oversampled function with white noise added, and the theorem studies how the
noise is added to the result.

Recall that the functions sinck were defined in (3.8) and that φk = (sh)−n/2 sinck form an orthonormal
basis in the space 1[−π/s,π/s]n(hD)L2(Rn), as mentioned earlier. The interpolation function χ satisfies
χ̂1[−π,π]n = χ̂ by (3.19), therefore,

χk = χ̂ (shD) sinck = (sh)n/2χ̂ (shD)φk. (4.16)

Since � ⊃ suppx p, we have

(
pw(x, hD)fh, fh

) =
∑

k,l∈K(h)2

f kf l

(
pw(x, hD)χk, χl

) =
∑

k,l∈K(h)2

pklf kf l , (4.17)

where, as before, K(h) = {k ∈ Zn, shk ∈ �}, K2 = K × K , and

pkl := (
pw(x, hD)χk, χl

) = (sh)n(Qφk, φl), (4.18)

with

Q(h) := ¯̂χ(shD)pw(x, hD)χ̂(shD). (4.19)

We shall prove in Lemma 4.2 that |pkl| � C(sh)n. Our aim in (4.29) is to prove that in the L2(X) sense
we have

lim
h→0

(
pw(x, hD)fh, fh

)
L2 = sn

(2π)n
σ 2

∫
p(x, ξ) dμf (x, ξ). (4.20)

We now split the proof of (4.20) in several steps.
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Step 1: A decomposition: Split the summation in (4.17) over elements (k, l) on the diagonal � :=
{k = l} and away from it:(

pw(x, hD)fh, fh

)
L2 = W1 + W2, (4.21)

where

W1 :=
∑

k∈K(h)

pkkf
2
k, W2 :=

∑
k,l∈K(h)2\�

pklf kf l . (4.22)

Furthermore, according to (4.29) below we have

∑
k∈K(h)

pkk = sn

(2π)n

∫
q(x, ξ) dx dξ. (4.23)

Thus owing to the fact that q = p + O(h), we can recast (4.21) as

(
pw(x, hD)fh, fh

)
L2 − sn

(2π)n
σ 2

∫
p(x, ξ) dμf (x, ξ) = W1,0 + W2, (4.24)

where the term W1,0 is defined by

W1,0 =
∑

k∈K(h)

(
f 2

k − σ 2
)
pkk.

We are now reduced to prove that both W1,0 and W2 in (4.24) converge to 0 in L2(X).
Step 2: Analysis of W1,0: Observe that the random variables f 2

k −σ 2 are independent, have zero expec-
tation and a finite variance σ̃ 2 = E(f 4

k ) − σ 4 under our fourth moment assumptions. Then E(W1,0) = 0.
Moreover, invoking the forthcoming inequality (4.28) and the fact that Card(K(h)) � c|�|(sh)−n, we
get

E
(
W 2

1,0

) =
∑

k∈K(h)

σ̃ 2p2
kk � (sh)2nσ̃ 2|�|(sh)−n � Chn. (4.25)

Therefore, W1,0 converges to 0 as h → 0, in the L2(X) sense.
Step 3: Analysis of W2: The random variables f kf l , k 
= l, have expected values zero and vari-

ance σ 4. Next, f kf l and f k′f l′ are not independent unless neither k′ nor l′ are equal to k or l

but they are uncorrelated. Indeed, we only need to check that when, say k = k′ and even then,
E((f kf l)(f kf l′)) = E(f 2

k)E(f l)E(f l′) = 0 because all f k have expectation zero. Therefore some
elementary L2(X) considerations, together with (4.28), reveal that

E
(
W 2

2

) = σ 4
∑

k,l∈K(h)2\�
p2

kl � Chn. (4.26)

Therefore, W2 → 0 in mean square sense.
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Summarizing our considerations so far, the proof of the case when (3.19) holds is easily achieved by
plugging (4.25) and (4.26) into (4.24).

Step 4: Dropping the assumption (3.19). Let m be such that supp χ̂ ⊂ (−mπ, mπ). Let sinc(m)
k be as

in (3.12). Then (4.16) takes the form, see also (3.18),

χk = mnχ̂(shD) sinc(m)
k = mn(sh/m)n/2χ̂ (shD)φ

(m)
k = (shm)n/2χ̂ (shD)φ

(m)
k . (4.27)

The necessary modifications of the proof above in this case are as follows. For the deterministic term
featuring in (4.22) we have the same formula but now,

pkl := (
pw(x, hD)χk, χl

) = (shm)n
(
Qφ

(m)
k , φ

(m)
l

)
.

The set {φ(m)
k } is an orthonormal system in 1[−mπ/s,mπ/s]n(hD)L2(Rn) but not a basis, see Remark 3.1.

The missing elements are those with fractional indices in Zn/m. Then there are many “gaps” in the
sum W1,0 compared to the one with a basis, giving us a trace as in Lemma 4.2. On the other hand, the
extra factor mn in (4.27) allow us to think of each term mnpkk as an approximation of all mn terms in
a box around k of size one, which would add the missing terms. The error is O(hn+1) (multiplied by
the constant mn), by (4.31). Since K(h)/m has O((m/h)−n) points, this introduces an O(h) error, thus
(4.14) is preserved. �

The following lemma was used in the proof above. Below, ‖·‖HS stands for the Hilbert–Schmidt norm.

Lemma 4.2. For pkl defined by (4.18), we have

|pkl| � C(sh)n, (4.28)∑
k

pkk = (sh)n tr Q = sn

(2π)n

∫
q(x, ξ) dx dξ, (4.29)

∑
k,l

|pkl|2 = (sh)2n‖Q‖2
HS = s2nhn

(2π)n

∫ ∣∣q(x, ξ)
∣∣2

dx dξ, (4.30)

where q is the complete symbol of the h-�DO Q in (4.19). Next,

pkl = (
pw(x, hD)χk, χl

)
= s2nhn

∫∫
p̌

(
sh

2
(x + y + k + l), s(x − y + k − l)

)
χ(x)χ(y) dx dy, (4.31)

where p̌ is the inverse Fourier transform of p w.r.t. ξ

Proof. Inequality (4.28) follows directly from the fact that ‖P(h)‖ is bounded uniformly in h, see, e.g.,
[19, Theorem 4.21]. If we add the basis elements of (Id − 1[−π/s,π/s]n(hD))L2(Rn) to the φk terms in
(4.18), we will get zero contribution, so we consider it done. Then the first equality in (4.29) follows by
the definition of a trace. The second part follows from [3, Ch. 9].
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To prove (4.30), write

‖Q‖2
HS = tr

(
Q∗Q

) =
∑

k

‖Qφk‖2 =
∑
k,l

∣∣(Qφk, φl)
∣∣2 = (sh)−2n

∑
k,l

|pkl|2, (4.32)

see also the proof of [16, Theorem VI.23]. This proves the first part of (4.30). For the second part, notice
that by [3, Ch. 9] again, the Hilbert–Schmidt norm of a classical �DO R := r(x, D) is given by

‖R‖2
HS = 1

(2π)n

∫ ∣∣r(x, ξ)
∣∣2

dx dξ.

We can turn R into a classical �DO by setting formally r(x, ξ) = q(x, hξ) to get∥∥Q(h)
∥∥2

HS = 1

(2πh)n

∫ ∣∣q(x, ξ)
∣∣2

dx dξ.

Combining this with (4.32), we complete the proof of (4.30) as well.
Finally, the Schwartz kernel of pw(x, hD) is given by

h−np̌
(
(x + y)/2, (x − y)/h

)
, (4.33)

and p̌ is in the Schwartz class. Then

(
pw(x, hD)χk, χl

) = h−n

∫∫
p̌

(
x + y

2
,
x − y

h

)
χ

(
1

sh
(x − shk)

)
χ

(
1

sh
(y − shl)

)
dx dy.

Make the change of variables x̃ = (x−shk)/(sh), ỹ = (x−shl)/(sh); then x = sh(x̃+k), y = sh(ỹ+l)

to get (4.31). �

Remark 4.1. (a) The presence of the parameter s in (4.15) is to be expected. The random sequence f k

is not related to any distance scale, while sh is the distance between two adjacent points on the sampling
grid after we associate f k to fh. Then s reflects the choice of that scale.

(b) For every x, we have, see (4.6),

VAR0
x(f ) =

∫
γf (x, ξ) dξ = σ 2

(2π)n
‖χ̂‖2 = σ 2‖χ‖2, (4.34)

in mean square sense, see also (4.10). In particular, if χ is a product of sinc functions, we get σ 2,
i.e., fh has the same variance as that of f k, in a limit. If χ = LAN3, then ‖χ‖2 ≈ 0.888 in one
dimension. In dimension n, we have a product of such χ(xj )’s, then the factor would be ‖χ‖2n instead,
therefore, STD0

x(f ) ≈ 0.94nσ . Note that there is no dependence on s here. For the linear interpolation,
‖χ‖2 = 2/3, therefore, STD0

x(f ) = (2/3)n/2σ ≈ 0.816nσ . All those equalities are mean square limits
in the sense of the theorem.

(c) If we are interested in the expected value of the variance in repeated experiments, the equivalent of
(4.34) is easy to get. We can think of fh as a linear operator, say �, applied to f = {f k}, i.e., fh = �f .
Then

E
(‖fh‖2

) = E
(
�∗�f , f

) = σ 2 tr
(
�∗�

) = σ 2‖�‖2
HS,
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where the latter norm is the Hilbert–Schmidt one. Then the equivalent of (4.34) can be derived from this
formula. That requires repeated experiments however.

(d) The variance (4.6) is like the l.h.s. of (4.14) with p being the characteristic function of � divided by
its volume. The theorem requires p to be smooth though, so we may think of (4.6) as an approximation
of (pfh, fh) with p ∈ C∞

0 (�) (independent of ξ ) approximating that normalized characteristic function.

(e) Theorem 4.1 says that the noisy |f̂h|2 in (3.15) converges in weak sense to s2nhn

(2π)n
σ 2|χ̂ (sξ)|2.

(f) We can assume that the noise is not homogeneous, for example that f k,h are replaced by ζ(shk)f k,h

with some smooth ζ . This case can be handled as explained in Section 7.1, where g = ζ and the problem
with ∇g described there does not exist in this case. This would introduce the extra factor |ζ(x)|2 in (4.15).
In principle, one can consider noise inhomogeneous in phase space, i.e., ζ being a suitably sampled �DO
or an h-�DO.

In Fig. 2, we present an one dimensional numerical example. In Sections 5 and 6 we show two-
dimensional ones. We take a discrete f with N = 100 components, upsize it to a 200 point grid with
the Lanczos3 algorithm, and plot |f̂ |, where the hat stands for the Discrete Fourier Transform, then the
same quantity computed as a square root of |f̂ |2 averaged over 102 and 105 experiments, for frequencies
in [0, 100]. This illustrates (4.11). The limiting profile looks very close to the profile in Fig. 1, right, as
expected from our Remark (e) above. At the right hand side of the plot, it is not as close to zero as the
profile in Fig. 3 because of the O(1/N) error in (4.11); here N = 100 only. The plot on the right is
essentially the expected value of the Wigner function Wh

f .
In Fig. 3, the setup is as above but we show the smoothing effect of averaging the power spectrum

within a single experiment, illustrating relation (4.14). To this aim we consider f with N = 102, 104,
and 106 components. The frequency interval is divided into 25 subintervals and averaged there, similarly
to Fig. 16. The plot on the left is very close to the plot of the modulus of the Fourier transform of the
Lanczos3 filter in Fig. 1.

Fig. 2. Plot of |f̂ | for N = 100, with |f̂ |2 averaged over 1, 102, and 105 experiments.

Fig. 3. Plot of |f̂ | with a single experiment, for N = 102, 104, 106, with averaging over 25 subintervals.
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4.4. Microlocal defect measure of more general noise

We consider more general noise now. First, we assume that the random variables f k,h might be cor-
related with the neighboring ones; and second, we assume that this correlation might be position depen-
dent. Since the position of f k,h would be at xk = shk, this more general noise would be assumed to
satisfy the following.

Hypothesis 4.2. For every h > 0, the noise is modeled by a family {f k,h; k ∈ Zn} of real valued
random variables defined on the same probability space (X,F,P) with zero expected values. They are all
assumed to satisfy (4.1) with a uniform bound. For the autocorrelation ACor(f k,h, f k+m,h) we assume

ACor(f k,h, f k+m,h) = β(skh, m), (4.35)

where β(x, k), x ∈ Rn, k ∈ Zn, is smooth in x, and supported in a bounded set w.r.t. both variables.

Note that we are no longer requiring, in particular, f k,h to have the same variance. They are not
identically distributed, in general.

Let

β̌(x, ξ) =
∑
m

eism·ξβ(x, m) (4.36)

be the inverse Fourier series of β with respect to the m variable. This is essentially the Wigner distribution
related to the auto-correlation, in the limit h → 0. Since β(s(k +m)h, −m) = β(skh, m), we must have
β(x, m) = β(x, −m) for all (x, m). Then (4.36) is just a cosine series, and in particular real. The
theorem above shows that it is in fact non-negative.

The generalization of Theorem 4.1 to this case is the following.

Theorem 4.2. Assume that {f k,h; k ∈ Zn} is a noise satisfying Hypothesis 4.2, with L4 moments only.
Let fh be the associated function given by (3.15) with some fixed s > 0 and with χ̂ ∈ C∞

0 not necessarily
satisfying (3.19). Then (4.14) remains true with

dμf (x, ξ) = sn

(2π)n
β̌(x, sξ)

∣∣χ̂ (sξ)
∣∣2

dx dξ. (4.37)

Proof. We follow the proof of Theorem 4.1. We replace the diagonal � in it by � = {(k, l); |k − l| �
M}, where M is so that β(·, m) = 0 for |m| > M . The off–� terms do not contribute to the limit (4.14)
as above. For the rest, we estimate their contribution for every fixed m, and then sum up the results. The
analog of W1 now, depending on m, is

W1 =
∑

k∈K(h)

pkk+mf kf k+m =
∑

k∈K(h)

β(skh, m)pkk+m + W1,0, (4.38)

where

W1,0 =
∑

k∈K(h)

(
f kf k+m − β(skh, m)

)
pkk+m.
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The analysis of W1,0 is similar: the random variables f kf k+m − β(skh, m) have zero expectation, thus
E(W1,0) = 0. They have a uniformly bounded variance. To estimate E(W 2

1,0), notice that only O(m2h−n)

terms in the expansion would have a non-zero expectation; and by (4.28), E(W 2
1,0) = O(hn) again. It

remains to compute the β term in (4.38).
Recall the definition (4.18) of pkl . With l = k + m there, an easy calculation shows that Qφk+m =

qm(x, hD)φk for any h-�DO Q = q(x, hD), with qm(x, ξ) = eism·ξ q(x + shm, ξ) (which is a symbol
as well, notice that there is no h in the phase). The principal symbol of that is just eism·ξ q(x, ξ). Then
the β term in (4.38) takes the form

(sh)n
∑

k∈K(h)

(
β(skh, m)φk, qm(x, hD)φk

)
.

By the properties of φk, recall (3.8) and (3.9), replacing β(skh, m) above with β(x, m) would result in
an O(sh) error in each term, and a total error O(h). Considering this done, and moving the β factor to
the right, we get a quadratic form with q multiplied by β(x, m):

(sh)n
∑

k∈K(h)

(
φk, q̃m(x, hD)φk

)
,

where q̃m(x, ξ) = eism·ξβ(x, m)q(x, ξ).
So far, m was fixed. Summing over m (the number of those terms is 2M + 1), we get to the situation

of the proof of Theorem 4.1 with q replaced by∑
m

eism·ξβ(x, m)q(x, ξ) = β̌(x, sξ)q(x, ξ).

The theorem then follows as in the proof of Theorem 4.1. �

4.5. Spectral density under an FIO

We want to find out how a spectral density transforms under an action of a classical FIO of order m.
It is easier to answer this question for semiclassical FIOs since the defect measures are a semiclassical
object, and we will reduce the classical case to the semiclassical one.

Theorem 4.3. Let A be a classical FIO of order m on Rn with a homogeneous principal symbol as-
sociated with a canonical relation which is a graph of a local diffeomorphism κ (called the canonical
transformation of A). Let f = fh be semiclassically band limited and uniformly bounded in L2. Then
for every defect measure dμf given as the limit (2.7) for some h = hj → 0, the defect measure dμhmAf

associated to the same sequence hj exists as well and it satisfies

dμhmAf = κ−1∗
(b dμf ) on T ∗Rn \ 0,

where b is the (classical) principal symbol of A∗A.
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Proof. By (2.7),∫
p(x, ξ) dμhmAf = lim

h=hj →0

(
p(x, hD)hmAfh, h

mAfh

)
L2

= lim
h=hj →0

(
hmA∗p(x, hD)hmAfh, fh

)
L2 . (4.39)

Since we need to find dμhmAf away from the zero section, it is enough to assume that p = 0 near ξ = 0.
If for a moment we ignore the need to cut near ξ = 0, then we can think of A as in (2.5) as an h-FIO

with symbol a(x, ξ/h) = h−ma(x, ξ) for |ξ | � 1. Then by the semiclassical Egorov’s theorem [12,
Theorem 5.5.5], which an analog of the classical one, (Theorem 25.3.5 in [9]), we would get(

hmA∗p(x, hD)hmAfh, fh

)
L2 = (Qfh, fh)L2, (4.40)

where Q is an h-�DO with a principal symbol b(p ◦ κ), with b the (classical) principal symbol of A∗A
and κ is the canonical transformation of A. Note that the canonical relations of A and its semiclassical
version after the change ξ �→ ξ/h are the same.

To deal with the fact that we have a classical FIO and a semiclassical �DO, we apply Theorem 2.1.
Let A = Ah,ε + Rh,ε be as in (2.6). For ε � 1, the remainder Rh,ε would contribute an O(h∞) error
to (4.39) if we replace A there by Ah,ε because p = 0 near ξ = 0. Therefore, we can consider this
done. Then Ah,ε is an h-FIO, see (2.6) with symbol ã := a(x, η/h)(1 − ψ(η/ε)) ∈ h−mS0 supported
where η � ε. On the support, |η|/h � ε/h, and there, a(x, η/h) is homogeneous for h � 1; therefore
ã = h−ma(x, η)(1 − ψ(η/ε))

Then we can apply the semiclassical version of Egorov’s theorem [12, Theorem 5.5.5]. For that, we
need to compare the principal symbol of the h-�DO A∗

h,εAh,ε to that of the classical �DO A∗A and see
how the cutoff (1 − ψ(η/ε)) near the zero section affects that.

The principal symbol of A∗
h,εAh,ε is given by

c(x, ξ, h) = ∣∣ã(
π1 ◦ κ(x, ξ)

)
, ξ, h)

∣∣2
J (x, ξ),

where π1 is the projection on the fist variable, and J > 0 is a smooth Jacobian, homogeneous of order
zero w.r.t. ξ , depending on the phase function only. For |ξ | > 2ε we have ã = h−ma(x, η); therefore

c(x, ξ, h) = h−2m
∣∣a(

π1 ◦ κ(x, ξ)
)
, ξ)

∣∣2
J (x, ξ), |ξ | � 2ε.

This is the principal symbol of A∗A as a classical �DO as well without the factor h−2m. Therefore, the
limit of (4.40), as h = hj → 0, would be∫

b(p ◦ κ)(x, ξ) dμf

as long as p = 0 for |ξ | � 2ε. Make the change of variables κ(x, ξ) = (y, η), and using the fact that κ

is symplectic, in particular an isometry, we would get∫
p(x, ξ) dμhmAf =

∫
p(x, ξ)κ−1∗

(b dμf ),
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when p = 0 for |ξ | � 2ε, where κ−1∗
is the pull-back under κ−1. Since ε > 0 is arbitrary, this holds

when 0 /∈ suppξ p. Then

dμhmAf = κ−1∗
(b dμf ). (4.41)

So far A was microlocalized near pair of points, where κ is a (global) diffeomorphism. Since it is only
a local one, we can do the same for each branch, and add the results. Then b would be the principal
symbol of A∗A with all branches combined, as stated. �

Note that in particular, if (4.7) holds, then κ−1∗
(γf dx dξ) = γg ◦ κ−1 dy dη.

Remark 4.2. The proof also implies that if Q = q(x, hD) and R = r(x, hD) are h-�DOs, then

dμhmQARf = |q|2κ−1∗(
b|r|2 dμf

)
on T ∗Rn \ 0, (4.42)

where b still denotes the principal symbol of A∗A.

Example 2. Take R = r(x) (i.e., a multiplication) with r smooth. Then, up to O(h), equality (3.15)
for rfh takes a similar form but now f k,h are replaced by r(shk)f k,h. This is an example of non-
homogeneous noise, depending on the position, for which Theorem 4.1 applies but then the measure
is as in (4.42).

Example 3. Let R be a convolution with h−nψ(x/h) with some ψ ∈ C∞
0 . This is an h-�DO with

symbol ψ̌(ξ), therefore we get the factor |r|2 = |ψ̌(ξ)|2 in (4.42). An elementary computation shows
that, up to O(h), Rfh is obtained from f̃ k,h = ∑

m ψ(s(k − m))f m,h. Those are correlated (in general)
random variables. They model sensors with cross-talk. Then Theorem 4.1 applies with the measure is as
in (4.42).

Both examples are covered by Theorem 4.2 as well if you think of Rf as f but generated by correlated
noise f k,h.

4.6. Back to the inverse problem

We return to the inverse problem (1.1) now. Let A be an FIO as in Theorem 4.3, and elliptic. More
precisely, let � ⊂ Rn be a bounded domain, and let �′ be another such domain so that the canonical
transformation κ of A maps T ∗� into T ∗�′. By a compactness argument, if A is defined first as A :
E ′(�) → E ′(Rn), then the range of κ projected to its base variable is a bounded set, thus such an �′
exists. Outside �̄′, the image of A is smooth. The measurement g, supposedly equal to Af for some
f ∈ E ′(�) but corrupted by noise, is a function defined in �′. Then (1.1) is microlocally solvable:
f = A−1g (we do not have problems with g not being in the range because A−1 is a parametrix) and
we are in the situation above with A replaced by A−1. The added noise is given by (1.4). Dropping
the subscript “noise” as we already did, we assume that g is given first as discrete noise {gk} and then
converted to a semiclassically band limited function g as in (3.15). Then

A−1g =
∑

shk∈�′
gkA

−1χk.
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We have not defined what noise is but we can think of this as noise because it is a linear combination of
{A−1χk} with random coefficients. It has zero mean in the sense of (4.2). Then

dμh−mA−1g = κ∗(b−1 dμg

)
on T ∗Rn \ 0, (4.43)

where κ is the canonical transformation of A and b is the principal symbol of AA∗. By Egorov’s theorem
again applied to the operator A∗(AA∗)A = (A∗A)2, the principal symbol of it is that of A∗A multiplied
by b ◦ κ . Therefore, b ◦ κ is the principal symbol of A∗A.

The defect measure (4.43) then describes the power spectrum of the noise in the reconstruction away
from the zero section ξ = 0. We cannot expect to get an estimate near the zero section in this case since
A may not be even injective. For example, the interior region of interest problem for the Radon transform
in the plane has no unique solution and the practical solution is a parametrix. Then every element in the
kernel would be smooth and could be considered as noise with zero frequency.

Next theorem is a direct consequence of (4.43). The operator Q is needed to cut the zero section, and
R is a filter which we may want to apply to the data, see also next section. Below, σp(Q) stands for the
principal symbol of Q.

Theorem 4.4. Let A be as above, and elliptic, and let g = gh be semiclassically band limited with
WFh(g) ⊂ T ∗�′, uniformly bounded in L2(�′). If R = r(x, hD) is any h-�DO in �′ with an h-
independent symbol, and if Q = q(x, hD) is a similar h-�DO in � with q = 0 near the zero section,
then

VAR0
�

(
Qh−mA−1Rg

) = 1

|�|
∫

T ∗�
|q|2σp

(
A∗A

)−1
κ∗(|r|2 dμg

)
= 1

|�|
∫

T ∗�′

∣∣q ◦ κ−1
∣∣2

σp

(
AA∗)−1|r|2 dμg (4.44)

for every g (called there f ) as in Theorem 4.3.

Proof. By Remark 4.2 about Theorem 4.3 and (4.6),

VAR0
�

(
Qh−mA−1Rg

) = 1

|�|
∫

T ∗�
|q|2κ∗(b−1|r|2 dμg

)
.

Make the change of variables (y, η) = κ(x, ξ), where (y, η) are the variables in the phase space of g,
using the fact that κ is symplectic, and therefore an isometry, to get the second equality of the theo-
rem. �

A typical use of this theorem is to take q to cut off smoothly a small neighborhood of the zero section.
Then, for g being white noise, for example, the effect of that on the r.h.s. would be small. Then if we
formally take q = 1, hence Q = Id, we get a good approximation of the variance of the noise in the
reconstruction away from the zero frequency noise, by Theorem 4.1. The operator R plays a role of a
filter before the inversion.

We want to emphasize that g in Theorem 4.4 does not need to be white noise; we just need a well-
defined dμg, which is the case for noise satisfying Hypothesis 4.2, by Theorem 4.2.
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Remark 4.3. In some situations, like in the next two sections, the requirement q = 0 near the zero
section can be removed, and the whole operator Q can be removed (replaced by Id). Assume that the
filter r is compactly supported in the dual variable. Since we deal with semiclassically band limited
g, we can always assume that. Assume that σp(A∗A)−1κ∗ dμg is absolutely continuous near the zero
section. In the case of the Radon transform in parallel geometry in the next section, for example, with
g being white noise, that measure is C|ξ |dx dξ , so this assumption is satisfied. Then the first integral in
(4.44) has a limit when q (a priori vanishing near ξ = 0) tends to 1, and that limit is given by the same
formula with q = 1. Then the l.h.s. has the same limit, too„ because we just defined it by that equality,
see (4.6). A similar remark applies to the second integral.

5. The Radon transform in “parallel geometry”

We apply the theory to the Radon transform now. We study the parallel geometry parameterization
first, where each (directed) line is parameterized by its signed distance p to the origin, and its normal ω,
see (1.5). For

ω(ϕ) = (cos ϕ, sin ϕ), (5.1)

we choose the natural measures dϕ; and the standard measure dp for p. Based on that, we a define the
microlocal defect measure dμg(ϕ, p, ϕ̂, p̂) of g = gh(ϕ, p). If we restrict p to |p| � R, corresponding
to Radon transforms of functions supported in B(0, R), since ϕ naturally belongs to |ϕ| � π (modulo
2π) (call that �), then

VAR0
�(g) = 1

4πR

∫ ∫
�

dμg(ϕ, p, ϕ̂, p̂). (5.2)

The Radon transform is an FIO of order −1/2 with a canonical relation given by the union of canonical
relations corresponding to the canonical transformations

κ± : (x, ξ) �−→ (
arg(±ξ)︸ ︷︷ ︸

ϕ

, ±x · ξ/|ξ |︸ ︷︷ ︸
p

, −x · ξ⊥︸ ︷︷ ︸
ϕ̂

, ±|ξ |︸︷︷︸
p̂

)
.

The ranges of κ± intersect in the zero section only, and in particular, ±p̂ � 0 on the range of κ±. Next,
each branch is a local diffeomorphism. Indeed, (x, ξ) = κ−1

± (ϕ, p, ϕ̂, p̂) is given by

x = pω(ϕ) − (ϕ̂/p̂)ω⊥(ϕ), ξ = p̂ω(ϕ).

It is well defined for p̂ 
= 0 but if we want x in the image to be in |x| < R, we need to require
p2 + (ϕ̂/p̂)2 < R2; therefore κ−1

± are well defined away from the zero section. Then R−1 is associated
with κ−1, which is a local diffeomorphism as well. What prevents it from being global is that it is 2-to-1,
i.e., and in particular, it is not injective.
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5.1. The unfiltered inversion

The symbol of RR∗ is b = 4π |p̂|−1, where p̂ is the dual of p. Applying the canonical transformation,
we get b ◦ κ = 4π/|ξ |. We could have obtained this as the principal (and full) symbol 4π/|ξ | of R∗R.
Therefore, by (4.43),

dμh1/2R−1g(x, ξ) = |ξ |
4π

κ∗ dμg on T ∗R2 \ 0. (5.3)

The fact that κ is 1-to-2 presents some subtlety here, already accounted for in the proof of Theorem 4.3.
Microlocally, one can express R as R = R+ + R−; then each R± has normal operator R∗±R± with
principal symbols one half of that R∗R; then we apply (4.43), and the combined result would be still
the principal symbol of R∗R.

Let us say that we have f supported in B(0, R) with a certain semiclassical band limit B � |ξ |. We
take its Radon transform Rf . Here, f is not discretized, we can think of Rf as the physical X-ray
transform. The assumption on the band limit will be satisfied if the X-rays are not really ideal lines but
have some thickness. Then we sample Rf densely enough to satisfy the Nyquist requirements and add
noise to it. The noise will have higher frequencies than those coming from f if Rf is oversampled.
When we invert Rf , we will get higher frequencies for f as well that do not originally belong to the set
where the frequency set of f lies. We can apply a filter, cutting them to |ξ | � B. Note that this is a filter
not affecting f , that is why we think of those as a unfiltered inversion. One way to do this is to restrict
p̂ to |p̂| � B before applying R′ in (1.6).

More precisely, let supp f ⊂ B(0, R) and

WFh(f ) ⊂ {
(x, ξ); |x| � R, |ξ | � B

}
. (5.4)

Then the range of the frequency sets �(Rf ) of all such f ’s (the projection of the semiclassical wave
front set on the fiber variable) of Rf is the double cone{

(ϕ̂, p̂); |ϕ̂| � R|p̂|, |p̂| � B
}
, (5.5)

included in the box B := {|ϕ̂| � RB, |p̂| � B}, see Fig. 4 and [17] for more details. The set (5.5) is
the “worst scenario case” over all points (ϕ, p). For |p| � 0, the opening of the cone is much smaller:
|ϕ̂| � |p̂|√R2 − p2. We refer to [17] and Fig. 3 there. This describes the range of κ . Therefore, some
portion of the noise will not propagate back to the reconstructed f .

We assume that we sample g = Rf at a rate smaller than the Nyquist requirement for the box B.
Moreover, we assume an interpolation kernel χ in (3.15) (with f replaced by g) is chosen so that χ̂ = 1
in a neighborhood of B. As we explained in the introduction, we assume that the data is (white) noise,
since the problem is linear. Then the power spectrum of the noise (more precisely, the Wigner function)
converges in mean sense to a defect measure dμg that is absolutely continuous by Theorem 4.1, i.e.,
it has the form dμg = γg dx dξ of the kind (4.7) on B, with γg as in (4.15). Then on B, we have
γg = snσ 2/(2π)n =: γ �, and

γh1/2R−1g(x, ξ) = |ξ |
4π

γ � for |ξ | � B. (5.6)
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Fig. 4. The frequency set of Rf .

This is “blue noise”. Here and below, all equalities about the statistics of f are in the limit sense of
Theorem 4.1, see (4.6) and (4.8). An important observation is that there is no x dependence in this case.
The dependence on ξ is rotationally invariant. This is not the case with the Radon transform in fan-bean
coordinates as we will see below.

By (5.2),

VAR0
�(g) = VAR0

p,ϕ(g) = 4BϕBpγ �, ∀(ϕ, p) ∈ S1 × [−R, R].

The two variances are equal because γR−1g is independent of the position.
Assume that the sampling rates of g are based on Bϕ and Bp which take their sharp values not to allow

undersampling: Bp = B, Bϕ = RB, where B is the band limit of f as in (5.4). Then

VAR0
p,ϕ(g) = 4RB2γ �.

Note that this is actually the sharp lower bound of the variation when the oversampling becomes asymp-
totically sharp sampling but it is not achievable in our theory; this would require a sinc interpolation
while we need a rapidly decreasing kernel.

For the variance of f = R−1g, we have, see Theorem 4.4 and Remark 4.3,

VAR0
x

(
h1/2R−1g

) =
∫

|ξ |�B

γR−1g(x, ξ) dξ

= 1

4π
γ �

∫
|ξ |<B

|ξ | dξ = 1

4π
γ �2π

∫ B

0
ρ2 dρ

= B3γ �

6
. (5.7)

We get the following theorem.

Theorem 5.1 (unfiltered inversion). Under the assumptions above, in particular assuming that g is
white noise, and no undersampling, we have

STD0
(
R−1g

) = B3/2√
24BϕBph

STD0(g). (5.8)
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If g = Rf is sampled sharply, then

STD0
(
R−1g

) =
(

B

24Rh

)1/2

STD0(g). (5.9)

Recall that we defined VAR0, see (4.6), and similarly, STD0, as integral of the defect measure. The
implication of this theorem is that when we have g created by a white noise process, then for every
Q = q(hD) with q = 0 near the origin, STD0(h1/2QR−1g) converges in mean square sense to a
quantity (see (5.13)), which itself converges to the r.h.s. of (5.8), respectively (5.9), when q → 1. In
other words, the cutoff near ξ = 0 is removable at the expense of taking a double limit: first h → 0, then
q → 1 (in L1 sense).

5.2. The filtered inversion

The Radon transform is inverted often with a low-pass filter before applying R′ in (1.6), i.e.,

f = 1

4π
R′ν(Dp)|Dp|g, (5.10)

where ν is an even function decaying away from the origin. Assuming a band limit Bp for the p variable,
determined by the sampling rate sp, for example, one popular filter is the Hann filter:

νHann(p̂) = 1

2

(
1 + cos

πp̂

Bp

)
= cos2 πp̂

2Bp

, |p̂| � Bp, (5.11)

and νHann(p̂) = 0 otherwise. Another commonly used filter is the cosine one

νcosine(p̂) = cos
πp̂

2Bp

, |p̂| � Bp.

They are plotted in Fig. 5.
There are many other filters (windows) used in signal processing and imaging. We assume that ν is

continuous and supported in |p̂| � Bp. If the shape of the filter is fixed, say Hann, then ν(t) = ν0(t/Bp)

with some fixed ν0 supported in [0, 1], see, e.g., (5.11). Then (5.3) takes the form

γh1/2R−1
ν g(x, ξ) = |ξ |ν2

0(|ξ |/Bp)

4π
γg ◦ κ(x, ξ), (5.12)

Fig. 5. The Hann and the cosine filters with B = 1.
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where R−1
ν = Rν(Dp) is the filtered inversion, defined as the operator applied to g in (5.10). Then the

equivalent to (5.6) is

γh1/2Rν
−1g(x, ξ) = |ξ |ν2

0(|ξ |/Bp)

4π
γ �.

Taking Bp = B as before, similarly to (5.7) we get the following analog of (5.7)

VAR0
x

(
h1/2Rν

−1g
) =

∫
|ξ |�B

γR−1
ν g(x, ξ) dξ

= 1

4π
γ �

∫
|ξ |<B

|ξ |ν2
0

(|ξ |/B)
dξ = 1

4π
γ �2π

∫ B

0
ρ2ν2

0(ρ/B) dρ

= 1

6
B3γ �cν, (5.13)

where

cν := 3
∫ 1

0
ρ2ν2

0(ρ) dρ. (5.14)

We proved the following.

Theorem 5.2 (filtered inversion). Under the assumptions above, in particular assuming white noise and
no undersampling, with a filter ν0(|Dp|/B), we have

STD0
(
R−1g

) = B3/2√cν√
24BϕBph

STD0(g). (5.15)

If Rf is sampled sharply, then

STD0
(
R−1g

) =
(

Bcγ

24Rh

)1/2

STD0(g).

If there is no filter (ν0 = 1), we have cν = 1, which explains the appearance of the factor 1/3 in the
definition of cν . For the Hann filter, cν = 3/8 − 45/(16π2) ≈ 0.0900, then

√
cν ≈ 0.3000. For the

cosine filter,
√

cν ≈ 0.4427. In (5.19) below, the constant would be approximately 0.07676 for the Hann
filter and 0.11327 for the cosine one.

5.3. Numerical experiments

We use MATLAB and the built in radon and iradon routines to compute and invert numerically the
Radon transform in the plane. The default angular step is one degree but it can be changed. Assume that
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Fig. 6. The sampling sets of f , Rf and the reconstructed f with sharp sampling requirements.

f is given on an N × N lattice. Then by default, radon computes Rf (ϕ, p) on a 360 × N
√

2 lattice,
with N

√
2 rounded; the actual formula is 2 ceil(

√
2(N − floor((N − 1)/2) − 1)) + 3. Then iradon

inverts the data to the original grid (with N replaced by N + 1 or N + 2 which does not matter in view
of our asymptotic setup).

As we showed in [17], this choice of the discretization of Rf is suboptimal for N � 1; we need
to compute Rf on an Nϕ × Np lattice with Np = 2N , Nϕ = 2πN at least, and some oversampling
would be beneficial, see Fig. 6. With most test images, the (dominating) frequencies are well below
the Nyquist limit, that is why most of the time the inversion is satisfactory. When we add, say white
noise, the Nyquist limit is reached, and the inversion with iradon will alias some of those frequen-
cies.

5.4. Discretization

Let us say we have f on an M × N grid. We think of that as discrete samples of f originally defined
on, say, [−a, a] × [−b, b]. This we have the steps sx1 = 2a/M , sx2 = 2b/N . Assume for a moment that
we apply the classical sampling theory (no small parameter h) in a formal way at this point. Then those
steps have to be π/Bx1 , respectively π/Bx2 at most, where Bxj

are the band limits in the xj variable.
Then we get Bx1 = Mπ/(2a), Bx2 = Nπ/(2b) as the least upper bounds of the band limits of f . For the
band limit of |ξ |, we have B = (B2

x1
+ B2

x2
)1/2, and the maximum is achieved at the vertices of the box

[−Bx1, Bx1] × [−Bx2, Bx2]. Note that the disk |ξ | � B contains more frequencies than can be properly
sampled on the M × N grid; the extra ones lie outside that inscribed box.

We can connect the classical sampling theory to the semiclassical one as follows. Denote for a moment
the semiclassical quantities with tildes over them. Let M = M̃/h, N = Ñ/h, with M̃ , Ñ fixed. The
steps s (sx1 , etc.) are equal to the semiclassical relative steps s̃ but since in our sampling theorems the
absolute steps are sh, this means that the absolute steps are multiplied by h. Then our analysis holds as
h → 0, i.e., as M → ∞, N → ∞ (keeping the ratio constant) and the steps going to zero at a rate ∼ h.
This is the usual setup in numerical analysis where s̃ = 1, i.e., the step is h.

For each such f we define the L2 norm as

‖f ‖2 = 4ab

MN

M∑
i=1

N∑
j=1

|fij |2.
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This is consistent with formula (16) in [17] and approximates the L2 norm of a continuous function on
that box with samples fij . Then

STD(f ) =
(

1

MN

M∑
i=1

N∑
j=1

|fij |2
) 1

2

= ‖f ‖
2
√

ab

is the standard deviation STD(f ) of f when the mean of f is zero.
We will apply this to both f defined on [−a, a]2 for some a > 0, and to Rf on [−π, π] × [−R, R].
Assume that g is a discrete representation of a function on [−π, π]×[−R, R] sampled on an Nϕ ×Np

lattice. Assume g is obtained by a white noise process (with zero mean) and variance σ 2. Then a slight
extension of Lemma 4.1 shows that VAR(g) → σ 2 almost surely.

The sampling steps are sϕ = 2π/Nϕ , sp = 2R/Np; hence to avoid aliasing, we need Bϕ � Nϕ/2,
Bp � πNp/(2R).

Let f , to which R will be applied, represent a discretization of a function on [−a, a]2, and assume
that it is sampled on an N × N lattice. Then, similarly, the sharp band limit in each variable is Bx1 =
Bx2 = πN/(2a).

As we showed in [17], and it follows easily from (5.5), to avoid aliasing, we need

Np � 2N, Nϕ � 2πN. (5.16)

This inequality, as well as the inequalities and the equalities below are meant in asymptotic sense, i.e.,
one should multiply, say the r.h.s. in this case by (1 + o(1)), as N → ∞. Note that (5.16) follows
from viewing f as supported in B(0,

√
2a), i.e., R = √

2R, with frequency set in |ξ | � B := √
2Bx1 .

As we mentioned above, that ball contains more frequencies than those in its inscribed square. For
every g = Rf in the range of R with f as above, after an inversion we get f , of course, and then
the frequencies will fall inside the inscribed square [−Bx1, Bx1]2. If we take g to be “noise”, not in the
range of R, then by the mapping property of κ−1, see [17], formula (51), the frequency set of R−1g

will generically fill the disk |ξ | � B = Bx1

√
2. If we want to avoid aliasing (without applying a filter),

we would need to reconstruct f = R−1g on an N
√

2 × N
√

2 grid or better. On the other hand, for all
practical purposes, we would want to apply a filter.

Therefore, the discrete version of (5.15), including a filter now, is

VAR
(
R−1

ν g
) = π2N3cν

12a2NϕNp

VAR(g), (5.17)

where the formula has the same asymptotic and probabilistic meaning as explained after Theorem 5.1.
Assume now that we sample sharply, i.e., we have equalities in (5.16). Then Np = 2N , Nϕ = 2πN

and we get

VAR
(
R−1

ν g
) = πNcν

48a2
VAR(g). (5.18)

Therefore,

STD
(
R−1

ν g
) ≈ 0.2558

√
cν

√
N

a
STD(g). (5.19)
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We can make the following conclusions from (5.17), (5.18) and (5.19).

• With a sharp sampling rate, the noise ratio, measured as its standard deviation relative to that of g,
increases as

√
N . This is understandable since we are allowing for higher frequencies, and R−1 is

of order 1/2. At the same time, we can handle f with higher frequencies because N is proportional
to the Nyquist bound.

• The noise ratio, for a fixed N , is minimized when we sample sharply.
• In many applications, increasing Nφ and Np decreases the size of the detectors, and then the discrete

samples gij are scaled down by constants times Nφ and Np. If the added noise is expressed in units
relative to that, then the quotient in (5.17) would be proportional to N3NϕNp, i.e., the noise ratio
increases with Nφ and Np. This is known in engineering.

Default iradon inversion. First we present an inversion with the default one degree angular step.
We choose N = 601, Nϕ = 360 by default and Np = 853 is chosen by radon as an approximation to
601

√
2. We choose g to be normally distributed (Gaussian) noise with standard deviation one. Then we

invert it with iradon. A plot of the modulus |f̂ | of the Fourier transform f̂ of the inversion f is shown
in Fig. 7. We chose to plot here and below |f̂ | rather than |f̂ |2 for clarity. With an exact inversion, as
N → ∞, we should be seeing a density plot of square root of (5.6), i.e., c|ξ |1/2, filling the whole square.
We see is that the density increases in the radial variable |ξ | from the center but at some point starts to
decease until it visibly becomes zero when |ξ | is slightly larger than a half of the side, and it is radially
symmetric. This behavior can be explained by the following. The default choice Np = N

√
2 (rounded)

of Np actually lowers the Nyquist limit of the reconstructed f to 1/
√

2 of its original value. Without
that, the boundary of the disk in Fig. 7 would be the circumscribed circle of that square but with that
choice, it is the inscribed one. The gradual decrease close the border can be explained by an effectively
low pass filter when inverting R. Our numerical experiments below at much higher resolutions for Rf

confirm that.
A similar experiment with a uniformly distributed noise g in a symmetric interval around the ori-

gin produces virtually the same plot of |f̂ |, not shown. In both cases, the values of f look normally
distributed.

High precision inversion. We present numerical inversions with a proper discretization. We want to
model adding noise to discrete measurements of the “continuous” Rf ; inverted with high precision; i.e.,
by upsampling first the discrete data several times to mimic inversion in the “continuous domain”. We
do the following.

Fig. 7. Left: |f̂ | where f = R−1g and g is white noise. Right: radial profile of |f̂ |2 from the center to one of the sides (but not
all the way along the diagonal to a vertex).
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(i) The function f is assumed to be defined on [−1, 1]2 and sampled on an N × N lattice.
(ii) We compute a high accuracy Rf on a Nϕ ×Np lattice, where Nϕ � 2πN , Np � 2N . To do that,

we perform the computations on a finer grid.
(iii) We add noise to the so-computed Rf .
(iv) We invert the noisy data by upsampling it first. The reconstructed fnoisy is either left sampled on

a finer grid or downsampled to the original N × N one.

We give more details below. To do (ii), we upsample f on an mN × mN lattice with Lanczos-3
with some m � 1. Typical m’s we use are m = 2 and m = 3. Then we compute Rf (ϕ, p) with radon
on a 2πmN × 2mN lattice which we view as Rf (ϕ, p) on [−π, π] × [−√

2,
√

2] sampled uniformly
in each variable. The parameter m represents the degree of oversampling: m = 1 corresponds to the
sharp lower bound for proper sampling. Since computing Rf involves interpolation of f for computing
the line integrals (we use the option ‘spline’ in radon), such an oversampling allows us to reduce the
errors in such interpolation compared to the sinc inversion. Then we downsample the computed Rf to
a lower resolution Nϕ × Np (without interpolation; we take every m-th value in each row and column).
This simulates a high precision Rf computed on the Nϕ × Np grid. To do (iii), we add noise.

In (iv), we invert R on that lattice. We could resize to a different (but high enough resolution) before
that but the results do not look much different. The resulting f = R−1g is computed on an mN × mN

lattice, which is viewed as f on [−1, 1]2 sampled uniformly. If needed, that f could be resampled to
an N × N lattice but since it does not contain frequencies higher than the Nyquist limit B = Nπ/2
corresponding to N , this is not needed for computing the standard deviation, for example.

We want to emphasize that it is possible to do (close to) ideal upsampling, say from Nx×Ny to Ñx×Ñy

with Ñx > Nx and Ñy > Ny which preserves the band limits Bx1 = Nxπ/2 and Bx2 = Nyπ/2 by using
the Fourier transform. On the other hand, this is not what is usually done. When we use Lanczos-3,
for example, the interpolation kernel is the inverse Fourier transform of a smoothened version of ν[−1,1],
see Fig. 1, which is close to be equal to one in [−0.5, 0.5] at least as explained in Section 3.3. On
the other hand, Theorem 3.1 in [17] requires some oversampling, and an interpolation kernel to be the
Fourier transform of a function similar to that in Fig. 1, equal to one on the (smaller) frequency band.
Therefore if we choose m � 2 we are in this regime.

To do experiments with noise only, we take f = 0 in (1.2). Then steps (i) and (ii) are trivial, since
Rf = 0. So our starting point is (iii), where we take g to be generated by either a normally or a
uniformly distributed noise, on an Nϕ × Np grid. We upsample by a factor of m, i.e., to an mNϕ × mNp

grid an do the inversion there. We take m = 2, 3, 4, 5 in our experiments.
Non-filtered inversion. We test (5.8) now. To this end, we take g to be either Gaussian or uniformly

distributed noise with zero mean on an Nϕ × Np grid as in (ii), with equalities there, i.e., Nϕ = 2πN ,
Np = 2N . Then we cut the Fourier transform of the result sharply to 1/m-th of the frequency box
corresponding to the original resolution Nϕ × Np, m = 2, 3, . . . ; denote this by νm(D)gm, and apply
R−1 to it without changing the grid size. This procedure provides more precise computation than just
inverting the noise because it avoids the smoothing which happens in the part we cut off. If we had Rf

of a non-zero f polluted with noise, we would have upsized the data m times in each dimension first,
and then would have performed that procedure.

Since we effectively multiply both Nϕ and Np by m, by (5.17), we see that (5.19) can be written in
terms of the noise ratio as

Noise ratio := m STD
(
R−1g

)
/

√
N

a
STD(g) ≈ 0.2558. (5.20)



P. Stefanov and S. Tindel / Sampling with noise 367

Table 1

Noise experiments

Noise ratio with Gaussian noise. Theoretical ratio: 0.2558
N = 100 N = 200 N = 300

m = 1 0.2224 ± 0.61% 0.2223 ± 0.32% 0.2226 ± 0.16%
m = 2 0.2552 ± 0.38% 0.2572 ± 0.25% 0.2578 ± 0.17%
m = 3 0.2569 ± 0.70% 0.2584 ± 0.41% 0.2591 ± 0.07%

Fig. 8. Top: we choose gm, m = 2 to be white noise; then |R−1gm| looks like in Fig. 7. Bottom: νmĝm and R−2νmgm, i.e., the
Fourier transform of the reconstruction after the frequency cut-off of the noise.

We take g first to be a Gaussian noise with several choices of N and m; doing five experiments for
each choice. The results are in Table 1 and in Fig. 8, we illustrate the inversion with m = 2. Similar
experiments with a uniformly distributed noise with mean zero generate similar numbers, not shown.

Filtered inversion. We perform similar experiments with the Hann and the cosine filter. Since the
Hann filter is very small near the band limit B, see Fig. 5, the smoothing effect of the interpolation used
by iradon, see Fig. 7, plays a negligible role. Modeling that smoothening by the Lanczos-3 profile,
for example, see Fig. 1, by introducing an extra factor in (5.14) shows an error of less than 1% in

√
cν .

Then even with m = 1, we get a result close to the theoretical one, which is approximately 0.07676 for
the Hann filter and 0.11327 for the cosine one, as we computed above. For N = 300, for example, we
get 0.0767 ± 0.11% for Hann and 0.1105 ± 0.21% for cosine, where the smoothing effect of iradon
is a bit less compensated for. The numbers for normally and uniformly distributed noise are very close.
For the cosine filter, we plot |f̂ | (instead of |f̂ |2 for clarity), the computed radial profile of |f̂ |2, and
its theoretical one ρν2

cosine(ρ) = ρ cos2(πρ/2) in Fig. 9 below. The radial profile is computed as |f̂ |2
averaged over 25 concentric rings. In this case, |f̂ (ξ)|2 is proportional to the microlocal defect measure
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Fig. 9. Cosine filter. Left: |f̂ | where f = R−1νcosineg and g is white noise. Center: the computed radial profile of |f̂ |2 from
the center to one of the sides. Right: the theoretical profile ρν2

cosine(ρ) = ρ cos2(πρ/2).

of f at any fixed x (it does not depend on x). The Hann filter behaves similarly, with the computed radial
profile of |f̂ |2 very close to its theoretical one ρ cos4(πρ/2).

5.5. Percentage of added noise

In many numerical simulations, we add noise to the data, as a percentage of a certain norm of the data,
and measure the percentage of the noise in the reconstruction. This is especially interesting in (mildly or
not) ill-posed problems.

There is a lot of flexibility in choosing those norms. Let us say that we choose the L2(B(0, R)) norm
for f and the L2(S1 × (−R, R)) norm for R. Then the left inverse R−1 is not bounded in those spaces
but on semiclassically bounded functions (which are smooth), it is; we refer to [17] for semiclassical
estimates.

Let gnoise be the noise added to g = Rf , see (1.2). Its percentage is given my ‖gnoise‖/‖Rf ‖ (con-
verted to percentage). We are interested in ‖fnoise‖/‖f ‖, where fnoise = R−1gnoise is the noise in the
reconstruction. We have

‖fnoise‖
‖f ‖ = K

‖gnoise‖
‖Rf ‖ , K := ‖fnoise‖

‖gnoise‖ · ‖Rf ‖
‖f ‖ . (5.21)

The coefficient K is the multiplier which relates the two percentages. Its first factor is proportional to the
noise ratio we studied earlier since the L2 norms are proportional to the standard deviations. The second
one depends on f . To analyze it, write

‖Rf ‖2 −→
∫

γRf dϕ dp dϕ̂ dp̂,

where the convergence is in the sense of Theorem (4.1). Then we integrate over the semiclassical wave
front. By (4.41),

‖Rf ‖2 −→
∫

(bγf ) ◦ κ−1 dϕ dp dϕ̂ dp̂ = 4π

∫
γf ◦ κ−1

|p̂| dϕ dp dϕ̂ dp̂

= 4π

∫
γf (x, ξ)

|ξ | dx dξ = 4π
∥∥|D|−1/2f

∥∥2
.
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We used again the fact that κ is an isometry. This works for general operators but for R we actually
know that 4π‖f ‖2 = ‖|Dp|1/2Rf ‖2. We can write f̃ = |D|1/2f , intertwine |D|1/2 with |Dp|1/2, to get
the formula above as an exact one, not just a limit. Therefore, (5.21) yields

K = ‖fnoise‖
‖gnoise‖ · 4π‖|D|−1/2f ‖

‖f ‖ . (5.22)

Since the noise ratio is independent of f , we see that K would be large if, roughly speaking, f is low
frequency. Most conventional images (with f � 0) have a very large zero frequency f̂ (0) relative to the
rest of the spectrum and the second quotient in (5.22) does not vary much. When

∫
f (x) dx = 0, we

have f̂ (0) = 0 and functions the variation of this quotient is higher. Then we do not need to isolate the
zero section.

In Fig. 10 we demonstrate this effect. We choose N = 300 and the dimensions of the grid for Rf

is chosen with equalities in (5.16), see also Fig. 6. We add the same amount of normally distributed
noise, 20% of ‖Rf ‖, to Rf . We measure different percentages of added noise to the reconstructed
f depending on the frequency distribution of f , i.e., on the ratio in (5.22). Images with mostly lower
frequencies suffer from noise more. On the other hand, given the a priori knowledge of their frequency
band, that noise can be filtered out, unless we are looking for small high frequency detail in an overly
lower frequency image. We chose non-negative f ’s in that figure only. Numerical experiments with
f of mean value zero show lower added noise on a few examples. If in Fig. 10(c) we allow random
positive and negative amplitudes as well, for example (not shown), the added noise in (g) drops to 41%.
It is worth mentioning that with many conventional images, the values we are getting are close. In fact,
statistically, such images share similar power spectra distributions [18].

Fig. 10. Top: four different choices of f � 0, N = 300. Bottom: f reconstructed with 20% noise added to Rf . The numbers
show the added noise to f , and ‖Rf ‖/‖f ‖.
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Therefore, measuring the sensitivity of a particular inversion to noise this way can be quite misleading.
The added noise to the image depends on the noise ratio (5.20) which in turn depends on the grid chosen
to discretize Rf ; and also depends on the choice of the test image.

6. The Radon transform R in the plane in fan-beam coordinates

6.1. R in fan-beam coordinates

We parametrize R by the so-called fan-beam coordinates. Recall (5.1). Each line is represented by
an initial point Rω(α) on the boundary of B(0, R), where f is supported, and by an initial direction
making angle β with the radial line through the same point, see Fig. 11. It is straightforward to see that
this direction is given by ω(α + β). Then the lines through B(0, R) are given by

x · ω(α + β − π/2) = R sin β, α ∈ [−π, π], β ∈ [−π/2, π/2]. (6.1)

The canonical relation is the union of the graphs of κ±, see [17], given by

β = ± sin−1 x · ξ

R|ξ | , α = arg ξ −β ± π

2
α̂ = x ·ξ⊥, β̂ = ±|ξ |

√
R2 − (

x · ξ/|ξ |)2 + α̂.

Then κ± are isomorphic under the symmetry mentioned above lifted to the tangent bundle

(α, β, α̂, β̂) �−→ (α + 2β − π, −β, α̂, 2α̂ − β̂).

The inverses κ−1
± are given by

x = R sin βω(α + β − π/2) − α̂

β̂ − α̂
R cos βω(α + β), ξ = β̂ − α̂

R cos β
ω(α + β − π/2). (6.2)

In particular, we recover the well known fact that κ is 1-to-2, as in the previous case.
Set (ϕ, p) = �(α, β), where

ϕ = α + β − π/2, p = R sin β.

Fig. 11. The fan-beam coordinates.
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We have det d� = R cos β. Then RFB = R ◦ �. To compute R∗
FBRFB, write

(
R∗

FBRFBf, f
) =

∫ ∣∣RFBf (α, β)
∣∣2

dα dβ =
∫ ∣∣Rf (ϕ, p)

∣∣2 1

cos β
dϕ dp.

Since sin β = p/R, we have cos β = √
1 − p2/R2. Therefore,

R∗
FBRFB = R∗(1 − p2/R2

)−1/2R.

The factor in the middle of the r.h.s. is a multiplication operator, and applying Egorov’s theorem (one
can actually do it even directly and without a remainder), one gets for the principal symbols, at least,

σp

(
R∗

FBRFB
) =

(
1 − (x · ξ)2

R2|ξ |2
)−1/2

σp

(
R∗R

) = 4π

|ξ |
(

1 − (x · ξ)2

R2|ξ |2
)−1/2

.

The equivalent to (5.3) then is

γh1/2R−1
FBg(x, ξ) = |ξ |

4π

(
1 − (x · ξ)2

R2|ξ |2
)1/2

γg ◦ κFB(x, ξ), ξ 
= 0. (6.3)

Therefore, the noise spectral distribution depends on x now, and it depends on the direction of ξ relative
to x. For x, |ξ | fixed, it is maximized when ξ ⊥ x, and minimized when ξ ‖ x.

6.2. Sampling

As above, if supp f ⊂ [−1, 1]2 is sampled on an N × N grid, we have Bx1 = Bx2 = Nπ/2. As
before, set B = √

2Bx1 = Nπ/
√

2. Then we consider f having WFh(f ) in B(0, R) × B(0,
√

2B) with
R = √

2. The image of this product under the canonical map, projected to the dual variable (α̂, β̂) has
the following smallest box containing it: [−RB, RB] × [−2RB, 2RB], see [17]. The means taking at
least 2RB × 2RB, i.e., 2Nπ × 2Nπ samples over the intervals indicated in (6.1). Compared to (5.16),
this requires π times the number of samples, which makes it a less efficient sampling geometry, as shown
in [17].

In Fig. 12, we present a numerical experiment to validate (6.3). We take g to be Gaussian noise and
invert it with RFB. Then we crop a small rectangle in the top left corner and take the modulus of its

Fig. 12. Spectral density of the noise in f with the Hann filter. Left: measured in the top left corner. Right: theoretical profile
(6.3) at that corner.
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Fourier Transform. Then x is close to x0 = 0.8(−1, 1) and the small black elongated oval in the center
has a major axis along the same vector, formula (6.3) predicts.

6.3. Noise ratio

We study the noise ratio with a filtered inversion. In ifanbeam in MATLAB, for example, RFBf is
converted to parallel coordinates and the filter is applied after that. By (6.2), the filter ν(p̂), with ν even,
takes the form F := ν(|β̂−α̂|/(RB cos β)), where B is the band limit of |ξ |. The inversion operator then
is R−1

FB,ν = R−1
FBF which equals (R∗

FB,νRFB,ν)
−1ν(|D|)R∗

FB modulo lower order operators by Egorov’s
theorem. We get, similarly to (5.12) that (6.3) modifies as

γh1/2R−1
FB,νg(x, ξ) = |ξ |

4π

(
1 − (x · ξ)2

R2|ξ |2
)1/2

ν2
0

(|ξ |/B)
γg ◦ κFB(x, ξ), ξ 
= 0.

Assume that g is oversampled (related to B, see [17] for the sampling requirements), and it is white
noise. Then the variance at a point, see (2.8) is given by

VARx

(
h1/2f

) = γ �

∫
|ξ |�B

|ξ |
4π

(
1 − (x · ξ)2

R2|ξ |2
)1/2

ν2
0

(|ξ |/Bp

)
dξ,

= γ �B3

4π

∫ 2π

0

∫ 1

0

(
1 − |x|2

R2
cos2 θ

)1/2

ρ2ν2
0(ρ) dρ dθ

= γ �B3

6

cν

2π

∫ 2π

0

(
1 − |x|2

R2
cos2 θ

)1/2

dθ,

compare with (5.13). The integral is of elliptic type and varies between 2π , when |x| = 0, and 4 when
|x| = R. To connect this to (5.13), the integrand in (5.13) there corresponds to |x| = 0 formally; and
then we get (5.13). Taking a square root, we see that the standard deviation would be higher in the center,
the same as in the parallel geometry case, and will decrease slightly to about 80% at |x| = R, which
corresponds to the four corners of the square in our numerical simulations.

Similarly to (5.7) and (5.13), we integrate over x in the inscribed disk |x| � 1 in [−1, 1]2 and divide
by its area π to get the variation in that disk. Then R = √

2 and

VARB(0,1)(f ) ≈ 2.93

π

γ �B3

6h
cν ≈ 0.9328

γ �B3

6h
cν.

This is within 6-7% of the parallel geometry variance, and about 3% difference for the standard devia-
tion.

7. Non-additive noise

In this section we discuss some types of non-additive noise. The exposition here will be more sketchy,
we will point out how to fit those cases into the general framework we developed but will not go into
detail.
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7.1. Multiplicative noise

Assume the data g = Af is subject to a multiplicative noise. This can happen if the detectors are not
perfectly calibrated and each one reports a signal somewhat larger or smaller than it should be (non-
uniform response). In imaging systems, photo response non-uniformity (PRNU) is an example of such
noise. A generic way to model the kind of multiplicative noise we have in mind is the following: consider
a sequence of discrete noise samples {wk,h;h > 0, k ∈ K(h)}, where

wk,h = 1 + f k,h, or wk,h = exp(f k,h), (7.1)

and {f k,h;h > 0, k ∈ K(h)} is the white noise considered in Hypothesis 4.1. Then we set

gnoise(x) =
∑

k∈K(h)

wk,hg(shk)χk(x), χk(x) = χ

(
1

sh
(x − shk)

)
, (7.2)

where wk,h are the discrete noise samples, playing the role of wnoise above, and g is the noise-free
continuous signal. We will compare the noise gh(x) defined by (7.2), i.e., by the first formula in (7.1)
(the second one can be treated similarly and one has to take into account that wk,h is not necessarily
centered), to a noise of the form

g̃noise(x) :=
∑

k∈K(h)

wk,hg(x)χk(x) = g(x)
∑

k∈K(h)

wk,hχk(x). (7.3)

We have

g̃noise(x) − gnoise(x) =
∑

k∈K(h)

wk,h

(
g(x) − g(shk)

)
χk(x).

Since∣∣g(x) − g(shk)
∣∣ � C|x − shk|,

with C � C0‖∇g‖L∞ , we get∣∣(g(x) − g(shk)
)
χk(x)

∣∣ � Csh max
(|x|∣∣χ(x)

∣∣) � C ′h.

That factor h allows us to estimate, using Proposition 3.2, the error when replacing g(shk) in (7.2)
by g(x). We would get an O(h) error. The problem here is that we want to apply this to g = Af ,
all dependent on h, and in general, ∇Af grows like h−1|Af |. This cancels the decay above. If we
oversample a lot, the error will be “small”. Also, in regions with WFh(Af ) far away from the Nyquist
limit, that term will be small. If we ignore it for a moment, the noise added to Af is g̃h given by (7.3).
It is white noise as above but multiplied by g = Af . The defect measure of the noise added to the data
then is like in (4.15) with the additional factor |Af (x)|2.

One important case which allows to overcome the difficulty above is when g = ψh ∗ g0, where
ψh(x) = h−nψ(x/h) with

∫
ψ = 1 (a Friedrichs mollifier) with ψ̂ ∈ C∞

0 . This corresponds to averaged
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measurements of an h-independent function g0. We refer to [17] for the sampling theory for such mea-
surements. Then ∇g = ψh ∗ ∇g0, and assuming g0 ∈ C1 (either h-independent or uniformly bounded
there in h), we have |∇g| � C (rather than C/h), which is the estimate we needed in the previous
paragraph. Then the machinery we developed works and we need to multiply the noise measure by the
additional factor |g0(x)|2 in (4.15), i.e., we get there

dμgnoise(x, ξ) = sn

(2π)n
σ 2

∣∣g0(x)
∣∣2∣∣ψ̂(ξ)χ̂(sξ)

∣∣2
dx dξ

under the assumption g = ψh ∗ g0 in (7.2). Then (5.13) takes the form

VAR0
x

(
h1/2Rχ

−1gnoise
) = 1

4π
γ �

∫
|ξ |<B

∣∣Rf
(
x · ξ/|ξ |, arg(ξ)

)∣∣2|ξ |∣∣ν0
(|ξ |/B)

ψ̂(ξ)
∣∣2

dξ

= 1

4π
γ �

∫ 2π

0

∫ B

0

∣∣Rf (x · θ, θ)
∣∣2

ρ2
∣∣ψ̂(ρθ)

∣∣2
ν2

0(ρ/B) dρ dθ. (7.4)

This shows that the standard deviation of the noise at x depends in particular on the line integrals of f

along lines thorough x. Line integrals with large values would create stronger noise at x.

7.2. Modeling noise in CT scan

In CT scan tomography, what is measured is the attenuation along each ray. If I0 is the initial intensity,
and I is the one after the ray crosses the object, then the measurement is I = exp(−Rf )I0, by the
Beer-Lambert law. Assuming an additive noise gnoise, we measure Inoisy = exp(−Rf )I0 + gnoise. If we
invert this the same way as if there were no noise (which may not be the best strategy), we would get

fnoisy = −R−1 log(Inoisy/I0) = −R−1 log
(
exp(−Rf ) + gnoise/I0

)
.

Obviously, increasing I0 will decrease the effect of the added noise but in many applications this is not
desirable and/or the noise level may depend on I0. We take I0 = 1, i.e., gnoise is the added noise relative
to I0. Then

− log
(
exp(−Rf ) + gnoise

) = − log
(
exp(−Rf )

(
1 + exp(Rf )gnoise

))
= Rf − log

(
1 + exp(Rf )gnoise

)
.

Therefore,

fnoisy = f − R−1 log
(
1 + exp(Rf )gnoise

)
(7.5)

If the noise is small enough, we can pass to a linearization to get

fnoisy ≈ f − R−1
(
exp(Rf )gnoise

)
. (7.6)

This is the multiplicative noise model above with gwnoise replaced by egwnoise. In (7.4), for example, the
factor |Rf |2 would be replaced by exp(2Rf ).
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7.3. Modeling Poisson noise

In SPECT, we measure the attenuated X-ray transform but the particle count at each detector is low.
In this case, the predominant noise is of Poisson type: the number of particles at each detector is ran-
domized by a Poisson distribution with probability of taking value k being P(k, λ) = e−kλk/k!, where
λ � 0 is the expected value at that detector, see [15, Section 4.5]. Both the expected value and the
variance of P equals λ. Then the particle count at each detector equals λ + w

√
λ, where w is a random

variable with zero expected value and variance 1. Note that the probability distribution of w depends on
λ and approximates a Gaussian one when λ � 1 and they are independent. Assuming locally averaged
measurements, as above, we would get added noise wk,h|ψh ∗ Rf |1/2 when the units for Rf are the
number of particles; and α times that in general with some α > 0. Note that wk,h are not identically
distributed (but Theorem 4.1 still applies) and are well approximated by Gaussian distributions when
Rf is not very small. The microlocal measure then would have the factor αRf (we assume f � 0, thus
Rf � 0). This is similar to multiplicative noise, where the factor was proportional to |Rf |2.

7.4. Numerical examples

We present numerical simulations with the three types of non-additive noise in Figs 13 and 14. The
phantoms are the Shepp–Logan one and three disks of different size and intensity, not shown there, both
phantoms having ranges between 0 and 1. They are both rendered on a 300 × 300 grid discretizing

Fig. 13. Shepp–Logan with the Hann filter and with (a) multiplicative noise; (b) CT type of noise; (c) Poisson noise.

Fig. 14. Three disks with the Hann filter and with (a) multiplicative noise; (b) CT type of noise; (c) Poisson noise.
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the square [−1, 1]2. Their Radon transforms are computed with 1,884 angular steps and 600 steps in
the p variable covering the diagonal of the square. To simulate multiplicative noise, we choose the
variance of w in (7.2) to be 0.2. To simulate CT noise, we use the non-linear model (7.5) (rather than the
linearization (7.6)) with VAR(gnoise) = 0.03. In the Poisson noise case, each value of Rf is randomized
as follows: poissrnd(80 ∗ Rf )/80; it is worth noticing that Rf ranges from 0 to 0.51 in the Shepp–
Logan case and to 0.56 in the disks case. We chose the noise parameters so that the noise would be of
similar strength, visibly, in all three cases, and the distribution is Gaussian. Hann filter is applied to the
inversion.

Note that the noise has different character compared to Fig. 10(h), for example, and one can see
individual lines (more precisely, line segments) in it. The multiplicative and the Poisson noise characters
are somewhat similar; while the CT noise in the middle looks different. Our analysis shows that in the
latter case, the standard deviation of the added noise in the linearization regime has range from e0 = 1
to about e0.5 ≈ 1.65 times STD(gnoise), see (7.6), while in the other two cases, the range is from 0 to a
certain positive constant, which allows for almost zero noise locally before inversion. For this reason,
individual lines are harder to distinguish in the CT case.

8. Discrete noise and its power spectrum

In this section, we analyze discrete white noise directly, without converting it to a continuous function.
Here, f (k) is a random vector on an N × · · · × N grid which we denoted by f k before. We will denote
by δ(k) the discrete delta function on Zn. In Section 8.1, we follow mainly [15, Chapter 12], where f

is a random variable depending on a (continuous) variable t ; but most of it adapts to the discrete setting
easily. We do a temporal analysis of the power spectrum for each fixed (discrete) frequency, with N

fixed. We show that the spectrum of white noise is flat in the sense of expected value over repeated
experiments, and we consider more general noise. On the other hand, for each experiment, the spectrum
is quite, well, noisy and does not appear to smoothen as N → ∞ numerically. In the second part, we
study the ergodic properties of the power spectrum, with a single experiment, as N → ∞. We show in
Theorem 8.1 that the power spectrum is flat on average. That theorem is an analog of Theorem 4.1.

We want to emphasize that f = {f (k)} depends on N , so we have a “triangular” array of random
variables depending on the random outcome and increasing their size with N .

8.1. Temporal analysis

The discrete analog of the Fourier transform is the Discrete Fourier Transform (DFT) described below.
It lives naturally on the discrete torus Tn

N = Zn/NZn with period N . This shows that any time the DFT
is used for spectral analysis, the original f is actually regarded as the restriction of a periodic function
on a fundamental domain. We consider f : Tn

N → C, and we denote f = {f (k)}; with each element
f (k), k = (k1, . . . , kn) ∈ Tn

N a random variable in the same probability space. First, N will be fixed but
eventually, we will take N � 1. We denote by fg the vector defined by (fg)(k) = f (k)g(k), i.e., this is
the multiplication of the functions of a discrete argument. Similarly, |f | is the vector with components
|f (k)|, while ‖f ‖ is the norm of f .

We define the (unitary) Discrete Fourier Transform (DFT) f̂ = Ff by

f̂
(
k∗) = 1

Nn/2

∑
k∈Tn

N

f (k)e−2π ik·k∗/N , k∗ ∈ Tn
N .
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Its inverse is the adjoint one

f (k) = 1

Nn/2

∑
k∗∈Tn

N

f̂
(
k∗)e2π ik·k∗/N , k ∈ Tn

N .

Parseval’s equality takes the form

f · g = f̂ · ĝ
for complex-valued f and g, where the dot-product is the natural one in CN . In particular, F is unitary.
There is a natural (circular) convolution f ∗ g defined, and we have

F(f ∗ g) = Nn/2f̂ ĝ, F(fg) = N−n/2f̂ ∗ ĝ.

Next, we have

Fδ = N−n/2, F(1) = Nn/2δ. (8.1)

For each f with random entries, as above, define the auto-correlation

ACorf (m, k) = E
{
f (m)f̄ (k)

}
. (8.2)

The auto-covariance is defined as the auto-correlation of the centered f , i.e., of f −E(f ), and it is easy
to see that

ACovf (m, k) = ACor(m, k) − E
{
f (m)

}
E

{
f (k)

}
.

The process f is called stationary,1 if ACorf (m, k) is a function of m − k only:

ACorf (m, k) = ACorf (m − k), (8.3)

where, with some abuse of notation, we used the same notation ACor on the right. A process f is called
white noise if

ACorf (m, k) = 0 for m 
= k. (8.4)

Then we must have

ACorf (m, k) = σ 2(m)δ(m − k) (8.5)

with σ 2(m) = VAR(f (m)) � 0. We always assume that white noise has a zero mean. The process is
wide-sense stationary (WSS) if it is stationary and its mean is constant. Then white noise is WSS if σ

is constant. Note that WSS does not mean that f (m) are independent from each other but if they are
independent, they are uncorrelated, i.e., (8.4) holds.

1this terms comes from 1D processes, where x is the time.
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Let �(m∗, k∗) be the DFT of the auto-correlation of f , see (8.2), with respect to (m, k):

�
(
m∗, k∗) = F(ACorf )

(
m∗, k∗).

Then

E
{
f̂

(
m∗) ¯̂

f
(
k∗)} = E

1

Nn

∑
m,k

f (m)f̄ (k)e−2π i(m·m∗−k·k∗)/N = �
(
m∗, −k∗).

In case of white noise satisfying (8.5), we have �(m∗, k∗) = N−n/2σ̂ 2(m∗ + k∗), thus we recover
Theorem 11.2 in [15]:

E
{
f̂

(
m∗ + k∗) ¯̂

f
(
m∗)} = N−n/2σ̂ 2

(
k∗), ∀m∗.

This shows that even when f is not stationary, f̂ is stationary with auto-correlation σ̂ 2. If σ = const.,
then each f (m) has standard deviation σ , and N−n/2σ̂ 2 = σ 2δ, i.e.,

E
{
f̂

(
k∗) ¯̂

f
(
m∗)} = σ 2δ

(
k∗ − m∗). (8.6)

In particular, E{|f̂ (m∗)|2} = σ 2 for all m, which shows a flat (expectation of a) spectrum. By The-
orem 11.3 in [15], if f is real and Gaussian, then the covariance of |f̂ (m∗)|2 and |f̂ (k∗)|2 equals
N−n(σ̂ 2)2(m∗ + k∗) + N−n(σ̂ 2)2(m∗ − k∗), as we also show below. In particular, if σ = const. in
(8.5), we get covariance σ 4(δ(m∗ + k∗) + δ(m∗ − k∗)). Therefore, they are correlated when k∗ = m∗
and k∗ = −m∗ (because f̂ is even) with standard deviation σ 4 for each Fourier coefficient except for
the zeroth one when it is 2σ 4. In fact, we do not need f to be Gaussian to have the same conclusion on
asymptotic sense. We assume f real from now on.

Proposition 8.1. Let f be real valued white noise with a finite fourth moment called μ4. Then

ACov
{∣∣f̂ (

k∗)∣∣2
,
∣∣f̂ (

m∗)∣∣2} = σ 4δ
(
k∗ − m∗) + σ 4δ

(
k∗ + m∗) + μ4 − 3σ 4

Nn
. (8.7)

Proof. We have

ACov
{∣∣f̂ (

k∗)∣∣2
,
∣∣f̂ (

m∗)∣∣2}
= 1

N2n

∑
m1,m2,k1,k2

E
{
f (k1)f (k2)f (m1)f (m2)

}
e−2π i((k1−k2)·k∗+(m1−m2)·m∗)/N − σ 4.

The only non-zero expectation terms are those with two (equal or not) pairs of equal indices. Assume
first that k1 = k2, m1 = m2. Then we have two cases for the expectation term above:

(1) If m1 
= m2, the expectation term equals σ 4.
(2) Whenever k1 = k2 = m1 = m2, this expectation term is the fourth moment μ4.
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The latter number of terms is Nn, while the former is N2n −Nn. Therefore, this set of indices contributes(
1 − 1

Nn

)
σ 4 + 1

Nn
μ4

to the sum.
Consider the terms with k1 = m1, k2 = m2 but with k1 
= k2 to exclude the previous case. Then the

corresponding sum is

σ 4

N2n

∑
k1=m1 
=k2=m2

e−2π i(k1−k2)·(k∗+m∗)/N = σ 4

N2n

∑
k,m

e−2π ik·(k∗+m∗)/N − σ 4

Nn

= σ 4δ
(
k∗ + m∗) − σ 4/Nn.

We performed the change k = k1 − k2, m = k2 above, used (8.1) and compensated for the added terms
corresponding to k = 0 in the second sum which are missing from the first one.

Finally, when k1 = m2, k2 = m1 but k1 
= m1, the dot product in the phase function becomes
(k1 − m1) · (k∗ − m∗) and the same argument gives us

σ 4

N2n

∑
k1 
=m1

e−2π i(k1−m1)·(k∗−m∗)/N = σ 4

N2n

∑
k 
=0

∑
m

e−2π ik·(k∗−m∗)/N

= σ 4δ
(
k∗ − m∗) − σ 4/Nn.

The analysis of those three cases completes the proof. �

Corollary 8.1. If f in Proposition 8.1 is normal, then the last term in (8.7) vanishes.

The proof follows from the well know fact that μ4 = 3σ 4 for normal distributions.

Remark 8.1. The results in Proposition 8.1 can be interpreted as follows. Up to an error O(N−n), we
get auto-covariance σ 4 if k∗ = m∗ 
= 0 and when k∗ = −m∗ 
= 0 (symmetry, because f is real), and
2σ 4 if k∗ = m∗ = 0. If we stay in a fundamental domain of the type kj ∈ {0, 1, . . . , N − 1} then the
symmetry becomes |f̂ (k∗)|2 = |f̂ (N − k∗

1 , . . . N − kN)|2.

8.2. Ergodic analysis. Flatness of the power spectrum on average

Let α be a locally Riemann integrable function on Rn, periodic of period 1 in each variable. Assume
that f is real valued. We are interested in the following linear functional

μN(α) := 1

Nn

∑
k∗∈Tn

N

α
(
k∗/N

)∣∣f̂ (
k∗)∣∣2

.

This is a discrete analog of (4.14) with p there depending on the dual variable only. It is a weighted
(not normalized) average of the power spectrum. What we do there is effectively rescale the spectrum
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from the integer points in [0, N − 1]n (and then extended by periodicity) to the ones with fractional
components of the kind k∗/N , forming a dense set in [0, 1]n asymptotically. In statistics, this is done
routinely in the study of peridograms, and k∗/N is replaced by a continuous variable.

Assume a white noise process (8.5) with σ = const. Then E(μN(α)) → σ 2
∫

α(ξ) dξ , as N → ∞ by
(8.6), where the integration is taken over the continuous torus in Rn with period one.

The random variables |f̂ (k∗)|2 − σ 2 have zero expectation, correlation given by Proposition 8.1, and
variance σ 4. Write

μN(α) = σ 2 1

Nn

∑
k∗∈Tn

N

α
(
k∗/N

) + 1

Nn

∑
k∗∈Tn

N

α
(
k∗/N

)(∣∣f̂ (
k∗)∣∣2 − σ 2

)
.

The first term is a Riemannian sum. The second term has zero expectation and variance

σ 4

N2n

∑
k∗∈Tn

N

(∣∣α(
k∗/N

)∣∣2 + α
(
k∗/N

)
ᾱ
(−k∗/N

)) + O

(
1

Nn

)
� C

Nn
.

The error terms come from the cross terms which are products of σ 4 and O(N−n), by Proposition 8.1.
There are N2n of them. Therefore, we proved the following.

Theorem 8.1. Let f (k) be a white noise process on Tn
N (depending on N), with variance σ 2 and a finite

fourth momentum. Then for every Riemann integrable function α on T n
N we have

μN(α) −→ σ 2
∫

α(ξ) dξ in mean square sense, (8.8)

where the integral is taken over the torus in Rn with period one.

Therefore, the measure N−n
∑

Tn
N

|f̂ (m∗)|2δ(ξ − m∗/N) converges weakly to σ 2 dξ in mean square

sense. In particular, if we take α to be the characteristic function of, say a box U in Tn
N , then the average

of the power spectrum on U tends to σ 2 in mean square sense.

8.3. More general noise

We assume now that the random variables fh(k) depend on h, have zero mean and have uniformly
bounded fourth momenta but are not necessarily independent or equally distributed. If we assume (4.35),
then the power spectrum is expressed in Theorem 4.2. One special but important case is when the auto-
correlation is space independent (stationary, see (8.3)), then β in (4.35) is independent of x and we
have

ACor
(
fh(k), fh(k + m)

) = β(m) (8.9)

with some β(m). Then (8.8) takes the form

μN(α) −→
∫

β̌(ξ)α(ξ) dξ in mean square sense,

where β̌ is as in (4.36). In other words, the limit measure is β̌(ξ) dξ .
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Fig. 15. Left: a random normally distributed vector, N = 200, σ 2 = 1. Center: plot of |f̂ |2 for indices from 0 to 100 (|f̂ |2 is
an even function with period 200). Right: the histogram of STD(|f̂ |2) over 100,000 experiments; it appears centered around 1.

Fig. 16. Plot of the averaged |f̂ |2 for N = 102, 103, 104 and N = 105.

8.4. Numerical examples

We illustrate the temporal behavior of the spectrum first. In Fig. 15, we take a random normally
distributed vector f with N = 200 and variance σ 2 = 1. The power spectrum is plotted next to it. As we
can see, it looks flat on average with mean value close to one but the variation is substantial. On the right
we plot the histogram of the (spatial) standard deviation STD(|f̂ |2) over 1,000 experiments; it appears
to have mean 1. We recall that STD(|f̂ |2) is the square root of

VAR
(|f̂ |2) = 1

Nn

∑
k∗∈Tn

N

(∣∣f̂ (
k∗)∣∣2 − σ 2

)2
.

We have not proved a limit for it though. That would require estimating the auto-correlation of the
summands above similarly to Proposition 8.1.

Next, we illustrate the spatial (ergodic) behavior of the power spectrum. The averaged power spectrum
for a normally distributed vector is shown in Fig. 16. We divide the interval [0, N/2] into 25 subintervals
and average in each one of them. We take N = 102, 103, 104 and N = 105. As we can see, the averaged
spectrum gets flatter and flatter. This illustrates Theorem 8.1.

If we keep N fixed but average over many experiments, the spectrum gets flatter as well numerically,
as (8.6) suggests.

Acknowledgements

The authors would like to thank Kiril Datchev for his advice and Magda Peligrad for making us aware
of the reference [10]. P.S. partially supported by the National Science Foundation under grant DMS-
1900475. S.T. partially supported by the National Science Foundation under grant DMS-1952966.



382 P. Stefanov and S. Tindel / Sampling with noise

References

[1] Y.C. De Verdière, Semiclassical analysis and passive imaging, Nonlinearity 22(6) (2009), R45. doi:10.1088/0951-7715/
22/6/R01.

[2] Y.C. De Verdière, A semi-classical calculus of correlations, Comptes Rendus Geoscience 343(8–9) (2011), 496–501.
doi:10.1016/j.crte.2011.03.002.

[3] M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture
Note Series, Vol. 268, Cambridge University Press, Cambridge, 1999.

[4] C.L. Epstein, Introduction to the Mathematics of Medical Imaging, 2nd edn, Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, PA, 2008.

[5] C. Fefferman, S. Ivanov, M. Lassas and H. Narayanan, Reconstruction of a Riemannian manifold from noisy intrinsic
distances, SIAM J. Math. Data Sci. 2(3) (2020), 770–808. doi:10.1137/19M126829X.

[6] C. Gérard, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Mém. Soc. Math.
France (N. S.) 31 (1988), 1–146.

[7] T. Helin, M. Lassas and L. Oksanen, Inverse problem for the wave equation with a white noise source, Comm. Math. Phys.
332(3) (2014), 933–953. doi:10.1007/s00220-014-2115-9.

[8] T. Helin, M. Lassas, L. Oksanen and T. Saksala, Correlation based passive imaging with a white noise source, J. Math.
Pures Appl. 9(116) (2018), 132–160. doi:10.1016/j.matpur.2018.05.001.

[9] L. Hörmander, The Analysis of Linear Partial Differential Operators. IV, Vol. 275, Springer-Verlag, Berlin, 1985, Fourier
integral operators.

[10] T.-C. Hu and R.L. Taylor, On the strong law for arrays and for the bootstrap mean and variance, Internat. J. Math. Math.
Sci. 20(2) (1997), 375–382. doi:10.1155/S0161171297000483.

[11] R. Keys, Cubic convolution interpolation for digital image processing, IEEE Transactions on Acoustics, Speech, and
Signal Processing 29(6) (1981), 1153–1160. doi:10.1109/TASSP.1981.1163711.

[12] A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, Universitext, Springer-Verlag, New York, 2002.
[13] E. Meijering and M. Unser, A note on cubic convolution interpolation, IEEE Transactions on Image processing 12(4)

(2003), 477–479. doi:10.1109/TIP.2003.811493.
[14] F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart, 1986.
[15] A. Papoulis and S.U. Pillai, Probability, Random Variables, and Stochastic Processes, 4th edn, Tata McGraw-Hill Educa-

tion, 2002.
[16] M. Reed and B. Simon, Methods of Modern Mathematical Physics. III, Academic Press [Harcourt Brace Jovanovich,

Publishers], New York–London, 1979, Scattering theory.
[17] P. Stefanov, Semiclassical sampling and discretization of certain linear inverse problems, SIAM J. Math. Anal. 52(6)

(2020), 5554–5597. doi:10.1137/19M123868X.
[18] A. Van der Schaaf and J. van Hateren, Modelling the power spectra of natural images: Statistics and information, Vision

Research 36(17) (1996), 2759–2770. doi:10.1016/0042-6989(96)00002-8.
[19] M. Zworski, Semiclassical Analysis, Graduate Studies in Mathematics, Vol. 138, American Mathematical Society, Provi-

dence, RI, 2012.

https://doi.org/10.1088/0951-7715/22/6/R01
https://doi.org/10.1088/0951-7715/22/6/R01
https://doi.org/10.1016/j.crte.2011.03.002
https://doi.org/10.1137/19M126829X
https://doi.org/10.1007/s00220-014-2115-9
https://doi.org/10.1016/j.matpur.2018.05.001
https://doi.org/10.1155/S0161171297000483
https://doi.org/10.1109/TASSP.1981.1163711
https://doi.org/10.1109/TIP.2003.811493
https://doi.org/10.1137/19M123868X
https://doi.org/10.1016/0042-6989(96)00002-8

	Introduction
	Preliminaries on semiclassical analysis
	Semiclassical wave front set
	Semiclassical pseudo-differential operators (h-PsiDOs)
	Semiclassically band limited functions
	Classical PsiDOs as semiclassical PsiDOs
	Semiclassical defect measures

	Sampling in the semiclassical limit
	Sampling semiclassically band limited functions
	Constructing a semiclassically band limited function from a discrete sequence
	Lanczos-3 interpolation and other convolution based interpolations
	Noisy samples
	Delta type of expansion

	Noise and defect measures
	Microlocal defect measures as a generalization of power density
	A remark about the Wigner function
	The defect measure of white noise
	Microlocal defect measure of more general noise
	Spectral density under an FIO
	Back to the inverse problem

	The Radon transform in ``parallel geometry''
	The unfiltered inversion
	The filtered inversion
	Numerical experiments
	Discretization
	Percentage of added noise

	The Radon transform R in the plane in fan-beam coordinates
	R in fan-beam coordinates
	Sampling
	Noise ratio

	Non-additive noise
	Multiplicative noise
	Modeling noise in CT scan
	Modeling Poisson noise
	Numerical examples

	Discrete noise and its power spectrum
	Temporal analysis
	Ergodic analysis. Flatness of the power spectrum on average
	More general noise
	Numerical examples

	Acknowledgements
	References

