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Abstract
In this paper, we consider a Cox/Gt/∞ infinite server queueing model in a random
environment. More specifically, the arrival rate in our server is modeled as a highly
fluctuating stochastic process, which arguably takes into account some small timescale
variations often observed in practice. We prove a homogenization property for this
system, which yields an approximation by an Mt/Gt/∞ queue with some effective
parameters. Our limiting results include the description of the number of active servers,
the total accumulated input and the solution of the storage equation. Hence, in the fast
oscillatory context under consideration, we show how the queuing system in a random
environment can be approximated by a more classical Markovian system.
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1 Introduction

Nonstationary models have been extensively studied in the literature on queues, par-
ticularly in the Markovian setting. A typical assumption in this setting is that the
arrival and service intensities are deterministic time-varying functions. In Markovian
settings, it is also natural to assume that the intensity functions are smooth [1]. How-
ever, in practice, queueing systems are often subject to “environmental” noise: for
instance, while arrival intensities to call centers and hospitals display time-of-day (or
“diurnal”) effects, the intensity functions also vary based on the day-of-week and sea-
sonal effects. In other queueing systems, particularly those with high-intensity arrivals
such as computer networks or cloud service systems, there is also intra-day and intra-
hour stochastic variation in the intensity process. The performance of these queueing
systems is therefore affected by both the smaller timescale stochastic variations and
(relatively) longer timescale time-of-day effects.

Our aim is to show that in a setting where the stochastic fluctuations are strongly
ergodic (in a general sense), a separation of short- and long-term variations naturally
leads to a simplermodel description.While infinite server queues are an approximation
in the real world, they are a useful vehicle to address the questions of interest to us.
To this end, we study a Cox/Gt/∞ infinite server queueing model imbedded in a
random environment, wherein we assume a doubly stochastic Poisson (DSPP), or
Cox, process traffic model, and conditional on the stochastic intensity the cumulative
number of arrivals in a fixed time interval is Poisson-distributed. We assume that the
stochastic intensity is modeled as μ(s) = �(s, Zs), where Zs is an ergodic stochastic
process. (As we will see later on, a typical example is an Ornstein–Uhlenbeck (OU)-
type process.) We will develop and concentrate much of our theory under the special
case of a “separable” stochastic intensity function, denoted by με and defined by

με(ds) = λ(s)ψ(Zs/ε)ds, ε > 0, s > 0 (1)

though a more general form is certainly possible. In the above, λ(s) is a determinis-
tic function of time modeling time-of-day effects. It is multiplied by some positive
function of a stochastic process Z (modeling fluctuations). Note the timescale ε−1t
associated with Z . The constant ε in this paper is intended to be a small parameter
reflecting the fast oscillatory nature of the fluctuations. Coming to the service model,
we consider a general setting where the parameters of the service time distribution
functions are assumed to vary temporally with the long timescale variations in the
traffic intensity. An example is given by Pareto service times, with temporally varying
scale coefficients that depend on the arrival epoch.

Performance analysis of non-Markovian queueing models is in general rather diffi-
cult. Consequently, we focus on developing stochastic process approximations as the
parameter ε → 0. Such a limiting procedure is often called homogenization in the
sense that the fast oscillating process is averaged out to produce an effective descrip-
tion which is usually much easier to analyze. In studying homogenization limits of
stochastic processes in random environments, one may choose to fix a realization of
the random environment and then take the homogenization limit, or to first average
out the random environment and then take the averaged system to its homogenization
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limit. The former approach is typically termed the quenched regime, while the latter is
the annealed regime. In this paper, we present homogenization limits for both, though
we primarily focus on the quenched scenario.

The literature on infinite server queues in random environments [2–16] has focused
on the annealed regime. A natural question to ask is the relevance of the quenched
regime to performance analysis of queues. As [17] observes in the context of Markov
models in randomenvironments,“A reasonable first answer to this question could sim-
ply be that the quenched approach solves the true question but the averaged [annealed]
approach, being often much simpler, has the merit of being the first possibility to under-
stand a hard problem...”. Performance analysis is typically an ex ante exercise, using
a stochastic model that predicts the future evolution of the queue. Roughly speaking,
an annealed approach to performance analysis permits the prediction of the behav-
ior of the queue in the typical random environment. The quenched analysis, on the
other hand, makes predictions for any (almost sure) realization of the random envi-
ronment. In this sense, our main result in Theorem 3.11 showing that, in the limit, the
Cox/Gt/∞ queue is closely approximated by an Mt/Gt/∞ queue, is a result that is
“robust” to the specific realization of the random environment. As Ben-Arous et al.
observe [17], this is in some sense the “true question” in that, ex ante, it is unclear
what sample path of the random environment will be encountered by the queue, and
any analysis should be agnostic to this.

Another perspective is that which of the annealed or quenched regimes is more
indicative will certainly depends on the variability of the system or more precisely the
fluctuation around the typical (annealed) description. Furthermore, there are ample
examples in probability and stochastic analysis in which there are interesting transi-
tions and connections between the two regimes, and the results intimately depend on
the how the averaging procedures are performed. For this, besides the work [17], we
also refer the reader to [18,19].

With the above observation in mind, we will provide results for both the quenched
and annealed regimes. In Theorem 3.11, we show that N ε, the quenched stochastic
process representing the state of the Cox/Gt/∞ queue, converges weakly to a Poisson
point process N that is the state of an Mt/Gt/∞ queue. We write this limit as

{N ε(t) : t ∈ [0, T ]} (d)−→ {N (t) : t ∈ [0, T ]}, PZ − a.s., (2)

where T > 0 is an arbitrary time horizon andPZ denotes the quenched probability for a
fixed environment sample path Z . The proof of ourmain result crucially depends on the
assumption that the short-term stochastic fluctuation model mixes rapidly enough (see
Hypothesis 2.1 for amore precise statement). Consequently, the stochastic fluctuations
can reach a steady statewithin the relatively longer timescale of the time-of-day effects;
thereby, the short timescale fluctuations are “averaged out.” The proof relies on first
showing that the mean measure of the queue state satisfies a strong law-type limit.
Namely it can be seen that themeanmeasure of the queue state is an additive functional
of the stochastic fluctuations, and when the latter reach steady-state fast enough, the
mean measure converges to a deterministic limit. This type of result is well known for
general Markov processes [20]. Our homogenization limit follows by leveraging the

123



148 Queueing Systems (2021) 98:145–179

convergence of mean measure to show that the finite-dimensional distributions of the
Poisson randommeasure corresponding to the (quenched) state N ε of the Cox/Gt/∞
queue converge to those of the state N of an Mt/Gt/∞ queue. A further tightness
condition leads to the convergence of thewhole process.As the reader can see, themain
technical novelty in our paper consists in combining those homogenization results with
some considerations about limits for queues.

In Theorem 4.1 we also provide a homogenization analysis in the annealed regime.
Specifically, we show that the Cox/Gt/∞ queue converges to the same Mt/Gt/∞
queue in Theorem 4.1 even in the annealed regime, under a more relaxed ergod-
icity condition than that implied by Hypothesis 2.1. This result clearly shows that
the quenched analysis is different, requiring stronger ergodicity conditions to ensure
almost sure convergence.

Our main results Theorems 3.11 and 4.1 yield two crucial insights into the per-
formance analysis of queueing models imbedded in random environments. First, it
shows that ergodic properties of the underlying stochastic fluctuations play a critical
role in separating the fast stochastic fluctuations from the longer timescale tempo-
ral variations. Second, it shows that, under this asymptotic timescale separation and
rapid averaging of the stochastic fluctuations, the state of the infinite server queue in
a random environment can be approximated by that of a time-varying infinite server
queue. The latter model has been extensively studied [21–23], and there is a substantial
literature available on its properties, particularly with stationary service.

The aforementioned homogenization phenomenon put forward in Theorem 3.11 is
similar to the “rapid fluctuation” analysis in [24]. In that work, the weak convergence
of a general point process (for example, a DSPP) to a constant rate Poisson process
(under the assumption that the compensator of the point process satisfies a strong
law) was used to approximate the state distribution of a Gt/G/∞ queue by that of an
Mt/G/∞ queue. The analysis in [24] crucially used Taylor expansions of the state
probability distribution at a fixed time t in terms of the scaling parameter. The approach
in the current paper is completely different. Indeed, we mostly exploit the Poisson
random measure representation of the state process and then establish the process-
level stochastic approximation limit for this object. Our paper is also closely related to
[25], where an infinite server queuewith “extremely” heavy-tailed Pareto service times
is studied in a time homogeneous setting in order to explain network self-similarity
effects. The relatively simple homogeneous setting allowed the authors to establish not
only a functional strong law of large numbers (FSLLN), but also a functional central
limit theorem (FCLT). Our results in this paper substantially generalize the FSLLN
result to a queueing model imbedded in a random environment. However, the analysis
to establish the corresponding FCLT in our setting is significantly more complicated;
see our conclusion section.

1.1 Literature survey

We provide a brief survey of literature relevant to this paper, placing it in context.
Indeed, our paper can be related to multiple threads of research. First, our main theo-
rems rely on the establishment of a stochastic averaging/homogenization result for the
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state of the queue, both conditioned and averaged over the underlying stochastic envi-
ronment model. Homogenization/stochastic averaging has been studied extensively in
the literature; see [24,26–29] for a small sample of this literature. Typically, results on
stochastic averaging principles in the form of a law of large number (LLN) involve
two processes, one evolving on a fast timescale and reaching an equilibrium quickly
and another one on a slower timescale that only experiences the former in equilibrium.
In the limit the slow process is (typically) approximated by a process with “averaged”
coefficients. Averaging principles have been used in finance [30–32], as well as in
heavy-traffic analyses of certain controlled stochastic network models [33–35]. The
averaging principle in our setting is established under the presumption that the process
on the fast timescale is an external stochastic environment, while in [33–35] the pro-
cess on the fast timescale is usually the state of one of the queues in the network that
influences the state of other slowly varying queues. More closely related is the work
in [24] where the rapidly fluctuating process is an external stochastic environment
process.

We also allow for time-dependent service and traffic intensity in our model, and
therefore, the literature on the analysis of time-varying queues and stochastic models
is highly relevant. In the context of the performance analysis of deterministically time-
varying queues (not necessarily in a random environment), there is a significant body
of work developing both uniform acceleration [36–39] and many-server heavy-traffic
limit theorems [40–42] to time-varying queues. In much of this literature, the limit
processes are shown to be (reflected) fluid or diffusion limit processes. Note that all
of this work assumes that the nonstationarity manifests as a deterministic temporal
variation. There is also a growing body of work developing asymptotic expansions
[5,24,43–47] of performance metrics. It is well known, however, that traffic arriving
at call centers and hospitals displays significant over-dispersion relative to a Poisson
process with deterministic intensity [48], implying that a DSPP is an appropriate
model of the traffic in these systems. Much of this literature assumes that either the
traffic and/or service processes areMarkovmodulated,where the underlying stochastic
environment process is a finite state Markov chain; the vast majority of the related
literature focuses on characterizing stationary behavior, but [45,49] exhibit a couple
of examples where asymptotic limit theorems and expansions can be established. The
plethora of methods for analyzing time-varying queues will, of course, be crucial for
further analyzing the limit Mt/Gt/∞ queue. We do not address this fact explicitly in
this paper, however.

Most relevant to our current setting, of course, is the expanding literature on infi-
nite server queues in random environments [2–4,6–16,50]. More specifically, there are
extensive studies on infinite server queues with Markov-modulated input, in which
the arrival intensity of the input is λi with i being the state of the latent environment
modeled by a Markov jump process. Results established in this realm touch upon
steady-state, functional central limit theorems and large deviations where the latent
Markov process is sped up appropriately resulting in a homogenization effect [7,9–
16]. In all of these papers, the objective is an annealed analysis in the sense described
above. The more general setting of input models where the arrival intensity changes
continuously as a function of the latent environment process has also been extensively
studied [2–4,6,8], including homogenization results [3,4] showing that the state of the
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infinite server queue asymptotically aligns with that of a time-homogeneous M/G/∞
queue, steady-state analysis [2,6] and large deviation analysis [8,51,52]. [50] studies
a so-called MS/G/∞ queue with a Cox arrival process with shot noise intensity and
independent and identically distributed (i.i.d.) service times. This intensity model is a
special case of the general setting we consider. This paper establishes both exact and
asymptotic results; in the former case, the paper derives an expression for the joint
moment generating function of the number in system and arrival intensity process,
while in the latter a functional central limit theorem (FCLT) is established in the limit
of a large arrival intensity scale. Our annealed results (and, obviously, the quenched
results) are fundamentally different since our analysis is one of stochastic homoge-
nization, as opposed to a large-scale asymptotic. Note that all of these cited results
are in the annealed regime, and to the best of our knowledge the quenched regime has
not been studied before for infinite server queues. As our results show, under suitable
conditions on the random environment process, homogenization of the quenched state
process aligns with the results on the annealed regime.

We note in particular the work [3] where the effect of over-dispersed traffic on
the performance of an infinite server queue is studied. Paralleling our findings, this
paper shows that a sufficiently rapidly fluctuating environment (relative to a slowly
changing arrival intensity) will, in an appropriate asymptotic regime, ensure that the
infinite server system behaves like a “standard” infinite server queue in steady state.
On the other hand, in [3] the traffic intensity does not have an explicit time-of-day
component and, for analytical reasons, the random environment is formulated in a
somewhat “stylized” fashion. Our statements complement these results and, more
significantly, show that the standard infinite server queue behavior is preserved even
with explicit time-of-day effects in the traffic and service processes. In addition, let us
observe again that our results are obtained in the quenched and annealed regimes (as
opposed to only the annealed regime in [3]). Otherwise stated, the main limit result
Theorem 3.11 is valid for almost any realization of the environment Z .

The rest of this paper is organized as follows: Section 2 introduces the notation
that will be used throughout this paper and constructs the random arrival model of
interest with appropriate hypotheses. Section 3 analyzes our queueing model in the
quenched regime, with Sect. 3.1 deriving a formula for the mean measure mε of
the Poisson random variable N ε, Sect. 3.2 analyzing the limiting behavior of mε and
Sect. 3.3 for proving our main theoremwhich is the convergence of the overall process
N ε. Section 3.4 provides an extension to more general arrival density. In Sect. 4, we
prove a corresponding result but in the annealed regime. In Sect. 5, we provide some
numerical examples to illustrate the theory. Finally, in Sect. 6, we give some conclusion
and future perspectives.

2 Basic notation and Poisson-basedmodel

Wemodel the Cox/Gt/∞ queue using a Poisson point process imbedded in a random
environment. Let (�,F ,P) be a probability space with respect to which we define all
random elements to follow. The expectation with respect to P is denoted as E(·).
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2.1 Model for the random environment

As mentioned in the introduction, we incorporate fast oscillations modeled by an
ergodic stochastic process Z into the arrival rate of our queueing system. In this
section, we proceed to describe such a process. The underlying assumption about the
process will clearly depend on the type of limiting results we want to establish. In
particular, we will introduce two hypotheses, one for the quenched and one for the
annealed consideration.

Hypothesis 2.1 Let Z = {Zt ; t ≥ 0} be a Rd -valued stochastic process with sample
paths that are right continuous with left limits (RCLL) defined on the probability
space (�,F ,P). The initial distributionL(Z0) of Z is denoted by ρ0, and we suppose
that Z possesses a unique invariant probability measure π . We also assume that Z
is strongly ergodic with rate κ > 0 in the following sense: for any regular enough
function ψ : Rd → R, there exists a finite random variable C = Cψ(ω) > 0 such
that P-almost surely we have

∣
∣
∣
∣

1

t

∫ t

0
ψ(Zu) du − ψ̄

∣
∣
∣
∣
≤ C

(1 + t)κ
, with ψ̄ =

∫

Rd
ψ(z) π(dz). (3)

Remark 2.2 Note that the above hypotheses gives a convergence rate in the law of
large number-type statement. The constant C in general can depend on the realization
of the random process Z . There exists an abundant literature about results of the form
(3) for Markov chains. A general framework is developed in [53], which yields the
following particular case: Set Zu = X[u], where [u] denotes the integer part of u and
{X j ; j ≥ 0} is a reversible ergodic Markov chain on a countable state space E . Let
ψ : E → R be such that σ 2(ψ) < ∞, where

σ 2(ψ) = lim
N→∞

1

N
Var

⎛

⎝

N−1
∑

j=0

ψ(X j )

⎞

⎠ .

Then, under some additional moment condition, it can be established that for any
0 < κ < 1

2 , the following holds almost surely:

lim
t→∞ (1 + t)κ

[
1

t

∫ t

0
ψ(Zu)du − ψ̄

]

= 0, (4)

which immediately implies relation (3). The bound 1/2 on κ is also consistent with the
Lawof the IteratedLogarithm.Other examples ofMarkov processes (more specifically
Harris chains) satisfying (3) are provided in [54,55], based on the law of the iterated
logarithm. Notice that [55] handles directly some continuous time Markov processes.

Remark 2.3 Hypothesis 2.1 can also be fulfilled in some non-Markovian contexts.
Indeed, consider an R

d -valued fractional Brownian motion B with Hurst parameter
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H ∈ (0, 1). Let b : Rd → R
d be a function such that the following inward property

is satisfied for a constant a > 0:

〈b(x) − b(y), x − y〉
Rd ≤ −a ‖x − y‖2 .

We consider the process Z which solves the following stochastic differential equation:

Zt = a +
∫ t

0
b(Zs) ds + Bt ,

where a ∈ R
d . Then, combining [56] and [57], one can prove that Z satisfies Hypothe-

ses 2.1 (details are omitted since this result is unrelated to the main message of the
current paper). Observe that the case of a Brownian motion B with b = −a Id Rd

corresponds to the classical Ornstein-Uhlenbeck case, for which Hypothesis 2.1 thus
hold.

The consideration of the annealed case allows us to use a weaker ergodicity condi-
tion. More precisely, we introduce

Hypothesis 2.4 Let Z be the R
d -valued process introduced in Hypothesis 2.1. We

assume that

lim
t→∞

∥
∥
∥
∥

1

t

∫ t

0
ψ(Zr ) dr − ψ̄

∥
∥
∥
∥

L1(�)

= 0, with ψ̄ =
∫

Rd
ψ(z) π(dz). (5)

Observe that the above condition will certainly follow if we assume some uniform
integrability of the constant C (which in fact is a random variable) in Hypothesis 2.1.
As noted in the introduction, since the annealed analysis demonstrates the limiting
behavior of the infinite server queue in a “typical” stochastic environment, it is some-
what unsurprising that a weaker ergodicity condition can be assumed.

2.2 Model for the system state

Having specified our random environment, we now describe our model for the system
state. It is determined by the arrival and service times that we proceed to define below.

Our random environment will enter into the intensity of the arrival process. Namely,
the arrival process is conceived as follows.

Hypothesis 2.5 Given ε > 0, the sequence of arrival times {�ε
k ; k ≥ 1} is dis-

tributed as the jump times of a Poisson process with nonhomogeneous intensity
{λ(s)ψ(Zs/ε) ; s ≥ 0}, where Z fulfills Hypothesis 2.1 and λ,ψ : R

d → R+ are
positive Lipschitz (or C1-) functions.

Next we turn our attention to the service process. It is given as a family {Lε
k ; k ≥ 1}

of randomvariables which are independent conditional on the arrival process {�ε
k ; k ≥

1}. Their distribution is defined byL(Lε
k |�ε

k ) = ν(�ε
k , dr) for all k, where we consider

ν = {ν(s, dr) ; s ≥ 0, r ≥ 0} (6)
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as a family of conditional regular laws. In the sequel,wewill also resort to the following
notation for the tail of ν:

F̄s(r) :=
∫ ∞

r
ν(s, dτ), r ≥ 0. (7)

The main assumption on the measures ν is given below.

Hypothesis 2.6 Let ν be the family of measures defined by (6). We suppose that every
ν(s, ·) admits a density �s , that is, ν(s, dr) = �s(r)dr . Moreover, there exist α > 0
and a constant c > 0 such that the family �s verifies

�s(r) ≤ c

(
1

r1+α
∧ 1

)

, for all r , s > 0 ; (8)

∂�s(r)

∂s
≤ c

(
1

r1+α
∧ 1

)

, for all r , s > 0. (9)

Remark 2.7 Hypothesis 2.6 covers a large variety of service time distributions, includ-
ing both “light-tailed” models such as the Gamma distribution and “heavy-tailed”
models such as the Pareto-like distributions. The latter is of particular interest, as
attested by Resnick and Rootzén [25], for example. Therefore, a typical example the
reader might have in mind is given by

�s(r) = ks(r)1[0,ds ](r) + cs

r1+α
1(ds ,∞)(r) , (10)

where for each s > 0, ks is a smooth function, ds and cs are positive constants, and
α > 0. Notice that a positive random variable X whose density � satisfies (10) has the
property that E[Xβ ] < ∞ for β < α and E[Xβ ] = ∞ for β ≥ α. Hence, relation
(10) allows a good calibration of the boundedness of moments for the service time.

Remark 2.8 The function s �→ cs in (10) can be thought of as a smooth and bounded
slowly-varying function which modulates the service according to the arrival time. A
specific example is given by the following oscillating function:

cs = 1 + β sin(ks), with β ∈ (0, 1) and k ≥ 0. (11)

With the arrival and service times in hand, our queueing system is classically
described by a point process. Namely for ε > 0, we consider the following counting
measure on R+ × R+:

Mε :=
∞
∑

k=1

δ(�ε
k ,Lε

k ). (12)
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Then, our main variable of interest is the number of active jobs in the infinite server
queue at time t , which can be expressed as

N ε(t) =
∞
∑

k=1

1{�ε
k <t<�ε

k +Lε
k } = Mε{(x, y) ∈ R+ × R+, x < t < x + y}. (13)

Ourmain aim in this paper is to derive a limit theorem for the process N ε = {N ε(t); t ∈
[0, T ]} as ε → 0, for an arbitrary time horizon T > 0.

Remark 2.9 As the reader might have seen, there are two levels of randomness in our
model. The first level corresponds to the random environment Z described in Sect. 2.1,
while the second source of randomness is embodied in the Poisson point process N ε

given by (13). As in most of the literature on random environments, we shall play
with the notion of quenched and annealed probabilities. The quenched probability
corresponds to conditioning on the process Z . This probability will be denoted by PZ ,
with a corresponding expectation EZ . The annealed probability, given and denoted by
P, represents the global probability taking into account all the randomness involved
in our system, in particular from Z and the arrival and service times T ε

k and Lε
k

for k = 1, 2, 3, . . .. The relation between quenched and annealed probabilities is
summarized as

PZ (·) = P(·|Z), and EZ [·] = E[·|Z ]. (14)

3 Quenched analysis

Here, we proceed to analyze the Poisson point process N ε defined in the previous
section.We first consider the quenched regime, i.e., conditioning on a given realization
of the random environment Z . The key technical device is the analysis of the mean
measure mε and its asymptotics as ε → 0.

3.1 Meanmeasure of N"

This section is devoted to a full description of the law of N ε. The main result is
summarized in the following proposition giving the conditional law of N ε(t). We
want to emphasize that the quantities ν̃ε, με and mε below are all functions of Z , or
its realization.

Proposition 3.1 Let Mε and {N ε(t) : t ≥ 0} be defined by (12) and (13), respectively.
Then, under the quenched probability PZ , Mε is a Poisson random measure with mean
measure given by

ν̃ε(dx, dy) = ν(x, dy)με(dx), with με(ds) = λ(s)ψ(Zs/ε)ds, (15)
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where we recall that ν is introduced in (6). Furthermore, we have that for any t > 0,
N ε(t) is a Poisson random variable with parameter

mε(t) =
∫

{(x,y):x<t<x+y}
ν(x, dy)με(dx) =

∫ t

0

∫ ∞

t−x
ν(x, dy)με(dx). (16)

Proof First, we will show that Mε is a Poisson random measure. To this aim, recall
Remark 2.9 for the definition of the quenched probability PZ . Then, under PZ and
according to (12), the point process Mε is of the form

∑

k≥1 δ(�ε
k , Lε

k )
, where {�ε

k ; k ≥
1} is a Poisson process (see Hypothesis 2.5). Thanks to [58, Proposition 2.2], we
get that Mε is a Poisson point process under PZ , whose mean measure ν̃ε can be
decomposed as

ν̃ε(dx, dy) = ν(x, dy)με(dx),

where ν is the measure featuring in (7) and με is defined by (15).
Therefore, according to [59, Chapter VI Theorem 2.9], the quenched Laplace trans-

form of Mε is given for all measurable and positive functions f : R+ × R+ → R

by

EZ

[

e−Mε f
]

= e−ν̃ε(1−e− f ), (17)

where the notation ν̃ε(1− e− f ) in the above stands for the integral of (1− e− f ) with
respect to the measure ν̃ε = ν(x, dy)με(dx). Hence, we can rewrite (17) as

EZ

[

exp
{

−
∫

R+×R+
Mε(dx, dy) f (x, y)

}]

= exp
{

−
∫

R+×R+
ν(x, dy)με(dx)(1 − e− f (x,y))

}

. (18)

In addition, according to (13) we have N ε(t) = Mε f with f (x, y) = 1(x<t<x+y).
Plugging this expression into (18), we immediately get relation (16), completing the
proof. �

3.2 Limit form"(t)

According to relation (16) inProposition3.1 and the fact thatμε(ds) = λ(s)ψ(Zs/ε)ds,
the (quenched) mean of the random variable N ε(t) defined in (13) is given by

mε(t) =
∫ t

0

(

λ(s)ψ(Zs/ε)

∫ ∞

t−s
ν(s, dr)

)

ds =
∫ t

0
λ(s) ψ(Zs/ε) F̄s(t − s) ds,

(19)

where F̄s is the tail function given by (7). The following theoremgives a full description
of the almost sure asymptotic behavior of mε(t).
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Theorem 3.2 We assume the same setup and notation as in Proposition 3.1. Further-
more, suppose Hypotheses 2.1, 2.5 and 2.6 hold. Then, under the quenched probability
PZ , for any t > 0 we have almost surely that

lim
ε→0

mε(t) = m̄(t), (20)

where m̄(t) is given by

m̄(t) = σ(t)ψ̄ , (21)

and the quantities σ(t) and ψ̄ are, respectively, defined by

σ(t) =
∫ t

0
λ(s)F̄s(t − s)ds, and ψ̄ =

∫

Rd
ψ(z) π(dz). (22)

In relation (22), π is the invariant measure of the process Z introduced in Hypothe-
sis 2.1.

Here, we provide two specific examples of the process Z .

Example 3.3 Suppose Z is an Ornstein–Uhlenbeck (OU) process satisfying the SDE
d Zt = −θ(μ − Zt )dt + �dWt and Z0 = z0. It is well known that if θ > 0, the OU
process is stationary, ergodic with Gaussian invariant distribution with mean μ and
variance �2/2θ .

Example 3.4 Suppose Z is a Cox–Ingersoll–Ross (CIR) process satisfying the SDE
d Zt = θ(μ − Zt )dt + �

√
Zt dWt and Z0 = z0 > 0. In this case the invariant

distribution is Gamma with shape parameter α = 2θμ

�2 and scale parameter β = 2θ
�2 .

Proof of Theorem 3.2 Starting from (19) and upon introducing the notation h(s, t) =
λ(s)F̄s(t − s), we write mε(t) as

mε(t) =
∫ t

0
h(s, t)ψ(Zs/ε) ds. (23)

We then compute, making use of a simple integration by parts,

mε(t) =
∫ t

0
h(s, t)

d

ds

(∫ s

0
ψ(Zr/ε) dr

)

ds

= h(s, t)
∫ s

0
ψ(Zr/ε) dr

∣
∣
∣
∣

s=t

s=0
−
∫ t

0

d

ds
h(s, t)

(∫ s

0
ψ(Zr/ε) dr

)

ds

= Aε
1(t) − Aε

2(t), (24)

where we have set

Aε
1(t) = h(t, t)

∫ t

0
ψ(Zr/ε) dr , and Aε

2(t) =
∫ t

0

d

ds
h(s, t)

(∫ s

0
ψ(Zr/ε) dr

)

ds.

(25)
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We now treat the limits of Aε
1(t) and Aε

2(t) separately.
The term Aε

1(t) can be analyzed as follows: The elementary change of variables
r := r/ε yields

Aε
1(t) = h(t, t)t lim

ε→0

ε

t

∫ t/ε

0
ψ(Zr ) dr .

Hence, invoking Hypothesis 2.1 we get

lim
ε→0

Aε
1(t) = h(t, t)tψ̄, PZ − a.s. (26)

For Aε
2(t), we add and subtract ψ̄ to get

Aε
2(t) =

∫ t

0

(
d

ds
h(s, t)

)

s

[
1

s

∫ s

0
ψ(Zr/ε) dr − ψ̄ + ψ̄

]

ds

=
∫ t

0

(
d

ds
h(s, t)

)

sψ̄ ds +
∫ t

0

(
d

ds
h(s, t)

)

s

[
1

s

∫ s

0
ψ(Zr/ε) dr − ψ̄

]

ds

≡ Aε
2,1(t) + Aε

2,2(t). (27)

We now proceed to bound the term Aε
2,2(t) in relation (27). Namely, a trivial integral

bound and the same change of variables as for Aε
1(t) enable us to write

∣
∣Aε

2,2(t)
∣
∣ ≤

∫ t

0
s

∣
∣
∣
∣

d

ds
h(s, t)

∣
∣
∣
∣

∣
∣
∣
∣

ε

s

∫ s/ε

0
ψ(Zr ) dr − ψ̄

∣
∣
∣
∣
ds.

Hence, invoking Hypothesis 2.1 we get

∣
∣Aε

2,2(t)
∣
∣ ≤ C

∫ t

0
s

∣
∣
∣
∣

d

ds
h(s, t)

∣
∣
∣
∣
(1 + s/ε)−κ ds.

Next recall that h(s, t) = λ(s)F̄s(t − s). Owing to Hypothesis 2.6, the measure ν(s, ·)
admits a density �s , and thus,

d

ds
h(s, t) = λ′(s)F̄s(t − s) + λ(s)

∫ ∞

t−s

∂�s(r)

∂s
dr + λ(s)�s(t − s). (28)

Invoking the fact that λ is a Lipschitz function (see Hypothesis 2.5), together with
relations (8) and (9), it is readily checked that | d

ds h(s, t)| is uniformly bounded by
a constant C . Hence, a straightforward application of the dominated convergence
theorem yields

lim
ε→0

Aε
2,2(t) = 0. (29)
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We also notice that the term Aε
2,1(t) introduced in (27) can be simplified thanks to an

elementary integration by parts. We get

Aε
2,1(t) =

∫ t

0

(
d

ds
h(s, t)

)

sψ̄ ds = h(t, t)tψ̄ − ψ̄

∫ t

0
h(s, t) ds, (30)

the right-hand side of which is finite. Therefore, plugging (30) and (29) into relation
(27), we have obtained

lim
ε→0

Aε
2(t) = h(t, t)tψ̄ − ψ̄

∫ t

0
h(s, t) ds. (31)

We can now conclude as follows: Gathering (26) and (31) into (24), we have

lim
ε→0

mε(t) = ψ̄

∫ t

0
h(s, t) ds, PZ − a.s. ,

which is exactly our claim (20). This completes the proof. �
Remark 3.5 A brief remark on the proof. Observe that the whole set of assumptions
in Hypotheses 2.1, 2.5 and 2.6 is effectively invoked in order to achieve the proof
of Theorem 3.2. Indeed, the ergodic properties of Z contained in Hypothesis 2.1
are appealed to, for example, in equation (26). The ergodic character of Z is crucial
for our homogenization-type approach. Next, the regularity we suppose for λ and �

(respectively, Hypotheses 2.5 and 2.6) is used for the analysis of (28). One way to
weaken some of those regularity assumptionswould be to avoid the integration by parts
method employed for Theorem 3.2. However, this would come at the price of stronger
(and probably not realistic) ergodic hypotheses on Z . This point will be detailed in
Sect. 3.4.

3.3 Homogenized process

With the limiting behavior of mε in hand, we are now ready to give the asymptotic
description of the process N ε. As usual, we will decompose this analysis into a study
of the convergence of the finite dimensional distributions and a tightness result.

3.3.1 Limit for the finite-dimensional distributions

In order to simplify our presentation, wewill first derive the limit of bivariate quantities
of the form (N ε(t1), N ε(t2)) for two instants t1 < t2. To this aim, inside the quadrant
R+ ×R+, we will consider three disjoint regions {Ai , i = 1, 2, 3} defined as follows
(see Fig. 1):

A1 = {(γ, l) ∈ R+ × R+ : γ ≤ t1 and t1 < γ + l ≤ t2} ; (32)

A2 = {(γ, l) ∈ R+ × R+ : γ ≤ t1 and t2 < γ + l} ; (33)

A3 = {(γ, l) ∈ R+ × R+ : t1 < γ ≤ t2 and t2 < γ + l}. (34)
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t1

t2

t1 t2

l

γ

A1

A2

A3

Fig. 1 Three disjoint regions used for the limit of bivariate quantities. Figure adopted from [21]

Notice that since the Ai ’s are disjoint, the quantities {Mε(Ai ); i = 1, 2, 3} are indepen-
dent Poisson random variables. Similar to the proof of (16), their respective quenched
means are given by (see Proposition 3.1)

mε
i := EZ [Mε(Ai )] =

∫

Ai

ν(s, dr)λ(s)ψ(Zs/ε)ds, for i = 1, 2, 3. (35)

Now observe that the vector (N ε(t1), N ε(t2)) can be decomposed as

N ε(t1) = Mε(A1) + Mε(A2), N ε(t2) = Mε(A2) + Mε(A3). (36)

As a consequence, the means mε(t1), mε(t2) can also be written in terms of the mε
i ’s

given by (35):

mε(t1) = mε
1 + mε

2, mε(t2) = mε
2 + mε

3. (37)

We now state a proposition giving the quenched limit in law for (N ε(t1), N ε(t2)).

Proposition 3.6 Let Mε be the Poisson random measure on R+ ×R+ defined by (12),
with mean measure ν̃ε(ds, dr) = ν(s, dr)με(ds), as given in (15). Assume that the
conditions in Hypotheses 2.1, 2.5 and 2.6 are met. Then, for any two fixed time points
0 ≤ t1 < t2, we have the following statements:

(i) PZ -almost surely we have that, for all ξ1, ξ2 > 0,

lim
ε→0

EZ [e−(ξ1N ε(t1)+ξ2N ε(t2))] = E[e−(ξ1N (t1)+ξ2N (t2))]. (38)

In the right-hand side of Eq. (38), the process {N (t); t ≥ 0} is independent of N ε

and is defined similarly to that of (13), albeit in a nonrandom environment. More
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precisely, N can be expressed as

N (t) =
∞
∑

k=1

1{�k<t<�k+Lk } = M{(x, y) ∈ R+ × R+, x < t < x + y}, (39)

with M being a Poisson point process onR+×R+ of the form M = ∑∞
k=1 δ(�k ,Lk ).

The mean measure of M is given by

ν̃(ds, dr) = ψ̄λ(s)ν(s, dr)ds, (40)

where we recall that ψ̄ is defined by (22).
(ii) PZ -almost surely we have the following limit in law as ε → 0:

(N ε(t1), N ε(t2))
(d)−→ (N (t1), N (t2)).

Remark 3.7 In order to alleviate notation, we have assumed that our underlying prob-
ability space carries the family {N ε; ε ≥ 0} as well as the process N defined by (39).
This explains why we have expressed (38) with the same expectation E on both sides
of the relation.

Proof of Proposition 3.6 We first introduce the notation that will be used in the proof.
For i = 1, 2, 3, and λi > 0, we define the functions fi := λi1Ai , where the sets Ai

are given by (32)-(34). We note that Mε( fi ) = λi Mε(Ai ). By considering the Laplace
transform of Mε(Ai ), we can see that Theorem 2.9 in Chapter VI of [59] yields

EZ [e−∑3
i=1 λi Mε(Ai )] = EZ [e−∑3

i=1 Mε( fi )] = e−∑3
i=1 ν̃ε(1−e− fi ), (41)

where ν̃ε is the measure defined by (15). In equation (41), we specify again that
ν̃ε(1 − e− fi ) stands for the integral of (1 − e− fi ) with respect to the measure ν̃ε, as
with (17). We now split the analysis of (41) into several steps.
Step 1: Decomposition of the Laplace transform. Taking into account the expression
(15) for ν̃ε, the right-hand side of (41) can be rewritten as

e−∑3
i=1 ν̃ε(1−e− fi ) =

3
∏

i=1

exp
{

−ν̃ε(1 − e− fi )
}

=
3
∏

i=1

exp
{−Gε

i

}

, (42)

where each function Gε
i , for i = 1, 2, 3, is given as the following integral:

Gε
i =

∫

R+×R+
(1 − e− fi )ν(s, dr)με(ds)

=
∫

R+×R+
(1 − e− fi )ν(s, dr)λ(s)ψ(Zs/ε)ds. (43)
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In the sequel, we shall characterize the limit of each Gε
i . Note first that, owing to the

relation fi = λi1Ai , we have

1 − e− fi (s,r) = (1 − e−λi )1Ai (s, r).

Therefore, one can recast the term Gε
i as

Gε
i = (1 − e−λi )mε

i , where we recall that mε
i =

∫

Ai

ν(s, dr)λ(s)ψ(Zs/ε)ds.

(44)

In summary, substituting (44) into (42) and then (41), we have shown that

EZ [e−∑3
i=1 λi Mε(Ai )] =

3
∏

i=1

exp
{−(1 − e−λi )mε

i

}

. (45)

We are now reduced to an examination of limε→0 mε
i in the right-hand side of equa-

tion (45).
Step 2: Analysis of an integral with fast oscillatory integrand. In order to handle the
terms mε

i in (44), we will generalize slightly the analysis of integral expressions like
(23). Namely, consider a continuously differentiable function g : R+ → R and for
ε > 0, let I ε(τ1, τ2) be given in the following integral:

I ε(τ1, τ2) =
∫ τ1

0
g(s, τ2)ψ

(

Zs/ε
)

ds, (46)

for 0 ≤ τ1 ≤ τ2. Then, following the same integration by parts procedure as for (24)
in the proof of Theorem 3.2, we have

I ε(τ1, τ2) =
∫ τ1

0
g(s, τ2)

(
d

ds

∫ s

0
ψ
(

Zr/ε

)

dr

)

ds

= g(s, τ2)
∫ s

0
ψ
(

Zr/ε

)

dr

∣
∣
∣
∣

s=τ1

s=0
−
∫ τ1

0

d

ds
g(s, τ2)

(∫ s

0
ψ
(

Zr/ε

)

dr

)

ds

= g(τ1, τ2)

∫ τ1

0
ψ
(

Zr/ε

)

dr −
∫ τ1

0

d

ds
g(s, τ2)

(∫ s

0
ψ
(

Zr/ε

)

dr

)

ds.

(47)

Then, following the same steps as for the analysis of Aε
1(t) and Aε

2(t) in the proof of
Theorem 3.2 (see, respectively, (26) and (31)), we compute the limit of I ε(τ1, τ2) as
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ε → 0:

lim
ε→0

I ε(τ1, τ2) = g(τ1, τ2)τ1ψ̄ −
∫ τ1

0

(
d

ds
g(s, τ2)

)

sψ̄ ds

=
[

g(τ1, τ2)τ1 − g(s, τ2)s

∣
∣
∣
∣

s=τ1

s=0
+
∫ τ1

0
g(s, τ2) ds

]

ψ̄

=
[∫ τ1

0
g(s, τ2) ds

]

ψ̄, (48)

where the second equality is obtained thanks to another use of the integration by parts
formula.
Step 3: Analysis of mε

i , for i = 1, 2, 3. We will now resort to the general identity (48)
in order to analyze the terms mε

i in (44). We start by recasting mε
1 as an expression

involving (46). Namely, invoking the definition (7) of F̄s , we write

mε
1 =

∫ t1

0

(

λ(s)ψ(Zs/ε)

∫ t2−s

t1−s
ν(s, dr)

)

ds

=
∫ t1

0
λ(s)ψ(Zs/ε)

(

F̄s(t1 − s) − F̄s(t2 − s)
)

ds

=
∫ t1

0
λ(s)F̄s(t1 − s)ψ(Zs/ε) ds −

∫ t1

0
λ(s)F̄s(t2 − s)ψ(Zs/ε) ds. (49)

Upon setting

g(s, t) = λ(s)F̄s(t − s), (50)

and recalling (46), we can rewrite the expression (51) of mε
1 as follows:

mε
1 =

∫ t1

0
g(s, t1)ψ(Zs/ε)ds −

∫ t1

0
g(s, t2)ψ(Zs/ε)ds = I ε(t1, t1) − I ε(t1, t2).

(51)

Due to the fact that λ and F̄s are continuous and bounded functions, we can apply
directly the result (48) from Step 2. We get the following PZ -almost sure limit for mε

1:

lim
ε→0

mε
1 =

[∫ t1

0
g(s, t1) ds

]

ψ̄ −
[∫ t1

0
g(s, t2) ds

]

ψ̄

=
[∫ t1

0
[g(s, t1) − g(s, t2)] ds

]

ψ̄ ≡ m1, (52)

where we recall that the function g is given by (50).
The analysis of mε

2 and mε
3 is obtained along similar lines. Hence, we will just write

down the main steps and invite the patient reader to fill in the corresponding details.
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First, we have the following expressions:

mε
2 =

∫ t1

0
λ(s)F̄s(t2 − s)ψ(Zs/ε)ds ;

mε
3 =

∫ t2

0
λ(s)F̄s(t2 − s)ψ(Zs/ε)ds −

∫ t1

0
λ(s)F̄s(t2 − s)ψ(Zs/ε)ds. (53)

Then, we can obtain a PZ -almost sure limit of the form

lim
ε→0

mε
2 =

[∫ t1

0
g(s, t2) ds

]

ψ̄ ≡ m2 ; (54)

lim
ε→0

mε
3 =

[∫ t2

0
g(s, t2) ds

]

ψ̄ −
[∫ t1

0
g(s, t2) ds

]

ψ̄ =
[∫ t2

t1
g(s, t2) ds

]

ψ̄ ≡ m3.

(55)

Hence, gathering (52), (54) and (55) into relation (45), we have obtained

lim
ε→0

EZ [e−∑3
i=1 λi Mε(Ai )] =

3
∏

i=1

exp
{−(1 − e−λi )mi

}

. (56)

Step 4: Final concluding steps. Recall that our aim is to analyze the left-hand side of
relation (38). To this aim, notice that, owing to relation (36), we have

EZ [e−(ξ1N ε(t1)+ξ2N ε(t2))] = EZ [e−∑3
i=1 λi Mε(Ai )],

where we have set

λ1 = ξ1, λ2 = ξ1 + ξ2, and λ3 = ξ2. (57)

Therefore, an immediate application of (56) yields

lim
ε→0

EZ

[

e−(ξ1N ε(t1)+ξ2N ε(t2))
]

=
3
∏

i=1

exp
{−(1 − e−λi )mi

}

. (58)

By the definition fi := λi1Ai given at the beginning of our proof and the expressions
(52), (54) and (55) for m1, m2 and m3, respectively, relation (58) can be rewritten as

lim
ε→0

EZ

[

e−(ξ1N ε(t1)+ξ2N ε(t2))
]

= e−∑3
i=1 ν̃(1−e− fi ), (59)

where ν̃ stands for the mean measure of the point process M (see equation (40)).
Taking into account the values (57) for λ1, λ2, λ3 and the definition (39) of the process
N , then by Chapter VI Theorem 2.9 in [59] we end up with
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t1

t2

t3

tn

t1 t2 t3 tn−1 tn

A1,1

A1,2

A1,n

A2,1

A2,n−1

A3,n−2

An,1

l

γ

Fig. 2 Disjoint regions used for the limit of finite dimensional distributions

e−∑3
i=1 ν̃(1−e− fi ) = E

[

e−∑3
i=1 M( fi )

]

= E

[

e−∑3
i=1 λi M(Ai )

]

= E

[

e−(ξ1N (t1)+ξ2N (t2))
]

,

which leads to our claim (38). This proves statement (i).
Finally, in light of statement (i) and Laplace transform properties, statement (ii)

follows. �
Once the limit for the bivariate vector (N ε(t1), N ε(t2)) is obtained, the extension

to the multivariate case can be done through routine (though tedious) considerations.
We state this generalization and a sketch of its proof below.

Corollary 3.8 With the assumptions in Proposition 3.6, let t1 < t2 < · · · < tn be fixed.
Then, PZ -almost surely we have that

(N ε(t1), N ε(t2), . . . , N ε(tn))
(d)−→ (N (t1), N (t2), . . . , N (tn)).

Proof Following the same procedures as in the proof of Proposition 3.6, we first
decompose the quadrant R+ × R+ into several disjoint regions (see Figure 2 for a
depiction of the sets Ai, j ):

{Ai, j : for 1 ≤ i ≤ n and 1 ≤ j ≤ n − i + 1},

where for each i and j , the region is defined as

Ai, j = {

(γ, l) ∈ R+ × R+ : ti−1 ≤ γ ≤ ti and t j ≤ γ + l ≤ t j+1
}

,
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with the additional convention t0 = 0 and tn+1 = ∞. Since the Ai, j ’s are disjoint
regions, the quantities {Mε(Ai, j ) : i, j = 1, 2, ..., n} are independent Poisson random
variables. Similar to (35), their respective quenched means are given by

EZ [Mε(Ai, j )] =
∫

Ai, j

ν(s, dr)λ(s)ψ(Zs/ε)ds.

Furthermore, as with (36) and (37), the quantity N ε(tk) can be written as

N ε(tk) =
k
∑

i=1

n−i+1
∑

j=k−i+1

Mε(Ai, j ),

whose mean can be expressed as

EZ [N ε(tk)] = mε(tk) =
k
∑

i=1

n−i+1
∑

j=k−i+1

EZ [Mε(Ai, j )].

Starting from this set of relations, the rest of the proof will be a repetition of that for
Proposition 3.6. We omit the details for the sake of conciseness. �

3.3.2 Tightness and homogenization results

In this section, we shall summarize our previous considerations about the limiting
behavior of our queueing system. This will yield the homogenization results stated
in the introduction. The next natural step in establishing our limiting description of
the family {N ε; ε > 0} is a tightness result. Due to the expression (13) for N ε, it is
natural to consider this process (restricted on the interval [0, T ]) as an element of the
following space:

DT = { f : [0, T ] → R+; f right-continuous with left limits} . (60)

The Borel σ -field of DT defined with respect to the Skorokhod topology will be
denoted by D. Then, according to [60, Proposition 4.2], the tightness of {N ε ; ε > 0}
in the space DT stems from the following criterion.

Proposition 3.9 Let X and Xn, n ∈ N, be random variables in (DT ,D). Suppose that

(1) for any k and instants t1 < · · · < tk , (Xn(t1), . . . , Xn(tk))
(d)−→ (X(t1), . . . , X(tk)),

(2) X has jumps of size ±1, and
(3) Xn has integer-valued jumps.

Then, the sequence {Xn : n ≥ 1} is tight.

Now we state a proposition about the tightness of {N ε; ε > 0} in the space DT .

Proposition 3.10 Let {N ε ; ε > 0} be the sequence of Poisson processes defined by
(13), which belongs to the space DT . Then, PZ -almost surely {N ε ; ε > 0} is tight.
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Proof We observe that N ε(t) defined by (13) and N (t) defined by (39) have intrin-
sically jumps of size ±1. In the light of Corollary 3.8, the tightness of the sequence
{N ε ; ε > 0} is a direct consequence of Proposition 3.9. �

We can now state our main quenched limit theorem for the process N ε. Given
the preparation already done, it is an immediate consequence of Corollary 3.8 and
Proposition 3.10.

Theorem 3.11 Consider an arbitrary time horizon T > 0. We assume that Hypotheses
2.1, 2.5 and 2.6 are verified. Recall that the processes N ε and N are, respectively,
defined by (13) and (39), and the functional space DT is introduced in (60). Then, as
ε → 0, PZ -almost surely the following limit in distribution holds true in DT :

{N ε(t) : t ∈ [0, T ]} (d)−→ {N (t) : t ∈ [0, T ]}.
3.3.3 Limiting description of associated processes

We now state some consequences of Theorem 3.11 that are of interest in practice.
We first consider the total accumulated input on the interval [0, t], defined by

Aε(t) =
∫ t

0
N ε(s)ds. (61)

The process Aε is a continuous function on [0, T ], due to the fact that N ε ∈ DT . This
continuous quantity models a stochastic fluid input to a queueing system. The limiting
behavior of Aε is summarized in the following proposition.

Proposition 3.12 Let CT be the space of continuous functions from [0, T ] toR. With the
same assumptions of Theorem 3.11, the input process Aε(t) defined by (61) converges
in distribution. More precisely, PZ -almost surely we have the following limit in law in
the space CT as ε → 0:

{

Aε(t) =
∫ t

0
N ε(s)ds : t ∈ [0, T ]

}
(d)−→

{

A :=
∫ t

0
N (s)ds : t ∈ [0, T ]

}

,

where N is the process given by (39).

Proof Let φ : DT → CT be defined by

[φ( f )]t =
∫ t

0
f (s)ds, for f ∈ DT .

It is readily checked that φ is a continuous function. Since N ε (d)−→ N in DT , we get
that

Aε = φ(N ε)
(d)−→ φ(N ) =: A, in the space CT .

This completes our proof. �

123



Queueing Systems (2021) 98:145–179 167

Another useful corollary of our main Theorem 3.11 is the following. The quantity
Aε(t) defined by (61) may be treated as a Cox/Gt/∞-input for another single-server
queue. The state of the single server queue, Xε(t), satisfies the following storage
equation driven by d Aε(t) = N ε(t)dt :

dXε(t) = N ε(t)dt − r1{Xε(t)>0}dt, Xε(0) = 0,

where we assume that the server works at constant rate r . Thanks to Skorohod’s
lemma on reflected processes (see, for example, [61, Theorem 6.1]), the application
N ε → Xε is continuous from DT to CT . Therefore, we obtain a limiting behavior for
Xε as follows:

Proposition 3.13 Let the assumptions of Theorem 3.11 prevail. Then, PZ -almost
surely, Xε converges in distribution to a process X, such that X solves the follow-
ing equation driven by N:

dX(t) = N (t)dt − r1{X(t)>0}dt,

with the initial condition X(0) = 0.

3.4 Amore general stochastic intensity model

Thus far, we have assumed that the stochastic intensity model is of product form:
λ(s)ψ(Zs/ε). This made our presentation simpler and covers most cases of interest
in practice. We now demonstrate that our main result Theorem 3.11 can be extended
to more general stochastic intensity models of the form �(s, Zs), with � : [0,∞) ×
R

d → R+. For simplicity and just to illustrate the idea, we still assume � to be
bounded and uniformly continuous in both variables.

It is fairly straightforward to show that an analogue of Proposition 3.1 holds in our
context with a general stochastic intensity. We thus state the following result without
proof for further use.

Proposition 3.14 Let Mε and {N ε(t) : t ≥ 0} be defined by (12) and (13), respec-
tively. Instead of Hypothesis 2.5, we assume that the stochastic intensity of the arrival
times {�ε

k ; k ≥ 1} takes the form

�(s, Zs), with � : [0,∞) × R
d → R+ uniformly continuous.

Then, under the quenched probability PZ , Mε is a Poisson random measure with mean
measure given by

ν̃ε(dx, dy) = ν(x, dy)με(dx), with με(ds) = �(s, Zs/ε)ds,
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where we recall that ν is introduced in (6). Furthermore, we have that for any t > 0,
N ε(t) is a Poisson random variable with parameter

mε(t) =
∫

{(x,y):x<t<x+y}
ν(x, dy)με(dx) =

∫ t

0
�(s, Zs/ε)F̄s(t − s)ds.

With Proposition 3.14 in hand, we can now state the analogue of Theorem 3.2
within our generalized framework.

Theorem 3.15 Let the assumptions of Proposition 3.14 prevail. We also suppose that
Hypothesis 2.6 holds without change, while Hypothesis 2.1 holds with ψ(z) = �(t, z)
for each t ≥ 0 but the constant C in (3) does not depend on the initial condition of Z.
Then, under the quenched probability PZ , for any t > 0 we have almost surely

lim
ε→0

mε(t) = m̄(t), where m̄(t) =
∫ t

0
E[�(s, Z̄)]F̄s(t − s)ds. (62)

Proof Looking carefully at the proof of Theorem 3.2, it is easily conceived [see, for
example, (25)] that the key to obtaining our results lies in the analysis of

lim
ε→0

1

t

∫ t

0
�(s, Zs/ε)ds. (63)

The following argument shows how the results obtained in the previous sections can
be replicated in this general case.

Wewill employ theRiemann sumapproximation of the integral in (63)with uniform
partition 0 = t0 < t1 < · · · < tn = t as follows:

∫ t

0
�(s, Zs/ε)ds =

n−1
∑

i=0

∫ ti+1

ti
�(s, Zs/ε)ds

=
n−1
∑

i=0

∫ ti+1

ti

[

�(s, Zs/ε) − �(ti , Zs/ε)
]

ds

+
n−1
∑

i=0

[∫ ti+1

ti
�(ti , Zs/ε)ds − (ti+1 − ti )E

[

�(ti , Z̄)
]
]

+
n−1
∑

i=0

(ti+1 − ti )E
[

�(ti , Z̄)
]

,

where Z̄ is the stationary solution corresponding to the process Z . The above procedure
essentially freezes the (slow) time variable s to the discrete epochs ti . We now analyze
the three summations in order to obtain the limit in (63).
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For the first summation, by the uniform continuity of � in the first variable, we
have for each ε fixed that

lim
n→∞

n−1
∑

i=0

∫ ti+1

ti

(

�(s, Zs/ε) − �(ti , Zs/ε)
)

ds = 0.

For the second summation, we compute for each n fixed that

lim
ε→0

n−1
∑

i=0

[∫ ti+1

ti
�(ti , Zs/ε)ds − (ti+1 − ti )E

[

�(ti , Z̄)
]
]

= lim
ε→0

n−1
∑

i=0

(ti+1 − ti )

[

1
ti+1−ti

ε

∫ ti+1
ε

ti
ε

�(ti , Zs)ds − E
[

�(ti , Z̄)
]

]

. (64)

The right-hand side above is easily shown to converge to 0, PZ -almost surely, thanks
to our ergodic assumptions in Hypothesis 2.1. Summarizing our considerations so far,
the limit in (63) can be written as

lim
ε→0

∫ t

0
�(s, Zs/ε)ds

= lim
n→∞

n−1
∑

i=0

(ti+1 − ti )E
[

�(ti , Z̄)
] =

∫ t

0
E
[

�(s, Z̄)
]

ds

≡
∫ t

0

(∫

�(s, y)π(dy)

)

ds.

This proves the equivalent of (26)–(30)–(31) in our context. We can now show our
claim (62) easily, following the steps of Theorem 3.2. �
Remark 3.16 On top of providing a more general result than Theorem 3.2, it seems at
first sight that Theorem 3.15 comes with a simpler proof avoiding integration by parts
procedures (see Remark 3.5). Also notice that we have not imposed differentiability
conditions on �, which is another contrast with Theorem 3.2. However, we have
hidden a subtle point in the analysis of (64) for the sake of clarity. Specifically, in
order to get the relation

lim
ε→0

[

1
ti+1−ti

ε

∫ ti+1
ε

ti
ε

�(ti , Zs)ds − E
[

�(ti , Z̄)
]

]

= 0,

uniformly in n ≥ 1 and i ≤ n − 1, we need a strengthened version of Hypothesis 2.1.
Namely, we have to impose that relation (3) holds true with a random variableC which
does not depend on the initial condition of Z . This extra assumption is not satisfied in
the cases mentioned in Remarks 2.2 and 2.3, which justifies the integration by parts
method in the proof of Theorem 3.2.
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Remark 3.17 Starting from Theorem 3.2, the asymptotic convergence result in The-
orem 3.11 can also be generalized so that the corresponding limit process {N (t) :
t ∈ [0, T ]} is a Poisson point process with mean intensity m̄(t). More importantly,
observe that yet again, there is a well-defined homogenization limit due to a timescale
separation.

4 Annealed analysis

Asmentioned above, ourmain focus in the current contribution is the quenched regime.
Nevertheless, an annealed analysis of our system (that is averaging over both the
Poisson and the environment randomness) is also in order. We will give some details
about the annealed regime in this section. Notice that for the annealed probability we
will follow the notation introduced in Remark 2.9, in particular (14).

In the annealed situation, we will be able to relax somewhat the hypotheses on the
environment process Z , allowing the convergence in (3) to hold in L1(�) only. This is
summarized in Hypothesis 2.4. As a prelude to the precise statement of result and its
proof, we point out that due to our ergodicity assumption on the process Z , we obtain
a deterministic limit for the quenched regime. Then, it is natural that under appropriate
integrability condition on Z again, the “typical” description of the queue obtained in
the annealed setting is the same as the quenched one.

Under Hypothesis 2.4, we will now show the following annealed convergence in
distribution for the process N ε.

Theorem 4.1 Let T be a positive number, and suppose Hypothesis 2.5 to 2.6 hold true.
Then, for the processes N ε and N, respectively, defined by (13) and (39), the following
limit in distribution holds true in DT with respect to the annealed probability P:

{

N ε(t) ; t ∈ [0, T ]} (d)−→ {N (t) ; t ∈ [0, T ]} .

Proof For the sake of conciseness, we will only focus on the convergence of bivariate
distributions. Namely, we will show that for two fixed time points 0 ≤ t1 ≤ t2 ≤ T ,
we have that

(

N ε(t1), N ε(t2)
) (d)−→ (N (t1), N (t2)) . (65)

The steps that allow us to go from (65) to a convergence of finite-dimensional dis-
tributions and then to a convergence of processes is very similar to what we did in
Sect. 3.3. Details are thus left to the patient reader.

In order to prove (65), we will take advantage of our computations for the bivariate
quenched case that has been presented in Sect. 3.3.1. Let us refer to Fig. 1 and consider
the same three disjoint regions {Ai , i = 1, 2, 3} defined in the relations (32)–(34). We
basically follow the same strategy as in Proposition 3.6. Hence, similarly as (41), the
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annealed Laplace transform of Mε(Ai ) is then given by

E

{

e−∑3
i=1 λi Mε(Ai )

}

= E

{

EZ [e−∑3
i=1 Mε( fi )]

}

= E

[

e−∑3
i=1 ν̃ε(1−e− fi )

]

, for fi = λi1Ai .

We now look into the Laplace transform. Following our computations in the quenched
case and recalling expression (35), we get

E

{

e−∑3
i=1 λi Mε(Ai )

}

= E

{
3
∏

i=1

exp(−ηi m
ε
i )

}

= E

[

exp

(

−
3
∑

i=1

ηi m
ε
i

)]

, (66)

with ηi = 1 − e−λi .
In the forthcoming Proposition 4.2, we will prove that the following convergence

holds in L1(�) using Hypothesis 2.4:

lim
ε→0

3
∑

i=1

ηi m
ε
i =

3
∑

i=1

ηi mi . (67)

Now for all λ1, λ2, λ3 ≥ 0, we set

�ε(λ1, λ2, λ3) ≡
∣
∣
∣
∣
E

[

e−∑3
i=1 λi Mε(Ai )

]

− E

[

e−∑3
i=1 λi M(Ai )

]
∣
∣
∣
∣
.

Due to the fact that |e−x − e−y | ≤ |x − y| for all x, y ≥ 0, we easily get that

�ε(λ1, λ2, λ3) =
∣
∣
∣
∣
E

[

e−∑3
i=1 ηi mε

i

]

− E

[

e−∑3
i=1 ηi mi

]
∣
∣
∣
∣

≤ E

[∣
∣
∣
∣
∣

3
∑

i=1

ηi (m
ε
i − mi )

∣
∣
∣
∣
∣

]

.

Hence, resorting to (67), we end up with

lim
ε→0

�ε(λ1, λ2, λ3) = 0. (68)

Relation (68) being true for all λ1, λ2, λ3 ≥ 0, this proves the desired convergence in
distribution. �

We finally prove the following key proposition, which yields relation (67) above.

Proposition 4.2 For i = 1, 2, 3, let mε
i be the random variable defined by (35). Also

recall that m1, m2 and m3 are, respectively, defined by (52), (54) and (55). Let η1, η2,
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η3 be positive numbers. We assume that Hypothesis 2.4 holds true. Then, we have

L1(�) − lim
ε→0

3
∑

i=1

ηi m
ε
i =

3
∑

i=1

ηi mi . (69)

Proof It suffices to show that

L1(�) − lim
ε→0

mε
i = mi , (70)

for i = 1, 2, 3. In the sequel we will prove relation (70) for i = 1, the other cases
being handled similarly. In order to achieve this, we proceed along the lines of relations
(46)–(52) in Proposition 3.6. Namely, it is enough to establish L1-convergence for the
following integral defined for ε > 0 and 0 ≤ τ1 ≤ τ2:

I ε(τ1, τ2) =
∫ τ1

0
g(s, τ2)ψ

(

Zs/ε
)

ds,

where g : R+ → R is a continuously differentiable function. The remainder of the
proof is devoted to an L1-analysis of I ε(τ1, τ2).

Recall that in (47) we have obtained the following decomposition for I ε(τ1, τ2):

I ε(τ1, τ2) = I ε
1 (τ1, τ2) − I ε

2 (τ1, τ2), (71)

with

I ε
1 (τ1, τ2) = g(τ1, τ2)

∫ τ1

0
ψ
(

Zr/ε

)

dr ,

I ε
2 (τ1, τ2) =

∫ τ1

0

d

ds
g(s, τ2)

(∫ s

0
ψ
(

Zr/ε

)

dr

)

ds.

Furthermore, as in (25)-(26), we have

I ε
1 (τ1, τ2) = g(τ1, τ2) τ1

ε

τ1

∫ τ1/ε

0
ψ (Zr ) dr . (72)

Plugging (5) into (72), we get

lim
ε→0

∥
∥I ε

1 (τ1, τ2) − g(τ1, τ2) τ1ψ̄
∥
∥

L1(�)
= 0. (73)

Similarly to (73), it is also readily seen that

lim
ε→0

∥
∥
∥
∥

I ε
2 (τ1, τ2) −

∫ τ1

0

(
d

ds
g(s, τ2)

)

sψ̄ ds

∥
∥
∥
∥

L1(�)

= 0. (74)
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Nowgathering (73) and (74) into (71) and applying integration by parts again similarly
to (48), we obtain the following limit in L1(�):

lim
ε→0

I ε(τ1, τ2) =
[∫ τ1

0
g(s, τ2) ds

]

ψ̄.

As mentioned before relation (71), this is enough to complete our proof. �
Remark 4.3 Proposition 4.2 asserts that the limit ofmε

i ismi , which is the samequantity
as in the quenched case. This implies that the annealed queue converges to the same
limit as the quenched queue.

4.1 Discussion

In this section we discuss briefly the hypotheses used in the current work, in particular,
Hypotheses 2.1 and 2.4. We believe that the approach of combining queueing analysis
and the framework of homogenization with separation of temporal (and spatial) scales
is robust enough, so that same or similar results will still hold under more general or
relaxed assumptions. But instead of opting for optimal conditions, we feel that the two
hypotheses we used are quite natural.

Note that Hypothesis 2.1 is an almost sure condition with a specific rate. It is used
in Theorem 3.2, to justify the limit in (29) for the term Aε

2,2. In contrast, Hypothesis
2.4 is expressed in terms of the L1-distance without a rate. It is used in Proposition
4.2 to handle the terms I ε

1 and I ε
2 in (73) and (74). Depending on the regularity and

boundedness assumptions we impose on the function ψ , certainly different criteria
can be used. Note that for fairly general processes, the rate in Hypothesis 2.1 is almost
sharp with κ < 1

2 due to the Law of the Iterated Logarithm. For Hypothesis 2.4, a
specific rate can also be imposed if the underlying process has good spectral properties.
Such information will be useful if we want to investigate the next order information
or questions on the convergence rate or fluctuation phenomena.

5 Numerical examples

We now illustrate our main results in Theorems 3.11 and 3.15 on a couple of specific
examples. Following Example 3.3, wemodel the random environment by anOrnstein–
Uhlenbeck (OU) diffusion process satisfying the SDE d Zt = θ(μ − Zt )dt + �dWt ,
where (Wt : t ≥ 0) is a standard Brownian motion. We fix the mean μ = 0.5 and the
diffusion coefficient � = 1.0, and vary the ‘damping’ parameter θ . Each value of θ

represents a different model of the random environment. The intensity function is set
to (λ(s) = 5 + 2 sin(10s) : s ≥ 0), and the function ψ(x) = exp(0.1x). Since the
invariant distribution of the OU process is Gaussian with mean μ and variance �2, it
follows that ψ̄ = exp(0.1μ + 0.005�2) = e0.055 = 1.056.

The following tables present the estimated sup-norm distance between mε and m,
‖mε−m‖ = supt∈[0,T ] |mε(t)−m(t)|with T = 10, for both the quenched case (Tables
1 and 3) and the annealed case (Tables 2 and 4). In Tables 1 and 2, the service times
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Table 1 (A) and (B): Sup-norm
distance between quenched mε

and m for different damping
factors θ and two independent
sample paths of an OU
environment process, with
exponential service times

θ ε

.01 .1 .5 1.0 10.0

(A)

1.0 17.978 0.813 0.211 0.157 0.068

0.5 14.517 0.710 0.219 0.150 0.067

6.25e-2 6.31e+6 13.079 0.308 0.156 0.070

3.90e-3 5.51e+7 5.281 0.182 0.097 0.069

9.76e-4 5.37e+9 1.464 0.154 0.108 0.071

6.10e-5 6.87e+12 1.358 0.139 0.093 0.067

(B)

1.0 0.640 0.402 0.258 0.185 0.073

0.5 1.234 0.498 0.237 0.147 0.071

6.25e-2 0.731 1.719 0.303 0.159 0.069

3.90e-3 4.99e+5 1.428 0.135 0.094 0.068

9.76e-4 2.31e+10 2.000 0.153 0.103 0.070

6.10e-5 5.37e+11 1.853 0.149 0.108 0.068

are assumed to be exponential with parameter α = 10.0 (or mean 0.1), and in Tables 3
and 4 Pareto with shape parameter α = 10.0 (and with mean 10.0/9.0 = 1.11). Tables
1 and 2 (or 3 and 4, resp.) for two different sample paths of the random environment.

We observe the following qualitative effects from this experiment: First, observe
that smaller damping factors imply a larger normed distance ‖mε − m‖. This is true,
both in the quenched and annealed cases, as well as for the exponential and Pareto
service times. Furthermore, the damping factor cannot be too small either, as the first
column in Tables 1 and 2 show. In this case the relaxation time of the OU process is
too large to admit any averaging. This is illustrative of the necessity of Hypotheses 2.1
and 2.4.

Second, comparing Tables 1 and 3, observe that the heavier tails imply a larger
normed distance (for given ε and θ ). However, for a fixed θ , for both the heavy-
and light-tailed settings, we see that the normed distance decreases with ε (excluding
θ = 0.01), thereby suggesting that the homogenization effects are apparent. This is
particularly true for larger θ . We observe similar effects between Tables 2 and 4.

Third, comparing Tables 1 and 2 (or 3 and 4, resp.), observe that for larger damping
factors the normed distance is consistent between the quenched and annealed cases,
decreasing with ε. This is consistent with our observation in Theorem 3.15 that the
annealed process converges weakly to the same the limit as the quenched process,
under weaker conditions. The OU process can be shown to satisfy these conditions.

For Pareto services, the annealed results seem to be slightly better than the quenched
ones. Therefore, we might be empirically witnessing some fluctuation effects.
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Table 2 Sup-norm distance
between (estimated) annealed
mε and m for different damping
factors θ of an OU environment
process, with exponential
service times

θ ε

.01 .1 .5 1.0 10.0

1.0 52.785 1.196 0.257 0.181 0.074

0.5 1.99e+5 1.700 0.328 0.189 0.073

6.25e-2 7.90e+9 4.641 0.310 0.159 0.069

3.90e-3 1.93e+14 3.563 0.187 0.103 0.069

9.76e-4 2.09e+17 2.055 0.153 0.100 0.069

6.10e-5 1.12e+17 1.839 0.152 0.099 0.069

Table 3 (A) and (B): Sup-norm
distance between quenched mε

and m for different damping
factors θ and two independent
sample paths of an OU
environment process, with
Pareto service times

θ ε

.01 .1 .5 1.0 10.0

(A)

1.0 5.659 3.836 2.109 1.390 0.667

0.5 7.681 4.252 1.962 1.299 0.650

6.25e-2 5.819 5.844 1.356 0.870 0.620

3.90e-3 9.08e+5 4.749 0.875 0.705 0.615

9.76e-4 4.09E+10 7.763 1.025 0.781 0.629

6.10e-5 6.64E+11 7.360 1.022 0.756 0.619

(B)

1.0 103.168 6.477 1.751 1.155 0.639

0.5 67.348 5.162 1.468 1.013 0.627

6.25e-2 2.002e+7 86.459 2.749 1.278 0.627

3.90e-3 7.492e+7 9.434 0.969 0.746 0.620

9.76e-4 8.231e+9 7.031 0.963 0.762 0.626

6.10e-5 8.405e+12 5.615 0.825 0.702 0.619

Table 4 Sup-norm distance
between annealed mε and m
(estimated over 35 sample paths)
for different damping factors θ

of an OU environment process,
with Pareto service times

θ ε

.01 .1 .5 1.0 10.0

1.0 34.286 2.185 0.711 0.533 0.613

0.5 195.333 2.932 0.968 0.593 0.609

6.25e-2 8.598e+5 6.166 1.087 0.725 0.610

3.90e-3 1.653e+11 5.804 0.805 0.670 0.611

9.76e-4 5.881e+12 5.780 0.778 0.647 0.611

6.10e-5 1.082e+14 4.996 0.743 0.646 0.611

6 Conclusion and perspectives

Our primary results in Theorems 3.11 and 3.15 demonstrate that the state of a
Cox/Gt/∞ queue in a random fast oscillatory environment is, in the homogenization
limit, closely approximated by that of an Mt/Gt/∞ queue with nonhomogeneous
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Poisson traffic. More precisely, the rapid fluctuations of the stochastic intensity are
averaged out in the limit. These results could prove useful for performance analysis
in some circumstances, such as bounded performance metric functions, since much is
known about the properties of the Mt/G/∞ queue (and this is also a much simpler
object to simulate). Ourmodel assumes a two timescale structure, wherein time-of-day
effects in the traffic intensity aremodeled by a smoothly varying function, and stochas-
tic fluctuations are modeled by a strongly ergodic stochastic process. We also assume
a very general model of time-varying service wherein the service time distribution
itself depends on the arrival epoch. A crucial insight that emerges from our analysis is
the fact that we do not require exponential ergodicity of the stochastic environment,
though we do require a strong sense of ergodicity to be satisfied. Furthermore, our
analysis permits both light- and heavy-tailed service time distributions. Therefore,
for a rather broad range of infinite server queueing models, the system state is well
approximated by a much simpler Mt/G/∞ queue, under the homogenization scaling
considered in this paper.

Of course, these insights are greatly facilitated by the fact that we study an infinite
server queue, allowing us to leverage the properties of Poisson point processes. In this
setting we anticipate proving a functional central limit theorem (FCLT) for the system
state in the homogenization limit, complementing Theorems 3.11 and 3.15 with a rate
of convergence. In a stationary setting where the arrival intensity λ(·) is a constant,
it is well known that a FCLT holds and that the approximating process is O-U; see
[3, Section 3]. In our setting, however this analysis is complicated by the fact that the
centering is by a time-varying function m̄(·), and the analysis appears to require some
further technical development which is outside the scope of this paper. Second, while
our results are in the homogenization limit as ε → 0, it would be interesting to consider
the large time behavior of the process N ε for a fixed ε > 0, when λ(·) is a constant.
Given the more general setting we are studying, this type of result would expand on
the results in [3, Section 3]. It should also be noted that in [3] the traffic model is a
special stationaryDSPPwhere the stochastic intensity process is constructed as�(t) =
∑

j � j1{[ j�,( j+1)�)}(t), where {� j } are i.i.d. random variables and 1{·} represents an
indicator function. That paper establishes a rather interesting “trichotomy” result, in
particular showing that if the sampling is “rapid” then the traffic process is Poisson-
like, reflecting an averaging effect; on the other hand, they also find that if the sampling
is “slow,” then the over-dispersed nature of the DSPP is maintained in the limit, and
consequently, the limit process is not a Mt/G/∞ queue. The small ε setting in this
paper is, in a sense, a more general “rapid” sampling procedure. In this context, it is
reassuring to see that we are able to recover the Poisson-like structure in the limit,
even with heavy-tailed service and polynomial ergodicity of the underlying stochastic
intensity. We do not, however, have a result that parallels the “slow” sampling result
in [3]. This suggests that there are regimes where timescale separation between the
time-of-day effects and the stochastic intensity are not manifested in the limit. This
appears to require a more refined CLT-type analysis. We will address this interesting
phenomenon in a future paper.
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