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Abstract
This article is concerned with stochastic differential equations driven by a d-
dimensional fractional Brownian motion with Hurst parameter H > 1/4, understood
in the rough paths sense. Whenever the coefficients of the equation satisfy a uniform
ellipticity condition, we establish a sharp local estimate on the associated control
distance function and a sharp local lower estimate on the density of the solution.
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1 Introduction

In this paper, we consider the following stochastic differential equation (SDE)

Xt = x +
d∑

i=1

∫ t

0
Vi (Xs)dB

i
s , t ∈ [0, 1], (1.1)

where x ∈ R
N , V1, · · · , Vd are C∞-bounded vector fields on R

N and {Bt }0≤t≤1 is
an d-dimensional fractional Brownian motion. We assume throughout the paper that
in (1.1) the fractional Brownian motion has Hurst parameter H ∈ (1/4, 1) and that
the vector fields Vi ’s satisfy the uniform ellipticity condition. When H ∈ (1/2, 1),
the above equation is understood in Young’s sense [19], and when H ∈ (1/4, 1/2)
stochastic integrals in equation (1.1) are interpreted as rough path integrals (see, e.g.,
[9, 12]) which extends the Young’s integral. Existence and uniqueness of solutions to
the above equation can be found, for example, in [15]. In particular, when H = 1

2 ,
this notion of solution coincides with the solution of the corresponding Stratonovitch
stochastic differential equation.

It is now well understood that under Hörmander’s condition the law of the solution
Xt to equation (1.1) admits a smooth probability density p(t, x, y) with respect to the
Lebesgue measure on R

N (cf. [1, 4, 5, 11]). Moreover, it is shown in [2] that, under
uniform ellipticity condition, the following global upper bound holds

p(t, x, y) ≤ C
1

t N H
exp

[
−|x − y|(2H+1)∧2

Ct2H

]
. (1.2)

Clearly, (1.2) is of Gaussian type and sharp when H ≥ 1/2, while it only gives a sub-
Gaussian bound when H < 1/2. Whether one should still expect a Gaussian upper
bound when H < 1/2 remains one of the major open problems in the study of the
density function. Another open problem in this direction is to obtain a sharp lower
bound for the density p(t, x, y).

On the other hand, the Varadhan type estimate established in [3] shows that

lim
t→0

t2H log p(t, x, y) = −1

2
d(x, y)2. (1.3)

In the above, the control distance function d(x, y) is given by

d2(x, y) = inf{‖h‖2H̄; �1(x; h) = y}, (1.4)

where H̄ is the Cameron–Martin space of B and �t (x; ·) : H̄ → C[0, 1] is the
deterministic Itô map associated with equation (1.1). Although one cannot directly
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equate the Varadhan estimate in (1.3) to the upper bound (or a similar lower bound)
in (1.2), it naturally motivates the following questions:

Q1. Is the control distance d(x, y) comparable to the Euclidean distance |x − y| ?
Q2. Can we use techniques developed in proving (1.3) to obtain some information on

the bounds of p(t, x, y)? [Here we are in particular interested in a lower bound,
since progress on the lower bound of the density is limited in the literature.]

Our investigation in the present article shows an effort in answering the above
two questions, at least partially. More specifically, our discovery is reported in the
following two theorems.

Theorem 1.1 Let d be the control distance given in (1.4). Under uniform ellipticity
conditions (see the forthcoming equation (3.1) for a more explicit version), there exist
constants C, δ > 0, such that

1

C
|x − y| ≤ d(x, y) ≤ C |x − y| , (1.5)

for all x, y ∈ R
N with |x − y| < δ.

Remark 1.2 Theorem (1.1) reflects our attempt in answering Q1. The control distance
d(x, y) plays an important role in various analytic properties of X in Eq. (1.1), for
example, the large deviations of Xt . Due to the complexity of the Cameron–Martin
structure of B, the control distance d(x, y) is far from being a metric (for example, it
is not clear whether it satisfies the triangle inequality) and its shape is not clear. Our
investigation shows that d(x, y), as a function, is locally comparable to the Euclidean
distance. The authors believe that a global equivalence would not hold in general.

Our second result concerns Q2 above and aims at obtaining a lower bound of
the density function. It is phrased below in a slightly informal way, and we refer to
Theorem 3.4 for a complete statement.

Theorem 1.3 Let p(t, x, y) be the probability density of Xt . Under uniform ellipticity
conditions on the vector fields in V , there exist some constants C, τ > 0 such that

p(t, x, y) ≥ C

tNH
, (1.6)

for all (t, x, y) ∈ (0, 1] × R
N × R

N with |x − y| ≤ t H , and t < τ.

Remark 1.4 Relation (1.6) presents a local lower bound, both in time and space, for the
density function pt (x, y) . It is clearly sharp by a quick examination of the case when
Xt is an N -dimensional fractional Brownian motion, i.e., when N = d and V = Id.

In order to summarize themethodology,we have followed for Theorems 1.1 and 1.3;
we should highlight two main ingredients:
(i) Some thorough analytic estimates concerning theCameron–Martin space are related
to fractional Brownian motions, which are mostly useful in order to get proper esti-
mates on the distance d defined by (1.4).

123



1344 Journal of Theoretical Probability (2023) 36:1341–1367

(ii) A heavy use of Malliavin calculus, Girsanov’s theorem in a fBm context and large
deviations techniques are invoked for our local lower bound (1.6).
Our analysis relies thus heavily on the particular fBm setting. Generalizations to a
broader class of Gaussian processes seem to be nontrivial and are left for a subsequent
publication.

Remark 1.5 As one will see below, our argument for both Theorems 1.1 and 1.3 hinges
crucially on uniform ellipticity of the vector fields. The hypoelliptic case is substan-
tially harder and requires a completely different approach, which will be studied in a
companion paper [10].

Remark 1.6 For sake of clarity and conciseness, we have restrictedmost of our analysis
to equation (1.1) that is an equation with no drift. However, we shall give some hints
at the end of the paper about how to extend our results to more general contexts.

Organization of the present paper. In Sect. 2, we present some basic notions from
the analysis of fractional Brownian motion. In particular, we provide substantial detail
on the Cameron–Martin space of a fractional Brownianmotion. This is needed in order
to establish the comparison between control distance and the Euclidean distance and
will also be helpful for later references. Our main results Theorems 1.1 and 1.3 are be
proved in Sect. 3.

2 Preliminary Results

This section is devoted to some preliminary results on the Cameron–Martin space
related to a fractional Brownian motion. We shall also recall some basic facts about
rough paths solutions to noisy equations.

2.1 The Cameron–Martin Subspace of Fractional BrownianMotion

Let us start by recalling the definition of fractional Brownian motion.

Definition 2.1 A d-dimensional fractional Brownian motion with Hurst parameter
H ∈ (0, 1) is anRd -valued continuous centered Gaussian process Bt = (B1

t , . . . , B
d
t )

whose covariance structure is given by

E[Bi
s B

j
t ] = 1

2

(
s2H + t2H − |s − t |2H

)
δi j � R(s, t)δi j . (2.1)

This process is defined and analyzed in numerous articles (cf. [6, 17, 18] for
instance), to which we refer for further details. In this section, we mostly focus on a
proper definition of the Cameron–Martin subspace related to B. We also prove two
general lemmas about this space which are needed for our analysis of the density
p(t, x, y). Notice that we will frequently identify a Hilbert space with its dual in the
canonical way without further mentioning.

In order to introduce the Hilbert spaces which will feature in the sequel, consider a
one dimensional fractional Brownian motion {Bt : 0 ≤ t ≤ 1} with Hurst parameter
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H ∈ (0, 1). The discussion here can be easily adapted to the multidimensional setting
with arbitrary time horizon [0, T ]. Denote W as the space of continuous paths w :
[0, 1] → R

1 with w0 = 0. Let P be the probability measure over W under which the
coordinate process Bt (w) = wt becomes a fractional Brownian motion. Let C1 be the
associated first order Wiener chaos, i.e., C1 � Span{Bt : 0 ≤ t ≤ 1} in L2(W ,P).

Definition 2.2 Let B be a one-dimensional fractional Brownian motion as defined in
(2.1). Define H̄ to be the space of elements h ∈ W which can be written as

ht = E[Bt Z ], 0 ≤ t ≤ 1, (2.2)

where Z ∈ C1. We equip H̄ with an inner product structure given by

〈h1, h2〉H̄ � E[Z1Z2], h1, h2 ∈ H̄,

whenever h1, h2 are defined by (2.2) for two random variables Z1, Z2 ∈ C1. The
Hilbert space (H̄, 〈·, ·〉H̄) is called the Cameron–Martin subspace of the fractional
Brownian motion.

One of the advantages of working with fractional Brownian motion is that a con-
venient analytic description of H̄ in terms of fractional calculus is available (cf. [6]).
Namely recall that given a function f defined on [a, b], the right and left fractional
integrals of f of order α > 0 are, respectively, defined by

(I α
a+ f )(t) � 1

�(α)

∫ t

a
f (s)(t − s)α−1ds, and (I α

b− f )(t)

� 1

�(α)

∫ b

t
f (s)(s − t)α−1ds. (2.3)

In the same way the right and left fractional derivatives of f of order α > 0 are,
respectively, defined by

(Dα
a+ f )(t) �

(
d

dt

)[α]+1

(I 1−{α}
a+ f )(t), and (Dα

b− f )(t)

�
(

− d

dt

)[α]+1

(I 1−{α}
b− f )(t), (2.4)

where [α] is the integer part of α and {α} � α − [α] is the fractional part of α. The
following formula for Dα

a+ , valid for α ∈ (0, 1), will be useful for us:

(Dα
a+ f )(t) = 1

�(1 − α)

(
f (t)

(t − a)α
+ α

∫ t

a

f (t) − f (s)

(t − s)α+1 ds

)
, t ∈ [a, b]. (2.5)

The fractional integral and derivative operators are inverse to each other. For this and
other properties of fractional derivatives, the reader is referred to [13].
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Let us now go back to the construction of the Cameron–Martin space for B,
and proceed as in [6]. Namely, define an isomorphism K between L2([0, 1]) and
I H+1/2
0+ (L2([0, 1])) in the following way:

Kϕ �

⎧
⎪⎪⎨

⎪⎪⎩

CH · I 10+

(
t H− 1

2 · I H− 1
2

0+
(
s
1
2−Hϕ(s)

)
(t)

)
, H > 1

2 ;

CH · I 2H0+

(
t
1
2−H · I

1
2−H
0+

(
sH− 1

2 ϕ(s)
)

(t)

)
, H ≤ 1

2 ,

(2.6)

where CH is a universal constant depending only on H . One can easily compute K−1

from the definition of K in terms of fractional derivatives. Moreover, the operator K
admits a kernel representation, i.e., there exits a function K (t, s) such that

(Kϕ)(t) =
∫ t

0
K (t, s)ϕ(s)ds, ϕ ∈ L2([0, 1]).

The kernel K (t, s) is defined for s < t (taking zero value otherwise). One can write
down K (t, s) explicitly thanks to the definitions (2.3) and (2.4), but this expression is
not included here since it will not be used later in our analysis. A crucial property for
K (t, s) is that

R(t, s) =
∫ t∧s

0
K (t, r)K (s, r)dr , (2.7)

where R(t, s) is the fractional Brownian motion covariance function introduced
in (2.1). This essential fact enables the following analytic characterization of the
Cameron–Martin space in [6, Theorem 3.1].

Theorem 2.3 Let H̄ be the space given in Definition 2.2. As a vector space, we have
H̄ = I H+1/2

0+ (L2([0, 1])), and the Cameron–Martin norm is given by

‖h‖H̄ = ‖K−1h‖L2([0,1]). (2.8)

In order to define Wiener integrals with respect to B, it is also convenient to look at
the Cameron–Martin subspace in terms of the covariance structure. Specifically, we
define another space H as the completion of the space of simple step functions with
inner product induced by

〈1[0,s], 1[0,t]〉H � R(s, t). (2.9)

The space H is easily related to H̄. Namely, define the following operator

K∗ : H → L2([0, 1]), such that 1[0,t] �→ K (t, ·). (2.10)

We also set
R � K ◦ K∗ : H → H̄, (2.11)

where the operator K is introduced in (2.6). Then, it can be proved that R is an
isometric isomorphism (cf. Lemma 2.7 for the surjectivity of K∗). In addition, under
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this identification, K∗ is the adjoint of K , i.e., K∗ = K ∗ ◦ R. This can be seen by
acting on indicator functions and then taking limits. Another explicit description ofR
is the following:

R(1[0,t])(s) = E[Bt Bs]

and for any h ∈ H̄, R−1(h) is the unique element g ∈ H such that

h(t) =
∫ t

0
K (t, s)(R−1h)(s)ds.

As mentioned above, one advantage of the space H is that the fractional Wiener
integral operator I : H → C1 induced by 1[0,t] �→ Bt is an isometric isomorphism;
more explicitly, we have

I ( f ) ∼ N (0, ‖ f ‖H), 〈 f , g〉H = E[I ( f )I (g)] ∀ f , g ∈ H.

According to relation (2.7), Bt admits a Wiener integral representation with respect
to an underlying Wiener process W :

Bt =
∫ t

0
K (t, s)dWs . (2.12)

Moreover, the process W in (2.12) can be expressed as a Wiener integral with respect
to B, that is, Ws = I ((K∗)−11[0,s]) (cf. [17, relation(5.15)]).

Let us also mention the following useful formula for the natural pairing between
H and H̄. Denote by CH−

([0, 1];Rd) the space of α-Hölder continuous paths for all
α < H .

Lemma 2.4 Let H be the space defined as the completion of the indicator functions
with respect to the inner product (2.9). Also recall that H̄ is introduced in Definition
2.2. Then, through the isometric isomorphismR defined by (2.11), the natural pairing
between H and H̄ is given by

H〈 f , h〉H̄ =
∫ 1

0
fs dhs, (2.13)

for all f ∈ CH−
([0, 1];Rd) and h ∈ H̄. In the above, the integral on the right-hand

side is understood in Young’s sense, thanks to Proposition 2.6.

Proof Let f ∈ CH−([0, 1];Rd) and h ∈ H̄. Let Z be the random variable in the first
chaos C1 such that ht = E[Z Bt ] (cf. Definition 2.2). The natural pairing between f
and h is given by

H〈 f , h〉H̄ = E[Z I ( f )],

123



1348 Journal of Theoretical Probability (2023) 36:1341–1367

where we recall that I : H → C1 is the fractional Wiener integral operator. According
to Young’s integration theory (cf. [19]),

∫ 1

0
fsdhs = lim

mesh(P)→0

∑

ti∈P
fti−1(hti − hti−1),

where P denotes an arbitrary finite partition of [0, 1]. On the other hand, for each
partition P , we have

∑

ti∈P
fti−1(hti − hti−1) =

∑

ti∈P
fti−1E[Z(Bti − Bti−1)]

=
∑

ti∈P
fti−1E

[
Z I (1(ti−1,ti ])

] = E[Z I ( f P )],

where

f Pt �
∑

ti∈P
fti−11(ti−1,ti ](t), 0 ≤ t ≤ 1.

Since f P → f in H as mesh(P) → 0, we know that I ( f P ) → I ( f ) in L2.
Therefore,

E[Z I ( f P )] → E[Z I ( f )]

as mesh(P) → 0, which implies the desired relation (2.13). ��
The spaceH can also be described in terms of fractional calculus, since the operator

K∗ defined by (2.10) can be expressed as

(K∗ f )(t) =

⎧
⎪⎪⎨

⎪⎪⎩

CH · t 12−H ·
(
I
H− 1

2
1−

(
sH− 1

2 f (s)
))

(t), H > 1
2 ;

CH · t 12−H ·
(
D

1
2−H
1−

(
sH− 1

2 f (s)
))

(t), H ≤ 1
2 .

(2.14)

Starting from this expression, it is readily checked that when H > 1/2 the space H
coincides with the following subspace of the Schwartz distributions S ′ :

H =
{
f ∈ S ′; t1/2−H · (I H−1/2

1− (sH−1/2 f (s)))(t) is an element of L2([0, 1])
}

.

(2.15)
In the case H ≤ 1/2, we simply have

H = I 1/2−H
1− (L2([0, 1])). (2.16)

These characterizations can be found in [18].
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Remark 2.5 As the Hurst parameter H increases,H gets larger (and contains distribu-
tions when H > 1/2) while H̄ gets smaller. This fact is apparent from Theorem 2.3
and relations (2.15)-(2.16). When H = 1/2, the process Bt coincides with the usual
Brownian motion. In this case, we have H = L2([0, 1]) and H̄ = W 1,2

0 , the space of
absolutely continuous paths starting at the origin with square integrable derivative.

Next we mention a variational embedding theorem for the Cameron–Martin sub-
space H̄ which will be used in a crucial way. The case when H > 1/2 is a simple
exercise starting from the definition (2.2) of H̄ and invoking the Cauchy–Schwarz
inequality. The case when H ≤ 1/2 was treated in [8]. From a pathwise point of view,
this allows us to integrate a fractional Brownian path against a Cameron–Martin path
or vice versa (cf. [19]) and to make sense of ordinary differential equations driven by
a Cameron–Martin path (cf. [14]).

Proposition 2.6 If H > 1
2 , then H̄ ⊆ CH

0 ([0, 1];Rd), the space of H-Hölder continu-
ous paths. If H ≤ 1

2 , then for any q > (H + 1/2)−1, we have H̄ ⊆ Cq-var
0 ([0, 1];Rd),

the space of continuous paths with finite q-variation. In addition, the above inclusions
are continuous embeddings.

Finally, we prove two general lemmas on the Cameron–Martin subspace that are
needed later on. These properties do not seem to be contained in the literature and they
require some care based on fractional calculus. The first one claims the surjectivity of
K∗ on properly defined spaces.

Lemma 2.7 Let H ∈ (0, 1), and consider the operator K∗ : H → L2([0, 1]) defined
by (2.10). Then, K∗ is surjective.

Proof If H > 1/2, we know that the image of K∗ contains all indicator functions (cf.
[17, Equation (5.14)]). Therefore, K∗ is surjective.

If H < 1/2, we first claim that the image of K∗ contains functions of the form
t1/2−H p(1− t)where p(t) is a polynomial. Indeed, given an arbitrary β ≥ 0, consider
the function

fβ(t) � t
1
2−H (1 − t)β+ 1

2−H .

It is readily checked that D
1
2−H
1− fβ ∈ L2([0, 1]), and hence, fβ ∈ I

1
2−H
1− (L2([0, 1])) =

H. Using the analytic expression (2.14) for K∗, we can compute K∗ fβ explicitly (cf.
[13, Chapter 2, Equation (2.45)]) as

(K∗ fβ)(t) = CH
�
(
β + 3

2 − H
)

�(β + 1)
t
1
2−H (1 − t)β .

Since β is arbitrary and K∗ is linear, the claim follows.
Now it remains to show (with a change of variable) that the space of functions of the

form (1− t)
1
2−H p(t)with p(t) being a polynomial is dense in L2([0, 1]). To this end,

let ϕ ∈ C∞
c ((0, 1)). Then, ψ(t) � (1 − t)−(1/2−H)ϕ(t) ∈ C∞

c ((0, 1)). According
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to Bernstein’s approximation theorem, for any ε > 0, there exists a polynomial p(t)
such that

‖ψ − p‖∞ < ε,

and thus

sup
0≤t≤1

|ϕ(t) − (1 − t)
1
2−H p(t)| < ε.

Therefore, functions in C∞
c ((0, 1)) (and thus in L2([0, 1])) can be approximated by

functions of the desired form. ��

Our second lemma gives some continuous embedding properties for H and H̄ in
the irregular case H < 1/2, whose proof relies on Lemma 2.7.

Lemma 2.8 For H < 1/2, the inclusions H ⊆ L2([0, 1]) and W 1,2
0 ⊆ H̄ are contin-

uous embeddings.

Proof For the first assertion, let f ∈ H. We wish to prove that

‖ f ‖L2([0,1]) ≤ CH‖ f ‖H. (2.17)

Toward this aim, define ϕ � K∗ f , where K∗ is defined by (2.10). Observe that
K∗ : H → L2([0, 1]), and thus, f ∈ L2([0, 1]). By solving f in terms of ϕ using the
analytic expression (2.14) for K∗, we have

f (t) = CH t
1
2−H

(
I
1
2−H
1−

(
sH− 1

2 ϕ(s)
))

(t). (2.18)

We now bound the right-hand side of (2.18). Our first step in this direction is to notice
that according to the definition (2.3) of fractional integral we have

∣∣∣∣

(
I
1
2−H
1− (sH− 1

2 ϕ(s))

)
(t)

∣∣∣∣ = CH

∣∣∣∣
∫ 1

t
(s − t)−

1
2−HsH− 1

2 ϕ(s)ds

∣∣∣∣

≤ CH

∫ 1

t
(s − t)−

1
2−HsH− 1

2 |ϕ(s)|ds

= CH

∫ 1

t
(s − t)−

1
4− H

2

(
(s − t)−

1
4− H

2 sH− 1
2 |ϕ(s)|

)
ds.
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Hence, a direct application of Cauchy–Schwarz inequality gives

∣∣∣∣

(
I
1
2−H
1− (sH− 1

2 ϕ(s))

)
(t)

∣∣∣∣ ≤ CH

(∫ 1

t
(s − t)−

1
2−Hds

) 1
2

(∫ 1

t
(s − t)−

1
2−Hs2H−1|ϕ(s)|2ds

) 1
2

= CH (1 − t)
1
2

(
1
2−H

) (∫ 1

t
(s − t)−

1
2−Hs2H−1|ϕ(s)|2ds

) 1
2

,

(2.19)

where we recall that CH is a positive constant which can change from line to line.
Therefore, plugging (2.19) into (2.18) we obtain

‖ f ‖2L2([0,1]) ≤ CH

∫ 1

0

(
t1−2H (1 − t)

1
2−H

∫ 1

t
(s − t)−

1
2−Hs2H−1|ϕ(s)|2ds

)
dt .

We now bound all the terms of the form sβ with β > 0 by 1. This gives

‖ f ‖2L2([0,1]) ≤ CH

∫ 1

0
dt

∫ 1

t
(s − t)−

1
2−H |ϕ(s)|2ds

= CH

∫ 1

0
|ϕ(s)|2ds

∫ s

0
(s − t)−

1
2−Hdt

= CH

∫ 1

0
s
1
2−H |ϕ(s)|2ds ≤ CH‖ϕ‖2L2([0,1]) = CH‖ f ‖2H,

which is our claim (2.17).
For the second assertion about the embedding ofW 1,2

0 in H̄, let h ∈ W 1,2
0 . We thus

also have h ∈ H̄ and we can write h = Kϕ for some ϕ ∈ L2([0, 1]). We first claim
that ∫ 1

0
f (s)dh(s) =

∫ 1

0
K∗ f (s)ϕ(s)ds (2.20)

for all f ∈ H. This assertion can be reduced in the following way: since H ↪→
L2([0, 1]) continuously and K∗ : H → L2([0, 1]) is continuous, one can take limits
along indicator functions in (2.20). Thus, it is sufficient to consider f = 1[0,t] in
(2.20). In addition, relation (2.20) can be checked easily for f = 1[0,t]. Namely, we
have

∫ 1

0
1[0,t](s)dh(s) = h(t) =

∫ t

0
K (t, s)ϕ(s)ds =

∫ 1

0

(K∗1[0,t]
)
(s)ϕ(s)ds.

Therefore, our claim (2.20) holds true. Now from Lemma 2.7, if ϕ ∈ L2([0, 1]) there
exists f ∈ H such that ϕ = K∗ f . For this particular f , invoking relation (2.20) we
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get ∫ 1

0
f (s)dh(s) = ‖ϕ‖2L2([0,1]). (2.21)

But we also know that

‖ϕ‖L2([0,1]) = ‖h‖H̄ = ‖ f ‖H, and thus ‖ϕ‖2L2([0,1]) = ‖h‖H̄‖ f ‖H. (2.22)

In addition, recall that the W 1,2 norm can be written as

‖h‖W 1,2 = sup
ψ∈L2([0,1])

∣∣∣
∫ 1
0 ψ(s)dh(s)

∣∣∣
‖ψ‖L2([0,1])

Owing to (2.21) and (2.22), we thus get

‖h‖W 1,2 ≥
∫ 1
0 f (s)dh(s)

‖ f ‖L2([0,1])
= ‖h‖H̄‖ f ‖H

‖ f ‖L2([0,1])
≥ CH‖h‖H̄,

where the last step stems from (2.17). The continuous embeddingW 1,2
0 ⊆ H̄ follows.

��

2.2 Malliavin Calculus for Fractional BrownianMotion

In this section, we review some basic aspects of Malliavin calculus and set up corre-
sponding notations. The reader is referred to [17] for further details.

We consider the fractional Brownian motion B = (B1, . . . , Bd) as in Definition
(2.1), defined on a complete probability space (�,F ,P). For sake of simplicity, we
assume thatF is generated by {Bt ; t ∈ [0, T ]}. AnF-measurable real-valued random
variable F is said to be cylindrical if it can be written, with some m ≥ 1, as

F = f
(
Bt1, . . . , Btm

)
, for 0 ≤ t1 < · · · < tm ≤ 1,

where f : R
m → R is a C∞

b function. The set of cylindrical random variables is
denoted by S.

The Malliavin derivative is defined as follows: for F ∈ S, the derivative of F in
the direction h ∈ H is given by

Dh F =
m∑

i=1

∂ f

∂xi

(
Bt1, . . . , Btm

)
hti .

More generally, we can introduce iterated derivatives. Namely, if F ∈ S, we set

Dk
h1,...,hk F = Dh1 . . .Dhk F .
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For any p ≥ 1, it can be checked that the operator Dk is closable from S into
Lp(�;H⊗k). We denote by D

k,p(H) the closure of the class of cylindrical random
variables with respect to the norm

‖F‖k,p =
⎛

⎝E
[|F |p] +

k∑

j=1

E

[∥∥∥D j F
∥∥∥
p

H⊗ j

]
⎞

⎠

1
p

, (2.23)

and we also set D∞(H) = ∩p≥1 ∩k≥1 D
k,p(H).

Estimates of Malliavin derivatives are crucial in order to get information about
densities of random variables, and Malliavin covariance matrices as well as non-
degenerate random variables will feature importantly in the sequel.

Definition 2.9 Let F = (F1, . . . , Fn) be a random vector whose components are in
D

∞(H). Define the Malliavin covariance matrix of F by

γF = (〈DFi ,DF j 〉H)1≤i, j≤n . (2.24)

Then, F is called non-degenerate if γF is invertible a.s. and

(det γF )−1 ∈ ∩p≥1L
p(�).

It is a classical result that the law of a non-degenerate random vector F =
(F1, . . . , Fn) admits a smooth density with respect to the Lebesgue measure on Rn .

The following integration by parts formula is borrowed from [17, Proposition 2.1.4].

Proposition 2.10 Let F = (F1, . . . , Fn) be a non-degenerate random vector as in
Definition 2.9. Let G ∈ D

∞ and ϕ be a function in the space C∞
p (Rn). Then, for any

multi-index α ∈ {1, 2, . . . , n}k , k ≥ 1, there exists an element Hα(F,G) ∈ D
∞ such

that
E[∂αϕ(F)G] = E[ϕ(F)Hα(F,G)],

Moreover, the elements Hα(F,G) are recursively given by

H(i)(F,G) = ∑n
j=1 δ

(
G(γ −1

F )i j DF j
)

and

Hα(F,G) = Hαk (F, H(α1,...,αk−1)(F,G)), (2.25)

and for 1 ≤ p < q < ∞ we have

‖Hα(F,G)‖p ≤ cp,q‖γ −1
F DF‖kk,2k−1r‖G‖kk,q , (2.26)

where 1
p = 1

q + 1
r .

Remark 2.11 Through an approximation procedure, the above integration by parts
formula can be extended to the case when ϕ = δx , the Dirac delta function. We refer
the readers to the proof of [17, Theorem 2.1.4] or [17, Section 2.1.5] for more details.
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3 Proof of Main Results

In this section, we prove Theorems 1.1 and 1.3. We emphasize that our analysis relies
crucially on the uniform ellipticity of the vector fields Vi ’s in equation (1.1), which is
spelled out explicitly below.

Uniform Ellipticity Assumption The C∞
b vector fields V = {V1, . . . , Vd} are such that

�1|ξ |2 ≤ ξ∗V (x)V (x)∗ξ ≤ �2|ξ |2, ∀x, ξ ∈ R
N , (3.1)

with some constants �1,�2 > 0, where (·)∗ denotes matrix transpose.

We now split our proofs in two subsections, corresponding, respectively, to Theo-
rems 1.1 and 1.3.

3.1 Proof of the Distance Comparison

In order to prove Theorem 1.1, recall first that �t (x; ·) : H̄ → C[0, 1] is the deter-
ministic Itô map associated with Eq. (1.1). For x, y ∈ R

N , set

�x,y �
{
h ∈ H̄ : �1(x; h) = y

}
. (3.2)

Otherwise stated, �x,y is the set of Cameron–Martin paths that joining x to y though
the Itô map. Under our assumption (3.1), it is easy to construct an h ∈ H̄ ∈ �x,y

explicitly, which will ease our computations later on.

Lemma 3.1 Let V = {V1, . . . , Vd} be vector fields satisfying the uniform elliptic
assumption (3.1). Given x, y ∈ R

N , define

ht �
∫ t

0
V ∗(zs) · (V (zs)V

∗(zs))−1 · (y − x)ds, (3.3)

where zt � (1− t)x + t y is the line segment from x to y. Then, h ∈ �x,y , where �x,y

is defined by relation (3.2).

Proof Since H̄ = I H+1/2
0+ (L2([0, 1])) contains smooth paths, it is obvious that h ∈ H̄.

As far as zt is concerned, the definition zt = (1 − t)x + t y clearly implies that
z0 = x, z1 = y and żt = y− x . In addition, since VV ∗(ξ) is invertible for all ξ ∈ R

N

under our condition (3.1), we get

żt = y − x =
(
VV ∗(VV ∗)−1

)
(zt ) · (y − x) = V (zt )ḣt ,

where the last identity stems from the definition (3.3) of h. Therefore, h ∈ �x,y

according to our definition (3.2). ��
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Remark 3.2 The intuition behind Lemma 3.1 is very simple. Indeed, given any smooth
path xt with x0 = x, x1 = y, since the vector fields are elliptic, there exist smooth
functions λ1(t), . . . , λd(t), such that

ẋt =
d∑

α=1

λα(t)Vα(xt ), 0 ≤ t ≤ 1.

In matrix notation, ẋt = V (xt ) · λ(t). A canonical way to construct λ(t) is writing it
as λ(t) = V ∗(xt )η(t) so that from ellipticity we can solve for η(t) as

η(t) = (V (xt )V
∗(xt ))−1 ẋt .

It follows that the path ht �
∫ t
0 λ(s)ds belongs to �x,y .

Now we can prove the following result which asserts that the control distance
function is locally comparable with the Euclidean metric that is Theorem 1.3 under
elliptic assumptions.

Theorem 3.3 Let V = {V1, . . . , Vd} be vector fields satisfying the uniform elliptic
assumption (3.1). Consider the control distance d given in (1.4) for a given H > 1

4 .
Then, there exist constants C1,C2 > 0 depending only on H and the vector fields,
such that

C1|x − y| ≤ d(x, y) ≤ C2|x − y| (3.4)

for all x, y ∈ R
N with |x − y| ≤ 1.

Proof We first consider the case when H ≤ 1/2, which is simpler due to Lemma 2.8.
Given x, y ∈ R

N , define h ∈ �x,y as in Lemma 3.1. According to Lemma 2.8 and
(1.4), we have

d(x, y)2 ≤ ‖h‖2H̄ ≤ CH‖h‖2W 1,2 .

Therefore, according to the definition (3.3) of h, we get

d(x, y)2 ≤ CH

∫ 1

0
|V ∗(zs)(V (zs)V

∗(zs))−1 · (y − x)|2ds ≤ CH ,V |y − x |2,

where the last inequality stems from the uniform ellipticity assumption (3.1) and the
fact that V ∗ is bounded. This proves the upper bound in (3.4).

We now turn to the lower bound in (3.4). To this aim, consider an arbitrary h ∈ �x,y .
We want to show that |y − x | ≤ C‖h‖H̄ with some constant C . Since |y − x | ≤ 1,
we may assume without loss of generality that ‖h‖H̄ ≤ 1 as the claim holds trivially
otherwise. Recalling the definition (3.2) of �x,y , we have

y − x =
∫ 1

0
V (�t (x; h))dht .
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According to Proposition 2.6 (specifically the embedding H̄ ⊆ Cq−var
0 ([0, 1];Rd) for

q > (H +1/2)−1) and the pathwise variational estimate given by [9, Theorem 10.14],
we have

|y − x | ≤ CH ,V
(‖h‖q−var ∨ ‖h‖qq−var

) ≤ CH ,V

(
‖h‖H̄ ∨ ‖h‖qH̄

)
. (3.5)

Since q ≥ 1, we conclude that

|y − x | ≤ CH ,V ‖h‖H̄.

The desired lower bound follows from the arbitrariness of h.
Next we consider the case when H > 1/2. The lower bound in (3.4) can be proved

with the same argument as in the case H ≤ 1/2, the only difference being that in
(3.5) we replace H̄ ⊆ Cq−var

0 ([0, 1];Rd) by H̄ ⊆ CH
0 ([0, 1];Rd) and the pathwise

variational estimate of [9, Theorem 10.14] by a Hölder estimate borrowed from [7,
Proposition 8.1].

For the upper bound in (3.4), we again take h ∈ �x,y as given by Lemma 3.1 and
estimate its Cameron–Martin norm.Note that due to our uniform ellipticity assumption
(3.1), one can define the function

γt ≡
∫ t

0
(V ∗(VV ∗)−1)(zs)ds =

∫ t

0
g((1 − s)x + sy)ds, (3.6)

where g is a matrix-valued C∞
b function. We will now prove that γ can be written as

γ = Kϕ for ϕ ∈ L2([0, 1]). Indeed, one can solve for ϕ in the analytic expression
(2.6) for H > 1/2 and get

ϕ(t) = CH t
H− 1

2

(
D

H− 1
2

0+
(
s
1
2−H γ̇s

))
(t).

We now use the expression (2.4) for DH−1/2
0+ , which yield (after an elementary change

of variable)

ϕ(t) = CHt
H− 1

2
d

dt

∫ t

0
s
1
2−H (t − s)

1
2−Hg((1 − s)x + sy)ds

= CHt
H− 1

2
d

dt

(
t2−2H

∫ 1

0
(u(1 − u))

1
2−Hg((1 − tu)x + tuy)du

)

= CHt
1
2−H

∫ 1

0
(u(1 − u))

1
2−Hg((1 − tu)x + tuy)du

+ CH t
3
2−H

∫ 1

0
(u(1 − u))

1
2−Hu∇g((1 − tu)x + tuy) · (y − x)du.

Hence, thanks to the fact that g and ∇g are bounded plus the fact that t ≤ 1, we get

|ϕ(t)| ≤ CH ,V (t
1
2−H + |y − x |),
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from which ϕ is clearly an element of L2([0, 1]). Since |y− x | ≤ 1, we conclude that

‖γ ‖H̄ = ‖ϕ‖L2([0,1]) ≤ CH ,V .

Therefore, recalling that h is given by (3.3) and γ is defined by (3.6), we end up with

d(x, y) ≤ ‖h‖H̄ =
∥∥∥∥

(∫ ·

0
(V ∗(VV ∗)−1)(zs)ds

)
· (y − x)

∥∥∥∥H̄
= ‖γ ‖H̄|y − x | ≤ CH ,V |y − x |.

This concludes the proof. ��

3.2 Lower Bound for the Density

With Theorem 3.3 in hand, we are now ready to state Theorem 1.3 rigorously and
prove it. Specifically, our main local bound on the density of Xt takes the following
form.

Theorem 3.4 Let p(t, x, y) be the density of the solution Xt to Eq. (1.1). Under the
uniform ellipticity assumption (3.1), there exist constants C1,C2, τ > 0 depending
only on H and the vector fields V , such that

p(t, x, y) ≥ C1

t N H
(3.7)

for all (t, x, y) ∈ (0, 1] × R
N × R

N satisfying |x − y| ≤ C2t H and t < τ .

Remark 3.5 From Theorem 3.3, we know that |Bd(x, t H )| � t N H when t is small.
Therefore, Theorem 1.3 becomes the following result, which is consistent with the
intuition that the density p(t, x, y) of the solution to Eq. (1.1) should behave like the
Gaussian kernel:

p(t, x, y) � C1

t N H
exp

(
−C2|y − x |2

t2H

)
.

The main idea behind the proof of Theorem 3.4 is to translate the small time
estimate in (3.7) into a large deviation estimate. To this aim, we will first recall some
preliminary notions taken from [3]. Denote by �(·; ·) : RN ×� → R

N the Itô-Lyons
map associated with (1.1), that is, �t (x;ω) := Xt (ω) for any initial point x and
ω ∈ �. By the scaling invariance of fractional Brownian motion, we have

�t (x; B)
law= �1(x; εB), (3.8)

where ε � t H . Therefore, since the random variable �t (x; B) is nondegenerate under
our standing assumption (3.1), the density p(t, x, y) can be written as

p(t, x, y) = E
[
δy (�1(x; εB))

]
. (3.9)
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With expression (3.9), we focus on�1(x, εB) in the rest of the proof. We first label
a proposition which gives a lower bound on p(t, x, y) in terms of some conveniently
chosen shifts on the Wiener space.

Proposition 3.6 Assume that the vector fields {V1, . . . , Vd} satisfy the uniform elliptic
assumption (3.1). Then, the following holds true.
(i) Let �t be the solution map of Eq. (1.1), h ∈ H̄, and let

Xε(h) � �1(x; εB + h) − �1(x; h)

ε
. (3.10)

Then, Xε(h) converges in D
∞ to X(h) uniformly in h ∈ H̄ with ‖h‖H̄ ≤ M (for any

fixed M > 0). Moreover, X(h) is a R
N -valued centered Gaussian random variable

whose covariance matrix will be specified later.
(ii) Let ε > 0 and consider x, y ∈ R

N such that d(x, y) ≤ ε, where d(·, ·) is the
distance considered in Theorem 3.3. Choose h ∈ �x,y (cf. (3.2)) so that

‖h‖H̄ ≤ d(x, y) + ε. (3.11)

Then, there exists a constant C > 0 not depending on ε such that

p(t, x, y) =E
[
δy (�1(x; εB))

] ≥ Cε−N · E
[
δ0
(
Xε(h)

)
e
−I

(
h
ε

)]
. (3.12)

Proof The first statement is proved in [3, Proposition 2.15]. We therefore focus on
the second statement. Recall that I : H → C1 is the Wiener integral operator and
that R : H → H̄ is the isomorphism between H and H̄ introduced in Section 2.1.
Throughout the proof and the rest of the paper, we will abuse the notation slightly
and use I (h) for the more accurate I (R−1h) whenever h ∈ H̄. First note that by
Cameron–Martin theorem we have

E
[
δy (�1(x; εB))

] = e− ‖h‖2H̄
2ε2 E

[
δy (�1(x; εB + h)) e

−I
(
h
ε

)]
. (3.13)

Thanks to inequality (3.11) and the fact that d(x, y) ≤ ε, we have ‖h‖H̄ ≤ d(x, y) +
ε ≤ 2ε. Hence, the factor exp(−‖h‖2H̄/2ε2) in (3.13) is lower bounded by a positive
constant independent of ε. Plugging this information into the above equation, we
therefore obtain

p(t, x, y) = E
[
δy (�1(x; εB))

] ≥ C · E
[
δy (�1(x; εB + h)) e

−I
(
h
ε

)]
. (3.14)

In addition, we have chosen h ∈ �x,y , which means that �1(x; h) = y. Therefore,
Eq. (3.14) becomes

p(t, x, y) ≥ C · E
[
δ0 (�1(x; εB + h) − �1(x; h)) e

−I
(
h
ε

)]
. (3.15)
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Note that we have the following scaling property for the Dirac delta function in R
N :

δ0(cx) = c−N δ0(x) for any c > 0. Indeed, suppose ρε(x) = ε−Nρ(ε−1x) is an
approximation of δ0. On the one hand,

ρε(cx) → δ0(cx).

On the other hand, after a change of variable c−1ε = ε′, we also have

ρε(cx) = c−Nρε′(x) → c−N δ0(x).

The desired scaling property of δ0 is thus obtained. Plugging this scaling property
into (3.15), we end up with

p(t, x, y) ≥ Cε−N · E
[
δ0

(
�1(x; εB + h) − �1(x; h)

ε

)
e
−I

(
h
ε

)]
.

Our claim (3.12) thus follows from the definition (3.10) of Xε(h). ��
Let us now describe the covariance matrix of X(h) introduced in Proposition 3.6.

To this aim, we first note that the Itô-Lyons map �t can be restricted to H̄, that is,
�t (·; ·) : RN × H̄ → R

N which we call the deterministic Itô-Lyons map associated
with (1.1). For any fixed h ∈ H̄, the Jacobian of �t (· ; h) : RN → R

N is denoted by
Jt (· ; h). According to [7, Sec. 11.3.2], it satisfies the following linear ODE,

Jt (x, h) = Id +
d∑

i=1

∫ t

0
∂Vi (�s(x; h))Js(x, h)dhis, (3.16)

where Id is the N × N identity matrix. Let D be the Malliavin derivative operator.
Similarly, the l-directional Malliavin differential Dl�t := 〈D�t (x, h), l〉H̄ of �

satisfies

Dl�t =
d∑

i=1

∫ t

0
∂Vi (�s(x; h))Dl�sdh

i
s +

d∑

i=1

∫ t

0
Vi (�s(x; h))dlis, for all l ∈ H̄.

(3.17)

By using (3.16) and (3.17) to write down the ODE for J−1
t (x; h)Dl�t , it is easily

seen that

〈D�t (x; h), l〉H̄ = Jt (x; h) ·
∫ t

0
J−1
s (x; h) · V (�s(x; h))dls . (3.18)

This is a standard application of Duhamel’s formula when h is a smooth driving paths.
One can then take limits in Young integrals in order to obtain the result (3.18) for a
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general h ∈ H̄. See [7, Sec. 11.3.2, Equation (11.17)] for more details. According to
the pairing (2.13), when viewed as an H-valued functional, we have

Ds�
i
t (x; h) =

(
Jt (x; h)J−1

s (x; h)V (�s(x; h))
)i

1[0,t](s), 1 ≤ i ≤ N . (3.19)

Now recall that Xt (h) = limε↓0(�(x; εB + h) − �t (x; h))/ε. Since the Itô-Lyons
map is smooth with respect to both the initial condition and the driving path (cf. [9,
Proposition 11.5]), it is seen that for any l ∈ H̄ the l-directional Malliavin differen-
tial of Xt (h) satisfies the same equation as (3.17). Note again that this equation is
deterministic. This implies that Xt (h) is a Gaussian random variable and the N × N
covariance matrix of Xt (h) admits the following representation

Cov(Xt (h)) := ��t (x;h) = 〈D�t (x; h), D�t (x; h)〉H. (3.20)

With (3.20) in hand, a crucial point for proving Theorem 3.4 is the fact that��1(x;h)

is uniformly non-degenerate with respect to all h. This is the content of the following
result which is another special feature of ellipticity that fails in the hypoelliptic case.
Its proof is an adaptation of the argument in [3] to the deterministic context.

Lemma 3.7 Let M > 0 be a localizing constant. Consider the Malliavin covariance
matrix��1(x;h) defined by (3.20). Under the uniform ellipticity assumption (3.1), there
exist C1,C2 > 0 depending only on H , M and the vector fields, such that

C1 ≤ det ��1(x;h) ≤ C2 (3.21)

for all x ∈ R
N and h ∈ H̄ with ‖h‖H̄ ≤ M.

Proof We consider the cases of H > 1/2 and H ≤ 1/2 separately. We only study the
lower bound of ��1(x;h) since the upper bound is standard from pathwise estimates
by (3.19) and (3.20), plus the fact that ‖h‖H ≤ M .
(i) Proof of the lower bound when H > 1/2. According to relation (3.20) and the
expression for the inner product in H given by [17, equation (5.6)], we have

��1(x;h) = CH

d∑

α=1

∫

[0,1]2
J1 J

−1
s Vα(�s)V

∗
α (�t )(J

−1
t )∗ J ∗

1 |t − s|2H−2dsdt,

where we have omitted the dependence on x and h for � and J inside the integral for
notational simplicity. It follows that for any z ∈ R

N , we have

z∗��1(x;h)z = CH

∫

[0,1]2
〈ξs, ξt 〉Rd |t − s|2H−2dsdt, (3.22)

where ξ is the function inH defined by

ξt � V ∗(�t )(J
−1
t )∗ J ∗

1 z. (3.23)
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According to an interpolation inequality proved by Baudoin-Hairer (cf. [1, Proof of
Lemma 4.4]), given γ > H − 1/2, we have

∫

[0,1]2
〈 fs, ft 〉Rd |t − s|2H−2dsdt ≥ Cγ

(∫ 1
0 vγ (1 − v)γ | fv|2dv

)2

‖ f ‖2γ
(3.24)

for all f ∈ Cγ ([0, 1];Rd), where the γ -Hölder variational semi-norm in (3.24) is
defined by

‖ f ‖γ � sup
s,t∈[0,1]

| ft − fs |
|t − s|γ .

Observe that, due to our uniform ellipticity assumption (3.1) and the non-degeneracy
of Jt , we have

inf
0≤t≤1

|ξt |2 ≥ CH ,V ,M |z|2. (3.25)

Furthermore, recall that �t is driven by h ∈ H̄. We have also seen that H̄ ↪→ CH
0

whenever H > 1/2. Thus, for H − 1/2 < γ < H , we get ‖�t‖γ ≤ CH ,V ‖h‖γ , and
the same inequality holds true for the Jacobian J in (3.23). Therefore, going back to
Eq. (3.23) again, we have

‖ξ‖2γ ≤ CH ,V ,M‖h‖H̄ |z|2 ≤ CH ,V ,M |z|2, (3.26)

where the last inequality stems from our assumption ‖h‖H̄ ≤ M . Therefore, taking
ft = ξt in (3.24), plugging inequalities (3.25) and (3.26), and recalling relation (3.22),
we conclude that

z∗��1(x;h)z ≥ CH ,V ,M |z|2

uniformly for ‖h‖H̄ ≤ M . Hence, our result (3.21) follows when H > 1
2 .

(ii) Proof of the lower bound when H ≤ 1/2. Recall again that (3.20) yields

z∗��1(x;h)z = ‖z∗D�1(x; h)‖2H.

Then, owing to the continuous embeddingH ⊆ L2([0, 1]) proved in Lemma 2.8, and
expression (3.19) for D�t , we have for any z ∈ R

N ,

z∗��1(x;h)z ≥ CH‖z∗D�1(x; h)‖2L2([0,1])

= CH

∫ 1

0
z∗ J1 J−1

t V (�t )V
∗(�t )(J

−1
t )∗ J ∗

1 zdt = CH

∫ 1

0
|ξt |2 dt,

where we have used the definition (3.23) for the last step. Resorting to (3.25), we thus
discover that
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z∗��1(x;h)z ≥ CH ,V ,M |z|2 ,

uniformly for ‖h‖H̄ ≤ M . Our claim (3.21) now follows as in the case H > 1/2. ��
With the preliminary results of Proposition 3.6 and Lemma 3.7 in hand, we are now

able to complete the proof of Theorem 3.4.

Proof of Theorem 3.4 Recall that Xε(h) is defined by (3.10). According to our prelim-
inary bound (3.12), it remains to show that there exits a constant CH ,V > 0 such that
when ε is small enough,

E

[
δ0
(
Xε(h)

)
e
−I

(
h
ε

)]
≥ CH ,V , (3.27)

uniformly for all h with ‖h‖H̄ ≤ 2ε. The proof of this fact consists of the following
two steps:
(i) Prove that there exists a constantCH ,V > 0 such thatE[δ0(X(h))e−I (h/ε)] ≥ CH ,V

for all ε > 0 and h ∈ H̄ with ‖h‖H̄ ≤ 2ε;
(ii) Upper bound the difference

E

[
δ0
(
Xε(h)

)
e
−I

(
h
ε

)]
− E

[
δ0(X(h))e

−I
(
h
ε

)]
,

and show that when ε is small the above difference is small uniformly for all h with
‖h‖H̄ ≤ 2ε. We now treat the above two parts separately.
Proof of item (i): Recall that the first chaos C1 has been defined in Section 2.1.
Then, observe that the centered Gaussian random variable random variable X(h) =
(X1(h), . . . , XN (h)) introduced in Proposition 3.6 sits in C1. We decompose the
Wiener integral I (h/ε) as

I (h/ε) = Gε
1 + Gε

2,

where Gε
1 and Gε

2 satisfy

Gε
1 ∈ Span{Xi (h); 1 ≤ i ≤ N }, Gε

2 ∈ Span{Xi (h); 1 ≤ i ≤ N }⊥

where the orthogonal complement is considered in C1. With this decomposition in
hand, we get

E

[
δ0(X(h))e

−I
(
h
ε

)]
= E

[
δ0(X(h))e−Gε

1

]
· E

[
e−Gε

2

]
.

Furthermore, E[eG ] ≥ 1 for any centered Gaussian random variable G. Thus,

E

[
δ0(X(h))e

−I
(
h
ε

)]
≥ E

[
δ0(X(h))e−Gε

1

]
. (3.28)
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We claim that

E

[
δ0(X(h))e−Gε

1

]
= E [δ0(X(h))] . (3.29)

Indeed, by the definition of Gε
1, it can be expressed as a linear combination of compo-

nents of X(h), that is,Gε
1 = a1X1(h)+· · ·+aN XN (h) for some constants a1, . . . , aN .

If we approximate δ0 above by a sequence of smooth functions {ψn; n ≥ 1} compactly
supported in B(0, 1/n) ⊂ R

N , it follows as n → ∞

E

[
ψn(X(h))e−Gε

1

]
=
∫

RN
pX(h)(x)ψn(x)e

a1x1+···+aN xN dx

=
∫

B(0,1/n)

pX(h)(x)ψn(x)e
a1x1+···+aN xN dx

→ pX(h)(0) = E [δ0(X(h))] ,

where we have denoted by pX(h) the probability density function of the Gaussian
random variable X(h). Since the right hand-side of the above equation converges to

E

[
δ0(X(h))e−Gε

1

]
as n → ∞, our claim in (3.29) follows. Combining (3.28) and

(3.29), we get

E

[
δ0(X(h))e

−I
(
h
ε

)]
≥ E[δ0(X(h))] = pX(h)(0).

We now resort to the fact that X(h) is a Gaussian random variable with covariance
matrix ��1(x;h) by (3.20), which satisfies relation (3.21). This yields

E

[
δ0(X(h))e

−I
(
h
ε

)]
≥ 1

(2π)
N
2
√
det ��1(x;h)

≥ CH ,V ,

uniformly for all h with ‖h‖H̄ ≤ 2ε (indeed, the proof shows that the above lower
bound holds for all h with ‖h‖H̄ � 1) . This ends the proof of item (i).
Proof of item (ii): By using the integration by parts formula in Malliavin’s calculus
(see Proposition 2.10), we have

E[δ0(X(h))e−I (h/ε)] = E
[
1{X(h)≥0}H(X(h), I (h/ε))

]
,

where X(h) ≥ 0 is interpreted component-wise, and H(X(h), I (h/ε)) is a random
variable which can be expressed explicitly in terms of the Malliavin derivatives of
I (h/ε), X(h) and the inverse of the Malliavin covariance matrix γX(h) of X(h) (see
(2.25) for details). Similarly, we have

E[δ0(Xε(h))e−I (h/ε)] = E
[
1{Xε(h)≥0}H(Xε(h), I (h/ε))

]
.
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Therefore,

∣∣∣E[δ0(X(h))e−I (h/ε)] − E[δ0(Xε(h))e−I (h/ε)]
∣∣∣

≤ ∣∣E
[(
1{Xε(h)≥0} − 1{X(h)≥0]}

)
H(X(h), I (h/ε))

]∣∣

+ ∣∣E
[
1{Xε(h)≥0}

(
H(Xε(h), I (h/ε)) − H(X(h), I (h/ε))

)]∣∣ . (3.30)

Note that since ‖h‖H̄ ≤ 2ε, ‖h/2ε‖H̄ remains bounded and hence the randomvariable
H(X(h), I (h/ε)) has bounded p-th moment (uniform in ε) for all p ≥ 1. It is thus
clear from Proposition 3.6-(i) and an easy application of Hölder’s inequality that the
first term in the right-hand side of (3.30) can be made small when ε is small.

As for the second term in the right-hand side of (3.30), first of all thanks to Lemma
3.8, det γXε(h) has negative moments of all orders uniformly for all ε ∈ (0, 1) and
bounded h ∈ H̄. Together with the convergence in Proposition 3.6-(i), it follows that

det γ −1
Xε(h)

L p−→ det γ −1
X(h), as ε → 0, (3.31)

uniformly for ‖h‖H̄ � 1 for each p ≥ 1.Now recall from (2.25) that H(X(h), I (h/ε))

is a random variable which can be expressed explicitly in terms of the Malliavin
derivatives of I (h/ε), X(h) and the inverse Malliavin covariance matrix MX(h) of
X(h). The convergence in (3.31) and Proposition 3.6-(i) is sufficient to conclude that
H(Xε(h), I (h/ε)) − H(X(h), I (h/ε)) → 0 in L p(�) as ε ↓ 0 for all p ≥ 1. Thus,
the second term in the right-hand side of (3.30) can be made small when ε is small.
Therefore, the assertion of item (ii) holds.

Once item (i) and (ii) are proved, it is easy to obtain (3.27) and the details are
omitted. This finishes the proof of Theorem 3.4. ��
Lemma 3.8 Let γXε(h) be the Malliavin matrix of X ε(h) as defined in (2.24). We have

∥∥∥det γ −1
Xε(h)

∥∥∥
p

< ∞,

for all p ≥ 1 and ε ∈ (0, 1].
Proof We first recall that � is the Itô-Lyons map associated with (1.1) and J is the
Jacobian (associatedwith the deterministic�) introduced in (3.16). Note that although
J is introduced in (3.16) as a map onRN ×H̄, it can be extended toRN ×� by general
rough path theory. Therefore, the notation J (x; εB + h) makes perfect sense. Indeed,
it is simply the solution to Eq. (3.16) driven by εB + h (instead of h itself).

To lighten the notation, in what follows we will write �ε and J ε for �(x; εB + h)

and J (x; εB + h), respectively.
By the same argument as before (cf. (3.19)), the Malliavin derivative of the random

variable �ε
t can be represented in terms of the Jacobian J ε as

Ds�
ε,i
t = ε

(
J ε
t (J ε

s )−1V (�ε
s )
)i

1[0,t](s), 1 ≤ i ≤ N .
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In the above, the factor ε on the right hand-side of the equation is inherited from εB.
Recall the definition of Xε(h) in (3.10), we thus have

Ds X
ε,i (h) = Ds�

ε,i
t

ε
=
(
J ε
t (J ε

s )−1V (�ε
s )
)i

1[0,t](s), 1 ≤ i ≤ N .

On the other hand, the Jacobian J ε has an inverse which satisfies a similar SDE as
(3.16)

(J ε
t )−1 = Id −

d∑

i=1

∫ t

0
(J ε

s )−1∂Vi (�
ε
s )d(εBi + hi )s . (3.32)

Therefore, general rough path estimates ensure that, for any γ < H , the γ -Hölder
norm of components of both J ε and (J ε)−1 have finite p-th moments for all p ≥ 1.

The rest of the proof now follows the same lines as in the proof of Lemma 3.3 of
[3]. ��

We conclude our discussion by a remark regarding SDE with a drift.

Remark 3.9 One can also consider the SDE in (1.1) but with a smooth and bounded
drift

Zt = x +
∫ t

0
V0(Zs)ds +

d∑

i=1

∫ t

0
Vi (Zs)dB

i
s , t ∈ [0, 1]. (3.33)

It turns our the control distance of the system (3.33) (in terms of large deviation, etc.)
is the same as the one without a drift; that is, the same as being defined in (1.4).
Hence, the corresponding local lower bound for the density function of Zt is the same
as stated in Theorem 1.6. In order to see this, recall that �t (x; ·) : H̄ → C[0, 1] is
the deterministic Itô map associated with Eq. (1.1). For each ε > 0 we further define
�ε

t (x; ·) to be the solution map of the equation

Z ε
t = x + ε

1
H

∫ t

0
V0(Z

ε
s )ds +

d∑

i=1

∫ t

0
Vi (Z

ε
s )dB

i
s , t ∈ [0, 1].

That is, Z ε
t = �ε

t (x; B). Similar to (3.8), we have for ε = t H ,

Zt = �1
t (x; B)

law= �ε
1(x; εB).

Now we proceed as in the proof of Theorem 1.6, and denote by p(t, x, z) the density
function of Zt . Eq. (3.9) becomes

p(t, x, z) = E
[
δz
(
�ε

1(x; εB)
)] = E

[
δz
(
�1(x; εB) + (�ε

1(x; εB) − �1(x; εB))
)]

.
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As a result, if we still pick h ∈ �x,z as before (that is, �1(x, h) = z), the expectation
on the right hand-side of (3.12) becomes

E

[
δ0

(
Xε(h) + �ε

1(x; εB + h) − �1(x, εB + h)

ε

)
e
−I

(
h
ε

)]
.

The observation is that rough differential equations are Lipschitz continuous with
respect to the vector fields. Hence, the extra term

�ε
1(x; εB + h) − �1(x, εB + h)

ε

is of order ε
1
H −1, and can be considered negligible since 0 < H < 1. Therefore, all the

previous argument goes through as if there was no drift. We leave it to the enterprising
readers to fill in the details.
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