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Abstract

Given a continuous Gaussian process x which gives rise to a p-geometric rough path for p ∈ (2, 3),
nd a general continuous process y controlled by x , under proper conditions we establish the relationship
etween the Skorohod integral

∫ t
0 ysd⋄xs and the Stratonovich integral

∫ t
0 ysdxs . Our strategy is to

employ the tools from rough paths theory and Malliavin calculus to analyze discrete sums of the integrals.
© 2022 Elsevier B.V. All rights reserved.

1. Introduction

For sake of clarity, we will divide this introduction in 3 parts. In Section 1.1 we motivate
ur problem and recall some previous contributions giving Stratonovich–Skorohod corrections.
ection 1.2 is devoted to a description of our main result, the strategy employed in the article,
nd some perspectives for future works. At the end, some notations used in this article are
ntroduced in Section 1.3.
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1.1. Background

In recent decades, two approaches for the analysis of dynamical systems driven by Gaussian
rocesses have been greatly developed: (i) the “probabilistic” approach, which invokes stochas-
ic analysis tools and leads to Itô–Skorohod integration, and (ii) the “pathwise” approach which
mploys the theory of rough paths and gives rise to Stratonovich integration. In general, one
ets a more transparent understanding of the system by using the pathwise approach, while it is
ore convenient to explore probabilistic properties (e.g. compute the moments for the solution

f a noisy dynamical system driven by a Gaussian noise) via the probabilistic approach. One
ey ingredient to understand the connection between these two approaches is the relationship
etween Skorohod and Stratonovich integrals.

For a standard Brownian motion, the relationship between Itô and Stratonovich integrals
s well-known. It is classically obtained by Itô calculus, although rough paths theory can
lso be invoked by observing that both Itô and Stratonovich integrals can be regarded as
ntegrals against rough paths lifted from a Brownian motion with different second order terms.
or general Gaussian processes (consider fractional Brownian motion as a typical example),
owever, it is non-trivial to obtain the relationship. Indeed, for a general Gaussian process Itô
alculus (or martingale calculus) is not available, and moreover Skorohod integrals cannot be
egarded as integrals against rough paths lifted from the corresponding Gaussian processes. We
riefly recall some results giving Skorohod–Stratonovich corrections below.

Let x = (x1, . . . , xd ) be a d-dimensional centered Gaussian process with i.i.d components
iving rise to a p-geometric rough path, where 2 < p < 3 (see Section 2.1 for more
etails about geometric rough paths). Denote by R the covariance function of x , namely

R(s, t) = E[x1
t x1

s ]. We also set Rt = R(t, t). The correction terms between Skorohod and
tratonovich integrals with respect to x have been considered in the following cases:

i) In [15], the Skorohod–Stratonovich corrections were computed for integrals of the form
t

s ∇ f (xu)d⋄xu for a smooth function f defined on Rd . More specifically,∫ t

0
∇ f (xr )dxr =

∫ t

0
∇ f (xr )d⋄xr +

1
2

∫ t

0
∆ f (xr )dRr , (1)

here the integral with respect to x on the left-hand side is a Stratonovich integral while the
ne on the right-hand side is a Skorohod integral. The strategy in [15] relied on the fact that
t

0 ∇ f (xu)d⋄xu is obtained by taking limits of Riemann–Wick sums of the form:

SΠst ,⋄ =

n−1∑
i=0

N∑
k=1

1
k!

f (k)(xti ) ⋄
(
x1

ti ti+1

)⋄k
, (2)

here ⋄ stands for the Wick product. Then the Skorohod–Stratonovich corrections in [15] were
nalyzed thanks to a computation of the Wick corrections in (2). Notice that an extension of
his result to the case of a Gaussian process indexed by [0, 1]2 with Hölder exponent greater
han 1/3 was handled in [22]. There some change of variable formulas were derived for the
tratonovich and Skorohod integrals respectively. As a consequence, the correction terms were
omputed explicitly. Also note that some preliminary cases for a 1-d fractional Brownian
otion had been considered in [21].

ii) Ref. [4] is concerned with solutions of rough differential equations driven by x , where
x is again a d-dimensional centered Gaussian process with i.i.d components giving rise to a
570
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p-geometric rough path (recall that 2 < p < 3). The equation can be written as

dyr = σ (yr )dxr , (3)

ith a smooth enough coefficient σ : Rd
→ Rd×d , and we refer to [9] for more details about

his object. Below we denote by y0 the initial condition of (3), and J x
u is designated as the

acobian of the flow map y0 → yu . Then the formula for the correction terms in [4] can be
ead as∫ t

0
yr dxr =

∫ t

0
yr d⋄xr +

1
2

∫ t

0
tr[σ (yr )]dRr

+

∫
[0<r1<r2<t]

tr
[

J x
r2

(J x
r1

)−1σ (yr1 ) − σ (yr2 )
]

dR(r1, r2). (4)

onsider the i th column σi (x) of the coefficient matrix σ (x) as a vector field on Rd for
⩽ i ⩽ d . If the Lie bracket [σi , σ j ] = σiσ j − σ jσi = 0 for 1 ⩽ i ⩽ j ⩽ d , then the solution

yt to (3) is of the form yt = ϕ(xt , y0) with (∇x ·ϕ)(x, y0) = tr[σ (x, y0)] and J x
t = σ (yt ) (see [1,

roposition 24]). Clearly in this case, (4) coincides with (1), noting that the last term on the
ight-hand side of (4) now vanishes. Therefore, relation (4) is indeed compatible with (1).

.2. Main result and strategy

In this paper, we consider a d-dimensional centered Gaussian process x with i.i.d compo-
ents. Let y be a controlled process relative to x . That is, the increments δyst := yt − ys can
e decomposed along the increments of x as follows:

δyi
st =

d∑
j=1

yx;i j
s x1; j

st + r i
st , for i = 1, . . . , d, (5)

here yx has finite p-variation and the remainder r has finite p
2 -variation (one can alternatively

se Hölder spaces in this definition). Notice that controlled processes are the natural class
f functions for which a proper rough integration with respect to x can be constructed (see
.g [13]). The following is the main result of this paper (see Theorem 3.1 for a more precise
tatement). Under proper conditions on x and y,∫ t

0
yr dxr =

∫ t

0
yr d⋄xr +

1
2

d∑
i=1

∫ t

0
yx;i i

r dRr +

d∑
i=1

∫
[0<r1<r2<t]

(
Di

r1
yi

r2
− yx;i i

r2

)
dR(r1, r2).

(6)

On the left-hand side of (6), the integral
∫ t

0 yr dxr is understood in the rough path sense (see
Proposition 2.20 for further details). On the right-hand side of the same equation,

∫ t
0 yr d⋄xr

stands for the Skorohod integral, yx is defined by (5), R is the covariance function alluded to
above and D represents the Malliavin derivative (notions of Malliavin calculus will be recalled
in Section 2.4).

Note that our formula (6) unifies the previous cases (1) and (4). Indeed, we have argued
that (4) can be seen as an extension of (1). Furthermore, note that the solution y to the rough
differential equation (3) with a sufficiently regular coefficient function σ (y) is a controlled
process with yx;i j

s = (σ (ys))i j and Ds yt = J x
t (J x

s )−1σ (ys) for s ⩽ t . Therefore it is easy to see
hat (6) is an extension of (4), which is the main result of [4]. This point will be detailed in

ection 3.2.2
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Inspired by [4,15], our proof of the main result is based on the discrete sums method
ombined with tools from rough paths theory and Malliavin calculus, in which some discrete
echniques developed in [18] are also invoked. We outline the idea as follows.

Consider a controlled process y with a decomposition given by (5), satisfying some path
egularity and Malliavin differentiability conditions. Let π = πn denote the uniform partition
f [0, T ] and H be the Hilbert space associated to x . Denote

yπ (t) =

n−1∑
k=0

ytk 1[tk ,tk+1](t).

We first prove that (see Lemma 3.2)

lim
n→∞

yπ
= y in D1,2(H).

This enables us to show the convergence of the discrete Skorohod integral δ⋄(yπ ) to the
korohod integral δ⋄(y) =

∫ T
0 yr d⋄xr in L2(Ω ), i.e.,∫ t

s
yr d⋄xr = lim

n→∞

n−1∑
m=0

[
d∑

i=1

yi
tm ⋄ x1;i

tm tm+1

]
in L2(Ω ), (7)

here we have written π = {t0, . . . , tn} with tm = s + m(t − s)/n for m = 0, . . . , n. It is also
nown from the rough paths theory that the following holds true almost surely:∫ t

s
yr dxr = lim

|π |→0

d∑
i=1

n−1∑
k=0

⎛⎝yi
tk x1;i

tk tk+1
+

1
2

d∑
j=1

yx;i j
tk x2; j i

tk tk+1

⎞⎠ , (8)

here the left-hand side above stands for the rough paths integral of y with respect to x .
The Stratonovich–Skorohod correction terms in (6) now can be obtained by computing the

ifference between the right-hand sides in (7) and (8). When computing the difference, one
ey ingredient will be the forthcoming Proposition 2.28. This proposition is inspired by the
nalogous results in [18] and establishes a general estimate for weighted sums in the second
haos of the Gaussian process x .

To end this subsection, we provide some perspectives for future works. On the one hand, as
n application, some central limit theorems for Skorohod integrals could be obtained with the
elp of our main result, generalizing the results in [18,17]. On the other hand, noting that in this
rticle the Gaussian rough paths with finite p-variation for p ∈ (1, 3) are handled, we believe
hat our methodology can be carried out for rougher Gaussian paths with p ⩾ 3. It is also
nteresting to consider the correction terms for the processes arising from delay equations [19],
olterra equations [6,7,14], etc. We will go back to those extensions in Section 3.2.3.

.3. Notation

Let π : 0 = t0 < t1 < · · · < tn = T be a partition on [0, T ]. Take s, t ∈ [0, T ]. We write
[s, t]] for the discrete interval that consists of tk’s such that tk ∈ [s, t]. We denote by Sk([s, t])
he simplex {(t1, . . . , tk) ∈ [s, t]k

; t1 ⩽ · · · ⩽ tk}. In contrast, whenever we deal with a discrete
nterval, we set Sk([[s, t]]) = {(t1, . . . , tk) ∈ [[s, t]]k

; t1 < · · · < tk}. For t = tk we denote
− := tk−1, t+ := tk+1. We also denote by D([s, t]) the set of all dissections of [s, t].

For x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn , we write xy for their dot product
x · y =

∑n
i=1 x i yi and write |x | for the Euclid norm

(∑n
i=1 x2

i

)1/2. The L p-norm (E[|ξ |
p])1/p

f a random variable ξ is denoted by ∥ξ∥ , for p ⩾ 1.
p
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Generally speaking, we will write C for a generic constant whose exact value can change
from line to line.

2. Preliminary material

This section contains some basic tools from rough paths theory and Malliavin calculus, as
well as some analytical results, which are crucial for the definition and integration of controlled
processes.

2.1. Rough path above x

In this subsection we shall recall the notion of a rough path above a signal x , and how this
pplies to Gaussian signals. The interested reader is referred to [8,9,13] for further details.

As mentioned in Section 1.3, for s < t and m ⩾ 1, we consider the simplex Sm([s, t]) =

(u1, . . . , um) ∈ [s, t]m
; u1 < · · · < um}. For notational sake, we just write Sm for Sm([0, T ]).

he definition of a rough path above a signal x relies on the following notion of increments.

efinition 2.1. Let k ⩾ 1. Then the space of (k − 1)-increments, denoted by Ck([0, T ],Rd ) or
imply Ck(Rd ), is defined as

Ck(Rd ) ≡

{
g ∈ C(Sk;Rd ); lim

ti →ti+1
gt1···tk = 0, i ⩽ k − 1

}
.

e now introduce a finite difference operator called δ, which acts on increments and is useful
o split iterated integrals into simpler pieces.

efinition 2.2. Let g ∈ C1(Rd ), h ∈ C2(Rd ). Then for (s, u, t) ∈ S3, we set

δgst = gt − gs, and δhsut = hst − hsu − hut .

he regularity of increments in C2(Rd ) will be measured in terms of p-variation as follows.

efinition 2.3. For f ∈ C2(Rd ) and p > 0, we define

∥ f ∥p−var = ∥ f ∥p−var;[0,T ] = sup
(ti )∈D([0,T ])

(∑
i

| fti ti+1 |
p

)1/p

.

he set of increments in C2(Rd ) with finite p-variation is denoted by C p−var
2 (Rd ).

Note that for a continuous function g : [0, T ] → Rd with finite p-variation, if we set
g∥p−var;[0,T ] = ∥δg∥p−var;[0,T ], then we recover its usual p-variation.

With these preliminary definitions in hand, we can now introduce the notion of a rough
ath.

efinition 2.4. Let x be a continuous Rd -valued path with finite p-variation for some p ⩾ 1.
e say that x gives rise to a geometric p-rough path if there exists a family{

xn;i1,...,in
st ; (s, t) ∈ S2, n ⩽ ⌊p⌋, i1, . . . , in ∈ {1, . . . , d}

}
,

uch that x1
st = δxst and

1) Regularity: For all n ⩽ ⌊p⌋, each component of xn has finite p
n -variation in the sense of

efinition 2.3.
573
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(2) Multiplicativity: With δxn as in Definition 2.2, we have

δxn;i1,...,in
sut =

n−1∑
n1=1

x
n1;i1,...,in1
su x

n−n1;in1+1,...,in
ut . (9)

3) Geometricity: Let xε be a sequence of piecewise smooth approximations of x . For any
⩽ ⌊p⌋ and any set of indices i1, . . . , in ∈ {1, . . . , d}, we assume that xε,n;i1,...,in converges in

p
n -variation to xn;i1,...,in , where xε,n;i1,...,in

st is defined for (s, t) ∈ S2 by

xε,n;i1,...,in
st =

∫
(u1,...,un )∈Sn ([s,t])

dxε,i1
u1

· · · dxε,in
un

.

We are now ready to state one of the main assumptions on our standing process x .

ypothesis 2.5. Throughout the paper, x will designate a continuous Rd -valued path with finite
p-variation for p ⩾ 1. We assume that x gives rise to a geometric rough path in the sense of

efinition 2.4.

On top of Hypothesis 2.5, we assume that xt = (x1
t , . . . , xd

t ) is a continuous centered
aussian process with i.i.d. components, defined on a complete probability space (Ω ,F , P).
he covariance function of x is given by

R(s, t) := E
[
x j

s x j
t

]
, (10)

or any j ∈ {1, . . . , d}. Throughout the paper, we will also set Rt := R(t, t).
The information on the path regularity of x is mostly contained in the rectangular increments

Rst
uv of its covariance function R, which are defined as

Rst
uv := E

[
(x j

t − x j
s ) (x j

v − x j
u )
]
. (11)

he regularity of R is expressed thanks to some 2d-variation type quantities. For sake of clarity
e first recall the definition of the 2d ρ-variation.

efinition 2.6. Let ρ ∈ [1, ∞). For a general continuous function R : [0, T ]2
→ R, its 2d

-variation is defined as

∥R∥ρ−var;[s,t]×[u,v] := sup
(ti )∈D([s,t])

(t ′j )∈D([u,v])

⎛⎜⎝∑
t ′j

∑
ti

⏐⏐⏐⏐Rt ′j t ′j+1
ti ti+1

⏐⏐⏐⏐ρ
⎞⎟⎠

1
ρ

. (12)

here

R
t ′j t ′j+1
ti ti+1 = R(ti+1, t ′

j+1) − R(ti+1, t ′

j ) − R(ti , t ′

j+1) + R(ti , t ′

j ). (13)

bserve that, whenever the function R in Definition 2.6 is a covariance function as in (10),

he rectangular increment R
t ′j t ′j+1
ti ti+1 can also be written as in (11).

In the following definition, we consider each element ((s, t), (u, v)) in S2 ×S2 as a rectangle
nd denote it by [s, t] × [u, v].

efinition 2.7. A continuous function ω : S2 × S2 → R+ is called a 2d control, if it is zero
n degenerate rectangles, and super-additive in the sense that for all rectangles A, B and C
574
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contained in S2 satisfying A ∪ B ⊂ C and A ∩ B = ∅,

ω(A) + ω(B) ⩽ ω(C).

With these elementary notions at hand, we next introduce a hypothesis which allows the use
f both rough paths techniques and tools from stochastic analysis for the underlying process x .

ypothesis 2.8. Let x be a d-dimensional continuous and centered Gaussian process with i.i.d.
components, whose initial value is 0 and covariance R is given by (10). We assume that for
ome ρ ∈ [1, 2), the function R admits a finite 2d ρ-variation.

It is well known that for a continuous function g : [0, T ] → R with finite p-variation, the
unction [a, b] ↦→ ∥g∥

p
p−var;[a,b] is a control. However, for a continuous function R : [0, T ]2

→

with finite 2d ρ-variation, the function [a, b] × [c, d] ↦→ ∥R∥
ρ

ρ−var;[a,b]×[c,d] may fail to be
uper-additive for ρ > 1 (see [11, Theorem 1]). To regain this property, here we introduce the
o-called controlled 2d ρ-variation for 1 ⩽ ρ < ∞ (this notion is also introduced in [11]).

efinition 2.9. Let ρ ∈ [1, ∞). For a continuous function R : [0, T ]2
→ R, its controlled 2d

ρ-variation is defined as

|||R|||ρ−var;[s,t]×[u,v] := sup
Π∈P([s,t]×[u,v])

⎛⎜⎝ ∑
[ti ,ti+1]×[t ′j ,t

′
j+1]∈Π

⏐⏐⏐⏐Rt ′j t ′j+1
ti ti+1

⏐⏐⏐⏐ρ
⎞⎟⎠

1
ρ

,

where R
t ′j t ′j+1
ti ti+1 is given in (13), Π is a partition of [s, t]×[u, v] which is a finite set of essentially

disjoint rectangles whose union is [s, t] × [u, v], and P([s, t] × [u, v]) is the collection of all
such partitions.

The norms ∥·∥ and |||·||| are comparable thanks to the following property borrowed from [11,
Theorem 1]: for all ρ ′ > ρ there exists a constant Cρ,ρ′ such that

Cρ,ρ′ ||| f |||ρ′−var;[s1,s2]×[t1,t2] ⩽ ∥ f ∥ρ−var;[s1,s2]×[t1,t2] ⩽ ||| f |||ρ−var;[s1,s2]×[t1,t2]. (14)

oreover, the function [a, b] × [c, d] ↦→ ||| f |||
ρ

ρ−var;[a,b]×[c,d] is a 2d control ([11, Theorem 1]).

Remark 2.10. Owing to (14), any continuous function R : [0, T ]2
→ R with finite 2d ρ-

variation also has a finite controlled 2d ρ ′-variation for all ρ ′ > ρ. Furthermore, for all
((s, t), (u, v)) ∈ S2 × S2,

∥R∥
ρ′

ρ′−var;[s,t]×[u,v] ⩽ ω([s, t] × [u, v]),

where ω is the 2d control (as introduced in Definition 2.7) given by

ω([s, t] × [u, v]) = |||R|||
ρ′

ρ′−var;[s,t]×[u,v]. (15)

Remark 2.11. As an example, if the Gaussian process x is a fractional Brownian motion with
Hurst parameter H ∈ (0, 1

2 ], the covariance R of x has finite 2d ρ-variation with ρ =
1

2H
nd Hypothesis 2.8 is satisfied (see [11, Example 1]). If we choose ρ ′ > ρ =

1
2H , then

he quantity ∥R∥
ρ′

ρ′−var;[s,t]×[u,v] is controlled by the 2d control |||R|||
ρ′

ρ′−var;[s,t]×[u,v]. Note that
||R||| = ∞ if we choose ρ ⩽ 1 (as shown in [11, Example 2]).
ρ−var;[0,T ]2 2H
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In the sequel we will also request the function t ↦→ R(t, t) to be Hölder continuous. We
ow state an additional assumption which guarantees this Hölder continuity (see e.g [4,12] for
similar hypothesis).

ypothesis 2.12. Let ρ ∈ [1, 2) be given in Hypothesis 2.8. We assume that there exists C < ∞

uch that for all s, t ∈ [0, T ] the covariance function R satisfies

∥R(t, ·) − R(s, ·)∥ρ

ρ−var;[0,T ] ⩽ C |t − s|. (16)

emark 2.13. A direct consequence of Hypothesis 2.12 is that Rt := R(t, t) has finite ρ-
ariation, by [4, Lemma 2.14]. Moreover, recall that by Hypothesis 2.8, we have x0 = 0 and
ence R(0, ·) = R(·, 0) ≡ 0. This together with (16) implies that R(t, ·) and R(·, t) have finite
-variation for each fixed t ∈ [0, T ].

emark 2.14. Given ρ ∈ [1, 2), clearly we have, for 0 ⩽ s1 ⩽ s2 ⩽ T and 0 ⩽ t1 ⩽ t2 ⩽ T ,

∥R∥
2
ρ−var;[s1,s2]×[t1,t2] ⩽ ∥R∥ρ−var;[s1,s2]×[0,T ]∥R∥ρ−var;[0,T ]×[t1,t2].

urthermore, it is a direct consequence of (16) that for 0 ⩽ s ⩽ t ⩽ T ,

∥R∥
ρ

ρ−var;[s,t]×[0,T ] ⩽ C(t − s).

ombining the two inequalities above, we have the following control on the 2d ρ-variation of
R: for some positive constant C ,

∥R∥
2ρ

ρ−var;[s1,s2]×[t1,t2] ⩽ C(s2 − s1)(t2 − t1). (17)

emark 2.15. Note that for 1 ⩽ γ ⩽ γ ′ < ∞, ∥R∥γ ′−var;[s,t]×[u,v] ⩽ ∥R∥γ−var;[s,t]×[u,v].
herefore, under Hypothesis 2.12, inequality (16) and hence (17) hold with ρ replaced by
′
∈ (ρ, 2) and C depending on (ρ, ρ ′, T ).

emark 2.16. Clearly (17) yields the following relations on squares of the form [s, t]2,

∥R∥
ρ

ρ−var;[s,t]2 ⩽ C(t − s). (18)

e say that R has finite Hölder-controlled 2d ρ-variation if R satisfies both Hypothesis 2.8
nd (18). An important consequence of R having finite Hölder controlled 2d ρ-variation is that

x has 1/p-Hölder continuous sample paths for every p > 2ρ. It is also readily checked that,
henever x satisfies (18), we have

E
[(

x1;i
st

)2
]
⩽ c (t − s)

1
ρ . (19)

emark 2.17. Similarly to the argument in [3, Remark 2.4], for any process x whose covariance
unction R admits a finite ρ-variation one can introduce a deterministic time-change τ :

0, T ] → [0, T ] such that X̃ = X ◦ τ has finite Hölder-controlled 2d ρ-variation. That is
the time changed process X̃ satisfies Hypothesis 2.8 and Eq. (18).

The following result (stated e.g. in [9, Theorem 15.33]) relates the 2d ρ-variation of R with
he pathwise assumptions allowing to apply the abstract rough paths theory.

roposition 2.18. Let x = (x1, . . . , xd ) be a continuous centered Gaussian process with i.i.d.
omponents and covariance function R defined by (10). If R satisfies Hypothesis 2.8, then x
lso satisfies Hypothesis 2.5 provided p > 2ρ.
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Proposition 2.18 asserts that under Hypothesis 2.8, the Gaussian process x is amenable to
ough path analysis. In particular, a rough path integral with respect to x can be constructed. In
his context, the natural class of integrand one might want to consider is the family of controlled
rocesses. Its definition is recalled below.

efinition 2.19. Consider a continuous Rd -valued path x with finite p-variation for some
p ⩾ 1. We say that a continuous Rd -valued path y of finite p-variation is controlled by x ,
f there exist a continuous Rd2

-valued path yx of finite p-variation and a 1-increment process
∈ C

p
2 −var

2 (Rd ) as defined in Definition 2.3, such that

δyi
st =

d∑
j=1

yx;i j
s x1; j

st + r i
st , for i = 1, . . . , d. (20)

We are now ready to state the basic integration result for controlled processes, which can
e found e.g. in [8,9,13].

roposition 2.20. Let T > 0 be fixed. Let x be a geometric p-rough path lifted from a
ontinuous Rd -valued path with finite p-variation for some p ∈ [1, 3), and let y be a continuous
Rd -valued path of finite p-variation that is controlled by x in the sense of Definition 2.19. Then
for 0 ⩽ s < t ⩽ T , one can define the integral

∫ t
s yr dxr as the limit of the following Riemann

sums, ∫ t

s
yr dxr = lim

|πn |→0

n−1∑
k=0

⎛⎝ d∑
i=1

yi
tk x1,i

tk tk+1
+

d∑
i=1

d∑
j=1

yx;i j
tk x2;i j

tk tk+1

⎞⎠ , (21)

here πn = [s = t0 < t1 < · · · < tn = t] is a partition of [s, t] and |πn| =

axk∈{0,...,n−1} |tk+1 − tk |. In (21), observe that we have also used the convention on inner
roducts put forward in Section 1.3. Moreover, there exists a constant C = C(T, p) depending
nly on (T, p) such that for all 0 ⩽ s < t ⩽ T we have⏐⏐⏐⏐⏐⏐

∫ t

s
yr dxr − ysx1

st −

d∑
i=1

d∑
j=1

yx;i j
s x2;i j

st

⏐⏐⏐⏐⏐⏐
⩽ C

(
∥x1

∥p−var∥r∥ p
2 −var + ∥x2

∥ p
2 −var∥yx

∥p−var

)
|t − s|3/p,

here we recall that r is the increment introduced in (20).

Recall that our main objective is to compute some Skorohod–Stratonovich corrections as
n [4]. To this aim we will need a more detailed description of the increments of y than
he ones given in (20). Namely we will assume that y is a second order controlled process
s defined below (for the definition of controlled processes of general order, we refer to [8,
efinition 4.17] or [3, Definition 5.1]).

efinition 2.21. Consider a continuous Rd -valued path x with finite p-variation for some
p ⩾ 1. We say that a continuous Rd -valued path y of finite p-variation is a second-
rder controlled process with respect to x , if there exist a continuous Rd2

-valued path yx ,
continuous Rd3

-valued path yxx , both of which are of finite p-variation, and 1-increment
p
3 −var

(Rd ), r x
∈ C

p
2 −var

(Rd2
) as defined in Definition 2.3, such that for
rocesses r ∈ C2 2
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= 1, . . . , d and (s, t) ∈ S2([0, T ]) we have

δyi
st =

d∑
j=1

yx;i j
s x1; j

st +

d∑
j,k=1

yxx;i jk
s x2; jk

st + r i
st . (22)

n addition, the increment yx in (22) is a controlled process of order 1, that is for i, j = 1, . . . , d
nd (s, t) ∈ S2([0, T ]) we have

δyx;i j
st =

d∑
k=1

yxx;i jk
s x1;k

st + r x;i j
st . (23)

.2. Higher dimensional Young integrals

In this subsection, we gather some inequalities for Young integrals in Rn which will feature
n our computations throughout the paper. We start by a relation for integrals in the plane
orrowed form [10,23].

heorem 2.22. Let f, R : [0, T ]2
→ R be continuous functions with finite p-variation and

nite q-variation respectively for 1
p +

1
q > 1. Specifically recalling our Definition 2.6, we assume

f ∥p−var;[0,T ]2 < ∞ and ∥R∥q−var;[0,T ]2 < ∞. Moreover, assume that for all s1, s2 ∈ [0, T ],
both f (s1, ·) and f (·, s2) have finite 1-dimensional p-variation as given in Definition 2.3.
Then the 2d Young–Stieltjes integral of f with respect to R exists and the following Young’s
inequality holds, for [s1, s̄1] × [s2, s̄2] ⊂ [0, T ]2,⏐⏐⏐⏐⏐

∫
[s1,s̄1]×[s2,s̄2]

f (s1, s2)d R(s1, s2)

⏐⏐⏐⏐⏐ ⩽ C p,q

(
| f (s1, s2)| + ∥ f (s1, ·)∥p−var;[s2,s̄2]

+ ∥ f (·, s2)∥p−var;[s1,s̄1] + ∥ f ∥p−var;[s1,s̄1]×[s2,s̄2]

)
× ∥R∥q−var;[s1,s̄1]×[s2,s̄2] . (24)

We now state a lemma about integration in R4 which will be invoked in order to analyze
iscretization properties for the Malliavin derivative of a controlled process y. Although its
roof might be traced back to [23], we include it here for the sake of clarity since Lemma 2.23
s tailored for our specific needs.

emma 2.23. Let f, g, R be continuous functions defined on [0, T ]2. Similarly to Theorem 2.22,
e assume that f, g have finite p-variation, as well as f (s1, ·), f (·, s3), g(s2, ·) and g(·, s4) for
xed arbitrary s1, s2, s3, s4 ∈ [0, T ]. We also suppose that R has finite q-variation on [0, T ]2,
ith p, q satisfying 1

p +
1
q > 1. Then for s1, s̄1, . . . , s4, s̄4 ∈ [0, T ] such that s j < s̄ j for

j = 1, . . . , 4, the following Young integral in R4 is well defined:

I f,g,R(s1, s̄1, . . . , s4, s̄4)

:=

∫
f (s1, s3)g(s2, s4)d R(s1, s2)dR(s3, s4).
[s1,s̄1]×[s2,s̄2]×[s3,s̄3]×[s4,s̄4]
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Moreover, I f,g,R(s1, s̄1, . . . , s4, s̄4) can be bounded as⏐⏐I f,g,R(s1, s̄1, . . . , s4, s̄4)
⏐⏐ ⩽ C p,q ∥R∥q−var;[s1,s̄1]×[s2,s̄2]∥R∥q−var;[s3,s̄3]×[s4,s̄4]

×

(
| f (s1, s3)| + ∥ f (·, s3)∥p−var;[s1,s̄1] + ∥ f (s1, ·)∥p−var;[s3,s̄3] + ∥ f ∥p−var;[s1,s̄1]×[s3,s̄3]

)
×

(
|g(s2, s4)| + ∥g(·, s4)∥p−var;[s2,s̄2] + ∥g(s2, ·)∥p−var;[s4,s̄4] + ∥g∥p−var;[s2,s̄2]×[s4,s̄4]

)
.

(25)

roof. We will divide this proof in several steps.

Step 1: Decomposition of the integral. We can write

I f,g,R(s1, s̄1, . . . , s4, s̄4) =

∫
[s3,s̄3]×[s4,s̄4]

F(s3, s4)dR(s3, s4) (26)

here the function F is defined on [0, T ]2 by

F(s3, s4) =

∫
[s1,s̄1]×[s2,s̄2]

f (s1, s3)g(s2, s4)dR(s1, s2), (27)

nd where we observe that the right-hand side of (27) is well defined thanks to Theorem 2.22.
ur strategy in order to estimate I f,g,R will rely on some successive applications of (24).
pecifically, with (26) in mind, relation (24) yields⏐⏐I f,g,R(s1, s̄1, s2, s̄2, s3, s̄3, s4, s̄4)

⏐⏐ ⩽ C p,q

(
|F(s3, s4)| + ∥F(s3, ·)∥p−var,[s4,s̄4]

+ ∥F(·, s4)∥p−var,[s3,s̄3] + ∥F∥p−var,[s3,s̄3]×[s4,s̄4]

)
× ∥R∥q−var,[s3,s̄3]×[s4,s̄4]. (28)

e will now estimate the terms in right-hand side of (28) separately.

tep 2: Upper bound for F(s3, s4). Given (s3, s4) ∈ [0, T ]2 and recalling the definition (27)
of F , another application of (24) enables to write

|F(s3, s4)| ⩽ C p,q

(
| f (s1, s3)g(s2, s4)| + | f (s1, s3)|∥g(·, s4)∥p−var,[s2,s̄2]

+ |g(s2, s4)|∥ f (·, s3)∥p−var,[s1,s̄1]

+ ∥ f (·, s3)∥p−var,[s1,s̄1]∥g(·, s4)∥p−var,[s2,s̄2]

)
∥R∥q−var,[s1,s̄1]×[s2,s̄2]

nd we notice that the above expression can be simplified as

|F(s3, s4)| ⩽ C p,q

(
| f (s1, s3)| + ∥ f (·, s3)∥p−var,[s1,s̄1]

)
×

(
|g(s2, s4)| + ∥g(·, s4)∥p−var,[s2,s̄2]

)
∥R∥q−var,[s1,s̄1]×[s2,s̄2]. (29)

tep 3: Upper bound for ∥F(s3, ·)∥p−var,[s4,s̄4]. Recall Definition 2.3 of p-variation. We thus

ave

∥F(s3, ·)∥p−var,[s4,s̄4] = sup
π

(∑
|F(s3, vi+1) − F(s3, vi )|p

)1/p

.

i
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Plugging expression (27) into the above relation, we get

∥F(s3, ·)∥
p
p−var,[s4,s̄4]

= sup
π

∑
i

⏐⏐⏐⏐⏐
∫

[s1,s̄1]×[s2,s̄2]
f (s1, s3)

(
g(s2, vi+1) − g(s2, vi )

)
d R(s1, s2)

⏐⏐⏐⏐⏐
p

.

e now apply (24) again and we end up with

∥F(s3, ·)∥p−var,[s4,s̄4] ⩽ C p,q∥R∥q−var,[s1,s̄1]×[s2,s̄2]

4∑
k=1

Vk, (30)

where the terms V1, V2 are respectively defined by

V1 = | f (s1, s3)| sup
π

(∑
i

⏐⏐g(s2, vi+1) − g(s2, vi )
⏐⏐p

)1/p

;

V2 = | f (s1, s3)| sup
π

(∑
i

∥g(·, vi+1) − g(·, vi )∥
p
p−var,[s2,s̄2]

)1/p

,

nd similarly the terms V3, V4 are expressed as

V3 = sup
π

(∑
i

|g(s2, vi+1) − g(s2, vi )|p
∥ f (·, s3)∥p

p−var,[s1,s̄1]

)1/p

;

V4 = sup
π

(∑
i

∥ f (·, s3)(g(∗, vi+1) − g(∗, vi ))∥
p
p−var,[s1,s̄1]×[s2,s̄2]

)1/p

.

n addition, the terms V1, V2, V3 are easily bounded. Indeed, resorting again to Definition 2.3,
e get

V1 = | f (s1, s3)|∥g(s2, ·)∥p−var,[s4,s̄4], V2 ⩽ | f (s1, s3)|∥g∥p−var,[s2,s̄2]×[s4,s̄4], (31)

and

V3 = ∥ f (·, s3)∥p−var,[s1,s̄1]∥g(s2, ·)∥p−var,[s4,s̄4] . (32)

or the term V4, by Definition 2.6, it is readily checked that

V4 ⩽ ∥ f (·, s3)∥p−var,[s1,s̄1]∥g∥p−var,[s2,s̄2]×[s4,s̄4] . (33)

ence, plugging (31)–(33) into (30), we end up with

∥F(s3, ·)∥p−var,[s4,s̄4] ⩽ C p,q

(
| f (s1, s3)| + ∥ f (·, s3)∥p−var,[s1,s̄1]|

)
(
∥g(s2, ·)∥p−var,[s4,s̄4] + ∥g∥p−var,[s2,s̄2]×[s4,s̄4]

)
× ∥R∥q−var,[s1,s̄1]×[s2,s̄2]. (34)

urthermore, notice that in a similar way we get

∥F(·, s4)∥p−var,[s4,s̄4] ⩽ C p,q

(
|g(s2, s4)| + ∥g(·, s4)∥p−var,[s2,s̄2]|

)
(
∥ f (s1, ·)∥p−var,[s3,s̄3] + ∥ f ∥p−var,[s1,s̄1]×[s3,s̄3]

)
× ∥R∥ . (35)
q−var,[s1,s̄1]×[s2,s̄2]
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Step 4: Upper bound for ∥F∥p−var,[s3,s̄3]×[s4,s̄4]. According to Definition 2.6, one can write

∥F∥
p
p−var,[s3,s̄3]×[s4,s̄4] = sup

π

∑
ti ,t ′j

⏐⏐F(ti , t ′

j ) + F(ti+1, t ′

j+1) − F(ti , t ′

j+1) − F(ti+1, t ′

j )
⏐⏐p

,

here we recall that π takes the form π ∈ D([s3, s̄3]) × D([s4, s̄4]) and the notation D([s, t])
s introduced in Section 1.3. Hence with the expression (27) of F in mind we get

∥F∥
p
p−var,[s3,s̄3]×[s4,s̄4]

= sup
π

∑
ti ,t ′j

⏐⏐⏐⏐⏐
∫

[s1,s̄1]×[s2,s̄2]
( f (s1, ti+1) − f (s1, ti ))(g(s2, t ′

j+1) − g(s2, t ′

j ))d R(s1, s2)

⏐⏐⏐⏐⏐
p

.

n this context, relation (24) can thus be read as

∥F∥p−var,[s3,s̄3]×[s4,s̄4] ⩽ C∥R∥q−var,[s1,s̄1]×[s2,s̄2] sup
π

(∑
ti ,t ′j

⏐⏐Qi j ′
⏐⏐p
)1/p

,

here the term Qi j ′ is defined by

Qi j ′ = |( f (s1, ti+1) − f (s1, ti ))(g(s2, t ′

j+1) − g(s2, t ′

j ))|

+ | f (s1, ti+1) − f (s1, ti )|∥g(·, t ′

j+1) − g(·, t ′

j )∥p−var,[s2,s̄2]

+ ∥ f (·, ti+1) − f (·, ti )∥p−var,[s1,s̄1]|g(s2, t ′

j+1) − g(s2, t ′

j )|

+ ∥ f (·, ti+1) − f (·, ti )∥p−var,[s1,s̄1]∥g(·, t ′

j+1) − g(·, t ′

j )∥p−var,[s2,s̄2],

nd we notice that Qi j ′ can easily be simplified as

Qi j ′ =

(
|( f (s1, ti+1) − f (s1, ti ))| + ∥ f (·, ti+1) − f (·, ti )∥p−var,[s1,s̄1]

)
×

(
|(g(s2, t ′

j+1) − g(s2, t ′

j ))| + ∥g(·, t ′

j+1) − g(·, t ′

j )∥p−var,[s2,s̄2]

)
.

ummarizing our computations in this step, we have found that

∥F∥p−var,[s3,s̄3]×[s4,s̄4] ⩽ C∥R∥q−var,[s1,s̄1]×[s2,s̄2]

×

(
∥ f (s1, ·)∥p−var,[s3,s̄3] + ∥ f ∥p−var,[s1,s̄1]×[s3,s̄3]

)
×

(
g(s2, ·) ∥p−var,[s4,s̄4] +∥g∥p−var,[s2,s̄2]×[s4,s̄4]

)
. (36)

tep 5: Conclusion. Let us gather our estimates (29), (34), (35) and (36) into (28). Then we
et the patient reader check that (25) is achieved. This finishes the proof. □

.3. The Hilbert space associated to x

Consider a continuous d-dimensional centered Gaussian process x on [0, T ] with covariance
unction R given by (10). Every component of x (say x1) is a 1-dimensional centered Gaussian
rocess with covariance R. In this section we review some basic facts about the related Hilbert
pace H of functions for which Wiener integrals with respect to x (see e.g. [20]) are well

defined.
The Hilbert space H is the completion of the set of step functions

E =

{
n∑

ai 1[0,ti ] : ai ∈ R, ti ∈ [0, T ] , i = 1, . . . , n for n ∈ N

}
,

i=1
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with respect to the inner product⟨
n∑

i=1

ai 1[0,ti ],

m∑
j=1

b j 1[0,s j ]

⟩
H

=

n∑
i=1

m∑
j=1

ai b j R
(
ti , s j

)
.

Observe that this inner product can also be written as⟨
n∑

i=1

ai 1[0,ti ],

m∑
j=1

b j 1[0,s j ]

⟩
H

=

∫ T

0

∫ T

0

(
n∑

i=1

ai 1[0,ti ](t)

)⎛⎝ m∑
j=1

b j 1[0,s j ](s)

⎞⎠ d R(t, s).

(37)

ne can further relate H to our driving process x in the following way: let H be the closure
f the set

E =

{
n∑

i=1

ai x1
ti : ai ∈ R, ti ∈ [0, T ] , i = 1, . . . , n for n ∈ N

}
,

n L2(Ω ,F , P). Then the linear map x1
: E → E defined by x1(1[0,t]) = x1

t extends to a
inear isometry between H and H. Hence, H = {x1(h), h ∈ H} and this family is known as the
sonormal Gaussian process related to x1 (see [20, Definition 1.1.1]). Note that x1(h) for h ∈ H
s called the Wiener integral of h with respect to x1 and is usually denoted by

∫ T
0 h(s)dx1

s .

emark 2.24. Recall that we have assumed x0 = 0 and thus R(0, 0) = 0. Thus relation (37)
uggests

⟨h1, h2⟩H =

∫ T

0

∫ T

0
h1(s)h2(t)d R(s, t) for h1, h2 ∈ H, (38)

henever the 2D Young’s integral on the right-hand side is well-defined (see, e.g., [2,
roposition 4] for details).

emark 2.25. Denoting by E([a, b]) the set of step functions in E restricted on [a, b] ⊂ [0, T ],
the closure H([a, b]) of E([a, b]) with respect to the inner product (37) then coincides with H
restricted on [a, b], and for f, g ∈ H,⟨

f 1[a,b], g 1[a,b]
⟩
H = ⟨ f, g⟩H([a,b]) . (39)

.4. Malliavin calculus for Gaussian processes

In this subsection, we collect some basic concepts of Malliavin calculus, and we refer to [20]
or more details.

Recall that xt is a continuous centered d-dimensional Gaussian process with i.i.d. com-
onents, defined on a complete probability space (Ω ,F , P). For the sake of simplicity, we
ssume that F coincides with the σ -algebra generated by {xt ; t ∈ [0, T ]}. For the d-

dimensional process x , we define an extension of the Wiener integral defined as follows:
let ϕ = (ϕ1, . . . , ϕd ) be an element of Hd where we recall that H has been introduced in

ection 2.3. Then we set

x(ϕ) =

d∑
j=1

x j (ϕ j ) , (40)

here each term x j (ϕ j ) is a 1-d Wiener integral as in Section 2.3.
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A smooth functional of x is a random variable of the form F = f (x(ϕ1), . . . , x(ϕn)), where
⩾ 1, {ϕ1, . . . , ϕn} is a family of elements of Hd and each x(ϕi ) is understood as in (40).
oreover, we assume that the function f : Rn

→ R is smooth and its partial derivatives grow
t most polynomially fast. Then, the Malliavin derivative DF of F is the Hd -valued random
ariable defined by

DF =

n∑
k=1

∂ f
∂xk

(x(ϕ1), . . . , x(ϕn))ϕk . (41)

ne can show that D is closable from L2(Ω ) to L2(Ω;H), and thus one may span the space
of the smooth and cylindrical random variables under the norm

∥F∥1,2 =
(
E[F2] + E[∥DF∥

2
H]
) 1

2 .

he resulting closure is called Sobolev space D1,2.

Remark 2.26. As seen in (41), the Malliavin derivative DF of a functional F is a Rd -valued
process. The i th coordinate of DF corresponds to the Malliavin derivative of F with respect
to the randomness in x i only. It will be denoted by Di F in the sequel.

The divergence operator δ⋄ (also known as the Skorohod integral) is the adjoint operator of
the Malliavin derivative operator D defined by the duality relation

E[Fδ⋄(u)] = E[⟨DF, u⟩Hd ], for all F ∈ D1,2 and for all u ∈ Dom δ⋄.

Here Dom δ⋄ is the domain of the divergence operator δ⋄, which is the space of H-valued
random variables u ∈ L2(Ω;Hd ) such that |E[⟨DF, u⟩Hd ]| ⩽ cF∥F∥2 with some constant cF

depending on F , for all F ∈ D1,2. In particular, D1,2(Hd ) ⊂ Dom δ⋄. Note that for u ∈ Dom δ⋄,
we have δ⋄(u) ∈ L2(Ω ) and E[δ⋄(u)] = 0. By convention, we also take the following notation,
for u ∈ Dom δ⋄,∫ T

0
ut d⋄xt := δ⋄(u). (42)

For our main computations below we shall invoke the following relation taken from [21]:
for any G ∈ D1,2(Rd ) and 0 ⩽ a < b ⩽ T we have

δ⋄(G 1[a,b]) =

d∑
i=1

∫ b

a
G i d⋄x i

t =

d∑
i

G i
⋄ δx i

ab, (43)

where ⋄ stands for the Wick product (see [15] for a brief account on Wick products). Moreover,
according to [16, Proposition 4.7], relation (43) can be simplified as

δ⋄(G 1[a,b]) =

d∑
i=1

G i δx i
ab − ⟨Di G i , 1[a,b]⟩H. (44)

2.5. Discrete rough paths techniques

In this subsection, we develop some inequalities about discrete sums in a rough paths
context. This kind of sum will feature prominently in the analysis of our Skorohod–Stratonovich

corrections.
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We state a crucial lemma about convergence of discrete sums in the second chaos of x .
t generalizes [18, Lemma 3.4] to a generic Gaussian process (as opposed to the fractional
rownian motion case handled in [18]).

roposition 2.27. Let x be a Rd -valued Gaussian process satisfying Hypotheses 2.8 and 2.12.
or n ⩾ 1 we consider the uniform partition on [0, T ], namely tk =

k
n T . We define a process

F = {F i j
t ; t ∈ [[0, T ]], i, j = 1, . . . , d} by F i j

0 = 0, and for all t > 0,

F i j
t =

t−∑
tk=0

(
x2;i j

tk tk+1 − E[x2;i j
tk tk+1 ]

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t−∑
tk=0

x2;i j
tk tk+1 , i ̸= j,

t−∑
tk=0

(
x2;i i

tk tk+1
− E[x2;i i

tk tk+1
]
)

, i = j,

(45)

here we recall the notation t− from Section 1.3 and where x2 is introduced in Definition 2.4.
hen for all q ⩾ 1, ρ ′

∈ (ρ, 2), (s, t) ∈ S2([[0, T ]]) and n ⩾ 1 the following inequality holds
rue (

E
[⏐⏐⏐δF i j

st

⏐⏐⏐q])1/q
⩽ C

(t − s)
1
2

nβ−
1
2

, (46)

here C = C(q, ρ, T ), β =
1
ρ

∈ (1/2, 1] for i ̸= j , and C = C(q, ρ, ρ ′, T ), β =
1
ρ′ ∈ (1/2, 1)

for i = j .

Proof. Due to the hyper-contractivity property of the second Wiener chaos, it suffices to show
the case q = 2. In addition, we assume (without loss of generality) that s = tm1 < t = tm2 for
⩽ m1 < m2 ⩽ n.

ase 1: i = j . In this case, due to the definition (45) of F and the geometric nature of x
ssumed in Definition 2.4, we have

E
[(

δF i i
st

)2
]

= E

⎛⎝m2−1∑
k=m1

[
(x1;i

tk tk+1
)2

− E[(x1;i
tk tk+1

)2]
]⎞⎠2

,

nd expanding the square on the right hand side above we get

E
[(

δF i i
st

)2
]

=

m2−1∑
k,l=m1

{
E[(x1;i

tk tk+1
)2(x1;i

tl tl+1
)2] − E[(x1;i

tk tk+1
)2]E[(x1;i

tl tl+1
)2]
}

. (47)

n order to evaluate the right-hand side of (47) we apply a particular case of Wick’s formula
or centered Gaussian random variables X and Y , which can be stated as:

E[X2Y 2] − E[X2] E[Y 2] = 2 (E[X Y ])2 .

lugging this result into (47) and recalling the definition (11) of Ruv
st we obtain

E
[(

δF i i
st

)2
]

= 2
m2−1∑ (

E
[
x1;i

tk tk+1
x1;i

tl tl+1

])2
= 2

m2−1∑ (
Rtk tk+1

tl tl+1

)2
. (48)
k,l=m1 k,l=m1
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Therefore invoking elementary properties of p-variations we end up with

E
[(

δF i i
st

)2
]
⩽ 2 sup

k,l

(
Rtk tk+1

tl tl+1

)2−ρ

∥R∥
ρ

ρ−var;[s,t]2 . (49)

n the right-hand side of (49), notice that under Hypothesis 2.12, ∥R∥
ρ

ρ−var;[s,t]2 can be upper
ounded by C(t − s) thanks to (18). Moreover, a simple use of Cauchy–Schwarz inequality,
ogether with (19), shows that

|Rtk tk+1
tl tl+1 | =

⏐⏐⏐E[x1,i
tl tl+1

x1,i
tk tk+1

]
⏐⏐⏐ ⩽ (

E
[⏐⏐⏐x1,i

tl tl+1

⏐⏐⏐2]E [⏐⏐⏐x1,i
tk tk+1

⏐⏐⏐2]) 1
2
⩽

CT

n
1
ρ

.

Reporting this information into (49) and recalling that β =
1
ρ

, it is seen that

E
[(

δF i i
st

)2
]
⩽ CT 2β−1 (t − s)

n2β−1 . (50)

his ends our proof for the case i = j .

ase 2: i ̸= j . According to our definition (45), if i ̸= j we have

E
[(

δF i j
st

)2
]

= E

⎡⎢⎣
⎛⎝m2−1∑

k=m1

x2;i j
tk tk+1

⎞⎠2
⎤⎥⎦ =

m2−1∑
k,l=m1

E
[
x2;i j

tk tk+1x2;i j
tl tl+1

]
.

herefore, invoking the proofs of [9, Theorem 15.33 and Proposition 15.28] for the computation
f E[x2;i j

tk tk+1x2;i j
tl tl+1 ], we end up with

E
[(

δF i j
st

)2
]

=

m2−1∑
k,l=m1

∫ tk+1

tk

∫ tl+1

tl
Rtlv2

tkv1 dR(v1, v2). (51)

e now fix (k, l) and denote G(v1, v2) = Rtlv2
tkv1 . Then G(tk, ·) = G(·, tl) = 0. For any ρ ′

∈

ρ, 2), Hypothesis 2.8 implies R has finite 2d ρ ′-variation, and Hypothesis 2.12 implies both
R(t, ·) and R(·, t) have finite ρ ′-variation for all t ∈ [0, T ]. Hence resorting to Theorem 2.22,

e have for some fixed ρ ′
∈ (ρ, 2),⏐⏐⏐⏐∫ tk+1

tk

∫ tl+1

tl
Rtlv2

tkv1 dR(v1, v2)
⏐⏐⏐⏐ ⩽ C∥R∥

2
ρ′-var;[tk ,tk+1]×[tl ,tl+1],

or some constant C = C(ρ ′, T ) depending on (ρ ′, T ) only. Plugging this inequality into (51)
e obtain

E
[(

δF i j
st

)2
]
⩽ C(ρ ′, T )

m2−1∑
k,l=m1

∥R∥
2
ρ′-var;[tk ,tk+1]×[tl ,tl+1]

⩽ C(ρ ′, T ) sup
k,l

∥R∥
2−ρ′

ρ-var;[tk ,tk+1]×[tl ,tl+1]

×

m2−1∑
k,l=m1

∥R∥
ρ′

ρ′-var;[tk ,tk+1]×[tl ,tl+1].

herefore, thanks to Remark 2.10, we have

E
[(

δF i j
st

)2
]
⩽ C(ρ ′, T ) sup

k,l
∥R∥

2−ρ′

ρ′-var;[tk ,tk+1]×[tl ,tl+1]

m2−1∑
ω([tk, tk+1] × [tl , tl+1]),
k,l=m1
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where ω is a control given in (15). Furthermore, the super-additivity of ω yields

E
[(

δF i j
st

)2
]
⩽ C(ρ ′, T ) sup

k,l
∥R∥

2−ρ′

ρ′-var;[tk ,tk+1]×[tl ,tl+1] ω([s, t]2)

⩽ C(ρ, ρ ′, T ) sup
k,l

∥R∥
2−ρ′

ρ′-var;[tk ,tk+1]×[tl ,tl+1] (t − s), (52)

here the last inequality is due to (15), (14), and (17). Finally, by Hypothesis 2.12 (and
emark 2.15), we have

∥R∥
2ρ′

ρ′-var;[s,t]×[u,v] ⩽ C(ρ, ρ ′, T )(t − s)(u − v),

nd therefore setting β = 1/ρ ′, inequality (52) becomes

E
[(

δF i j
st

)2
]
⩽ C(ρ, ρ ′, T )

(
T
n

)2β−1

(t − s). (53)

With (50) and (53) in hand our claim (46) is now easily achieved, which concludes the
roof. □

Note that (46) is still valid for both cases of i = j and i ̸= j , if we choose β =
1
ρ′ for any

′
∈ (ρ, 2). We now give a weighted version of Proposition 2.27, which plays an important

role in our correction computations.

Proposition 2.28. Let x be a Rd -valued Gaussian process satisfying Hypotheses 2.8 and 2.12.
et ρ ′

∈ (ρ, 2) be fixed. For n ⩾ 1 we consider the uniform partition on [0, T ], namely
k =

k
n T , as well as the process F defined by (45). Let now f be a controlled process in the

Lq (Ω ) sense, namely such that there exists a process g fulfilling (in the matrix sense), for some
γ ∈ ( 1

4 , 1
2ρ

) and for all q ⩾ 1,

∥ ft∥q + ∥gt∥q ⩽ C, ∥δ fst − gs x1
st∥q ⩽ C(t − s)2γ , ∥δgst∥q ⩽ C(t − s)γ . (54)

hen the following estimate holds true for (s, t) ∈ S2([[0, T ]]): t−∑
tk=s

ftk ⊗ δFtk tk+1


q
⩽ C

(t − s)
1
2

nβ−
1
2

,

here C = C(q, ρ, ρ ′, T ) and β =
1
ρ′ ∈ (1/2, 1).

roof. This proposition was proved in [18, Corollary 4.9] when x is a fractional Brownian
otion. Although we generalize this result to a wider class of Gaussian processes, our proof

oes along the same lines. Therefore we shall omit the details for sake of conciseness. □

. Correction terms in the case 2 ⩽ p < 3

In this section, we derive a correction formula for controlled processes which are also in
he domain of the Skorohod integral and then provide some examples.

.1. Correction formula

As mentioned in the introduction, we have restricted our analysis to the case p < 3.
lthough we believe that our methodology could be extended to p < 4, this generalization
ould require a cumbersome study of third order integrals and related weighted sums.
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Theorem 3.1. Let x be a Gaussian rough path with covariance given by (10) satisfying
ypotheses 2.8 and 2.12 with ρ ∈ [1, 3

2 ). This implies that x has finite p-variation for p > 2ρ.
e can assume 1

p +
1
ρ

> 1, noting that ρ < 3
2 .

Let y be a second-order controlled process in the sense of Definition 2.21, and we
assume E[∥y∥

2
p−var;[0,T ]] < ∞. In particular, the rough integral

∫ t
0 yr dxr is defined as in

Proposition 2.20, resorting to the convention on inner products of Section 1.3. We also assume
that y ∈ D1,2(Hd ), so that the Skorohod integral of y given in (42) is well defined. Furthermore,

e suppose that D0 y has finite p-variation with E[∥D0 y∥
2
p−var;[0,T ]] < ∞, and Dy has finite

d p-variation with E[∥Dy∥
2
p−var;[0,T ]2 ] < ∞. Then for all t ∈ [0, T ] we have almost surely∫ t

0
yr dxr =

∫ t

0
yr d⋄xr +

1
2

d∑
i=1

∫ t

0
yx;i i

r dRr +

d∑
i=1

∫
S2([0,t])

(
Di

r1
yi

r2
− yx;i i

r2

)
dR(r1, r2),

(55)

here we recall from Section 2.1 that Rr := R(r, r ) and where the Malliavin derivative Di is
ntroduced in Remark 2.26.

roof. Let π = πn be the uniform partition of order n of [0, t], whose generic element is still
enoted by tk =

k
n t . A natural discretization of y along π is given by

yπ (r ) =

n−1∑
k=0

ytk 1[tk ,tk+1)(r ), r ∈ [0, t]. (56)

otice that we have assumed that y ∈ D1,2(Hd ). Hence both divergence integrals δ⋄(yπ ) and
⋄(y), as given in (42), are well defined. Moreover, according to (43), we have∫ t

0
yπ

r d⋄xr =

d∑
i=1

n−1∑
k=0

yi
tk ⋄ x1;i

tk tk+1
,

and owing to (44) this can be recast as∫ t

0
yπ

r d⋄xr =

d∑
i=1

n−1∑
k=0

yi
tk x1;i

tk tk+1
− ⟨Di yi

tk , 1[tk ,tk+1]⟩H . (57)

In addition, we will prove in the forthcoming Lemma 3.2 that δ⋄(yπ ) converges in L2(Ω ) to
⋄(y). Otherwise stated, for t ∈ [0, T ] we have∫ t

0
yr d⋄xr = lim

n→∞

∫ t

0
yπ

r d⋄xr . (58)

herefore combining (57) and (58), we get the following limit in L2(Ω ):∫ t

0
yr d⋄xr = lim

n→∞

d∑
i=1

n−1∑
k=0

(
yi

tk x1;i
tk tk+1

− ⟨Di yi
tk , 1[tk ,tk+1]⟩H

)
. (59)

n the other hand, owing to the fact that y is a controlled process in the sense of Definition 2.19,
roposition 2.20 asserts that

∫ t
0 yr dxr is defined as a rough paths integral and hence almost

urely we have∫ t

0
yr dxr = lim

n→∞

⎛⎝ d∑ n−1∑
yi

tk x1;i
tk tk+1

+

d∑ n−1∑
yx;i j

tk x2;i j
tk tk+1

⎞⎠ . (60)

i=1 k=0 i, j=1 k=0
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Gathering relations (59) and (60), we get the following expression for the Stratonovich–
Skorohod correction term:∫ t

0
yr dxr −

∫ t

0
yr d⋄xr = lim

n→∞

d∑
i=1

n−1∑
k=0

⎛⎝ d∑
j=1

yx;i j
tk x2;i j

tk tk+1 + ⟨Di yi
tk , 1[tk ,tk+1]⟩H

⎞⎠ , (61)

here the limit on the right-hand side above is understood in probability. In (61), notice that
he left-hand side is well defined thanks to the standing assumptions of our theorem. Hence
he right-hand side of (61) also makes sense, and we will now identify the limits therein.

In order to compute the limit for the terms yx;i j
tk x2;i j

tk tk+1 in (61), observe that y is a second
rder controlled process according to Definition 2.21. Hence yx is a controlled process
atisfying relation (23). Since we have assumed that Hypotheses 2.8 and 2.12 are fulfilled,
roposition 2.28 for the increment F can be applied with f = yx . Recalling (see (45)) that

δF i j
tk tk+1 = x2;i j

tk tk+1 − E[x2;i j
tk tk+1 ],

e end up with the following relation, valid for i, j = 1, . . . , d , where the limit has to be
onsidered in the L1(Ω ) sense:

lim
n→∞

n−1∑
k=0

yx;i j
tk

(
x2;i j

tk tk+1 − E
[
x2;i j

tk tk+1

])
= 0. (62)

n particular, going back to (61), we get that for i ̸= j we have

lim
n→∞

d∑
i ̸= j

n−1∑
k=0

yx;i j
tk x2;i j

tk tk+1 = 0. (63)

Let us deal with the left-hand side of (62) when i = j . Specifically, we will express
he limit of the sums

∑n−1
k=0 yx;i i

tk E
[
x2;i i

tk tk+1

]
as a Young integral. To this aim, notice that

x2,i i
tk tk+1 =

(
x1,i

tk tk+1

)2
due to the geometric assumption in Definition 2.4. Hence invoking the

act that Rtk = R(tk, tk) we have

2E
[
x2;i i

tk tk+1

]
= E

[
(x i

tk+1
− x i

tk )2
]

= Rtk+1 − 2R(tk+1, tk) + Rtk

=
(
Rtk+1 − Rtk

)
− 2 (R(tk+1, tk) − R(tk, tk)) .

herefore for all i = 1, . . . , d , we obtain a decomposition of the form
n−1∑
k=0

yx;i i
tk E

[
x2;i i

tk tk+1

]
=

1
2

I i
n − J i

n (64)

here I i
n, J i

n are respectively defined by

I i
n =

n−1∑
k=0

yx;i i
tk δRtk tk+1 , and J i

n =

n−1∑
k=0

yx;i i
tk

(
R(tk+1, tk) − R(tk, tk)

)
. (65)

The limit of for the term I i
n in (64) can be computed easily. Indeed, thanks to Remark 2.13

e know that t → Rt has finite ρ-variation. Furthermore, since y is a second order controlled
rocess, Definition 2.21 entails that yx has finite p-variation. We have also mentioned in

−1 −1
heorem 3.1 that p + ρ > 1. Hence classical Young integration arguments reveal that
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for i = 1, . . . , d we have almost surely,

lim
n→∞

I i
n =

∫ t

0
yx;i i

r d Rr . (66)

As far as the term J i
n in (65) is concerned, let us recast this expression in terms of a 2-d

Riemann sum. Namely we define another uniform partition {vl; 0 ⩽ l ⩽ n − 1} of [0, t], with
l =

l
n t . Then we start by writing

J i
n =

n−1∑
k=0

yx;i i
tk

(
R(tk+1, vk) − R(tk, vk)

)
. (67)

n addition, notice that thanks to Remark 2.13 we have R(·, 0) = 0. Thus an immediate
elescoping sum argument yields the following relation, valid for k = 0, . . . , n − 1:

R(tk+1, vk) − R(tk, vk) =

k−1∑
l=0

Rtk tk+1
vlvl+1 .

eporting this identity into (67), we get

J i
n =

n−1∑
k=0

yx;i i
tk

k−1∑
l=0

Rtk tk+1
vlvl+1 =

∑
0⩽l<k⩽n−1

yx;i i
tk Rtk tk+1

vlvl+1 . (68)

his decomposition prompts us to define a degenerate function f in the plane as f i (u, v) =

yx;i i
u 1[0<v<u<t]. With this notation in hand, relation (68) reads

J i
n =

n−1∑
k,l=0

f i (tk, vl)Rtk tk+1
vlvl+1 .

In order to analyze the convergence of J i
n , we now argue as follows: first R has a finite

-dimensional ρ-variation. The function f i (u, v) = yx,i i
u 1[0<v<u<t] is also easily seen to have a

nite 2-dimensional p-variation (owing to the fact that yx,i i has finite p-variation), and recall
hat p−1

+ ρ−1 > 1. Hence standard convergence procedures for 2d-Young integrals show that
lmost surely

lim
n→∞

J i
n =

∫ t

0

∫ t

0
f i (u, v) dR(u, v) =

∫
S2([0,t])

yx;i i
r2

dR(r1, r2). (69)

Summarizing our considerations for the case i = j , we gather (66) and (69) into the
ecomposition (64). We conclude that almost surely,

lim
n→∞

d∑
i=1

n−1∑
k=0

yx;i i
tk E[x2;i i

tk tk+1
] =

1
2

d∑
i=1

∫ t

0
yx;i i

r dRr −

d∑
i=1

∫
S2([0,t])

yx;i i
r2

dR(r1, r2). (70)

We now go back to (61), and handle the terms ⟨Di yi
tk , 1[tk ,tk+1]⟩H therein. We write the inner

roduct in H in an explicit way thanks to (38), which yields

⟨Di yi
t , 1[tk ,tk+1]⟩H =

∫ t ∫ t

Di
r yi

t 1[0,tk ](r1)1[tk ,tk+1](r2) dR(r1, r2).

k

0 0
1 k
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We thus have

lim
n→∞

d∑
i=1

n−1∑
k=0

⟨Di yi
tk , 1[tk ,tk+1]⟩H

= lim
n→∞

d∑
i=1

n−1∑
k=0

∫ t

0

∫ t

0
Di

r1
yi

tk 1[0,tk ](r1)1[tk ,tk+1](r2) dR(r1, r2).

e now argue similarly to what we did for (69). Namely one of our standing assumptions is
hat (r1, r2) → Di

r1
yi

r2
1S2 (r1, r2) has a finite 2-dimensional p-variation. Since R admits a finite

-variation and p−1
+ ρ−1 > 1, standard results concerning convergence of Riemann sums to

oung integrals show that almost surely we have

lim
n→∞

d∑
i=1

n−1∑
k=0

⟨Di yi
tk , 1[tk ,tk+1]⟩H =

d∑
i=1

∫
S2([0,t])

Di
r1

yi
r2

dR(r1, r2). (71)

e can now conclude our proof easily. That is plugging (62), (63), (70) and (71) into (61), we
nd up with, almost surely,∫ t

0
yr dxr −

∫ t

0
yr d⋄xr

=
1
2

d∑
i=1

∫ t

0
yx;i i

r dRr −

d∑
i=1

∫
S2([0,t])

yx;i i
r2

dR(r1, r2) +

d∑
i=1

∫
S2([0,t])

Di
r1

yi
r2

dR(r1, r2),

rom which the claim (55) is immediately deduced. This concludes the proof. □

We close this section by proving a technical result which has been used in order to derive
elation (58).

emma 3.2. Assume the same conditions as in Theorem 3.1. Then yπ defined in (56) converges
o y in D1,2(Hd ), i.e. lim|π |→0 E[∥yπ

− y∥
2
Hd + ∥Dyπ

− Dy∥
2
(Hd )⊗2 ] = 0.

roof. According to (38), we have

∥yπ
− y∥

2
Hd =

n−1∑
i, j=0

∫
[ti ,ti+1]×[t j ,t j+1]

⟨yti − ys, yt j − yt ⟩ dR(s, t),

here we recall that π = {0 = t0 < t1 < · · · < tn = t}. On each rectangle [ti , ti+1] × [t j , t j+1]
e apply Theorem 2.22 to the function

fi j (s, t) = ⟨ys − yti , yt − yt j ⟩,

hich is allowed since fi j is easily seen to be a function in C p−var
2 .

Recall that we have assumed p−1
+ ρ−1 > 1. Throughout the proof, we choose p′ > p and

′′ > ρ ′ > ρ satisfying

(p′)−1
+ (ρ ′)−1 > 1 and (p′)−1

+ (ρ ′′)−1 > 1.

Since we also have fi j (ti , ·) = 0 and fi j (·, t j ) = 0, we get

∥yπ
− y∥

2
Hd ⩽ C

n−1∑(
∥y∥p′−var;[ti ,ti+1]∥y∥p′−var;[t j ,t j+1]

)
∥R∥ρ′−var;[ti ,ti+1]×[t j ,t j+1]. (72)
i, j=0
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In order to bound the right-hand side of (72), we introduce a new function ω1, defined by

ω1([a, b] × [c, d]) = ∥y∥
p′

p′−var;[a,b]∥y∥
p′

p′−var;[c,d]. (73)

hen it is readily checked that ω1 is also a 2d-control in the sense of Definition 2.7. The
ollowing is easily deduced from (72):

∥yπ
− y∥

2
Hd ⩽C sup

i, j

(
ω([ti , ti+1] × [t j , t j+1])

) 1
ρ′ −

1
ρ′′

×

n−1∑
i, j=0

(
ω1([ti , ti+1] × [t j , t j+1])

) 1
p′
(
ω([ti , ti+1] × [t j , t j+1])

) 1
ρ′′

, (74)

where ω is the control defined in (15). Now both ω1 and ω above are 2d-controls. Hence an
asy extension of [9, Exercise 1.9] to a 2d setting shows that ω

1/p′

1 ω1/ρ′′

is also a 2d-control.
Hence one can resort to the super-additivity property of ω

1/p′

1 ω1/ρ′′

in order to deduce the
following from (74):

∥yπ
− y∥

2
Hd ⩽ C sup

i, j

(
ω([ti , ti+1] × [t j , t j+1])

) 1
ρ′ −

1
ρ′′
(
ω1([0, t]2)

) 1
p′
(
ω([0, t]2)

) 1
ρ′′

. (75)

We now turn to an upper bound on ∥Dyπ
− Dy∥(Hd )⊗2 . To this aim we first express this

uantity using the norm in (Hd )⊗2 induced by (38). This yields

∥Dyπ
− Dy∥

2
(Hd )⊗2

=

n−1∑
i, j=0

∫
[0,ti+1]×[0,t j+1]×[ti ,ti+1]×[t j ,t j+1]

⟨Du yti − Du ys, Dv yt j − Dv yt ⟩ dR(u, v)dR(s, t).

(76)

e apply Lemma 2.23 to the right-hand side of (76) and get

∥Dyπ
− Dy∥

2
(Hd )⊗2 ⩽ C

n−1∑
i, j=0

∥R∥ρ′−var;[0,ti+1]×[0,t j+1]∥R∥ρ′−var;[ti ,ti+1]×[t j ,t j+1]

×

(
∥D0 yti − D0 y·∥p′−var;[ti ,ti+1] + ∥D·yti − D·y·∥p′−var;[0,ti+1]×[ti ,ti+1]

)
×

(
∥D0 yt j − D0 y·∥p′−var;[t j ,t j+1] + ∥D·yt j − D·y·∥p′−var;[0,t j+1]×[t j ,t j+1]

)
.

s a preliminary step, we also bound the variations on intervals of the form [0, t j ] by variations
n [0, T ]. Thus one can bound ∥Dyπ

− Dy∥
2
(Hd )⊗2 by

C∥R∥ρ′−var;[0,T ]2

n−1∑
i, j=0

∥R∥ρ′−var;[ti ,ti+1]×[t j ,t j+1]

×

(
∥D0 y∥p′−var;[ti ,ti+1] + ∥Dy∥p′−var;[0,T ]×[ti ,ti+1]

)
×

(
∥D0 y∥p′−var;[t j ,t j+1] + ∥Dy∥p′−var;[0,T ]×[t j ,t j+1]

)
. (77)

We now wish to apply super-additivity properties of the p-variations, as we did for (75).
However, note that the function [a, b] × [c, d] ↦→ ∥Dy∥

p′

p′−var;[a,b]×[c,d] may fail to be super-
additive (see [11, Theorem 1]). Hence we need to resort to the controlled 2d variation as
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introduced in Definition 2.9. Specifically, it follows from (77) that ∥Dyπ
− Dy∥

2
(Hd )⊗2 can

e upper bounded by

C∥R∥ρ′−var;[0,T ]2

n−1∑
i, j=0

∥R∥ρ′−var;[ti ,ti+1]×[t j ,t j+1]

×

(
∥D0 y∥p′−var;[ti ,ti+1] + |||Dy|||p′−var;[0,T ]×[ti ,ti+1]

)
×

(
∥D0 y∥p′−var;[t j ,t j+1] + |||Dy|||p′−var;[0,T ]×[t j ,t j+1]

)
. (78)

Notice that the right-hand side of (78) is finite, noting that p < p′ and owing to (14).
Furthermore, noting that the function [c, d] ↦→ |||Dy|||

p′

p′−var;[0,T ]×[c,d] is a control, we can define
he following 2d controls (where we use [9, Exercise 1.9] again):

ω2([a, b] × [c, d]) = ∥D0 y∥
p′

p′−var;[a,b]∥D0 y∥
p′

p′−var;[c,d] (79)

ω3([a, b] × [c, d]) = |||Dy|||
p′

p′−var;[0,T ]×[a,b]|||Dy|||
p′

p′−var;[0,T ]×[c,d] (80)

ω4([a, b] × [c, d]) = ∥D0 y∥
p′

p′−var;[a,b]|||Dy|||
p′

p′−var;[0,T ]×[c,d]. (81)

ow, similarly to (75), relation (78) entails

∥Dyπ
− Dy∥

2
(Hd )⊗2 (82)

⩽ C∥R∥ρ′−var;[0,T ]2 sup
i, j

(
ω([ti , ti+1] × [t j , t j+1])

) 1
ρ′ −

1
ρ′′
(
ω([0, t]2)

) 1
ρ′′

×

4∑
k=2

(
ωk([0, t]2)

) 1
p′

,

where ω is the control given in (15). This is our desired bound for the difference Dyπ
− Dy.

Let us summarize our considerations so far. Gathering inequalities (75) and (82), we have
roved that

∥yπ
− y∥

2
Hd + ∥Dyπ

− Dy∥
2
(H)⊗2 (83)

⩽ C
(
1 + ∥R∥ρ′−var;[0,T ]2

) (
ω([0, t]2)

) 1
ρ′′

4∑
k=1

(
ωk([0, t]2)

) 1
p′

× sup
i, j

(
ω([ti , ti+1] × [t j , t j+1])

) 1
ρ′ −

1
ρ′′

,

where the controls ω, ω1, ω2, ω3, ω4 are respectively defined by (15), (73), (79), (80) and (81).
e can now argue as follows: first, according to (17), (14) and (15) we have

lim
n→∞

sup
i, j

ω([ti , ti+1] × [t j , t j+1]) = 0.

Next we have assumed in Theorem 3.1 that

E
[
∥y∥

2
p−var;[0,T ] + ∥D0 y∥

2
p−var;[0,T ] + ∥Dy∥

2
p−var;[0,T ]2

]
< ∞.

herefore one can take expected valued in (83) in order to get

lim
n→∞

E
[
∥yπ

− y∥
2
Hd + ∥Dyπ

− Dy∥
2
(Hd )⊗2

]
= 0,
hich is our claim. This concludes our proof. □
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3.2. Comments and examples

We close this section by comparing our main result Theorem 3.1 with existing Skorohod–
tratonovich integral correction formulae, and we also provide examples that satisfy the
onditions proposed in Theorem 3.1.

Before starting our comparison, note that Skorohod–Stratonovich correction formulae have
een studied for integrals of processes of specific forms (see [15,4]). In contrast, in Theorem 3.1
e consider integrals of generic processes satisfying some proper conditions. This is obviously
more general setting. Below we will discuss the connections between our result and those

f [15,4].

.2.1. Generality of the Gaussian process x
In [15], the relationship (1) is obtained for a γ -Hölder Gaussian process x with γ ∈ (0, 1).

he process y considered in [15] is of the special form y = f (x) for f ∈ C2N with N = ⌊
1
γ
⌋.

Our main result Theorem 3.1 holds for Gaussian processes possessing a finite p-variation
ith p ∈ (2, 3) (or alternatively the covariance function R satisfies ρ ∈ [1, 3

2 )). This set of
ssumptions is very close to the one used in [4]. The p-variation setting is more general than

the Hölder framework put forward in [15], but we do have the restriction p < 3 while [15]
ould handle cases with an arbitrary p ⩾ 1. Below we give some hints about the necessary
teps in order to cover more irregular cases for our Theorem 3.1.

Noting that Propositions 2.27 and 2.28 hold under Hypotheses 2.8 and 2.12 for p ∈ (2, 4),
e believe that our approach could be extended to p ∈ (2, 4). A key difference between

p ∈ (2, 3) and p ∈ [3, 4) is that a weighted sum in the third chaos of x will be involved in the
ough integral (60) for p ∈ [3, 4). Thus for p ∈ (2, 4), to calculate the Skorohod–Stratonovich
orrection term, we also need to develop an estimation procedure for the weighted sum in the
hird chaos of x , which is parallel to Proposition 2.28.

Observe that the condition p ∈ (2, 3) (or ρ ∈ [1, 3
2 )) is also used to define the Young

integrals appearing in (66), (69) and (71). However, if we further assume that R· and R(·, t)
or each t ∈ [0, T ] are absolutely continuous as in [15, Hypothesis 3.1], which is satisfied by
ractional Brownian motion B H with Hurst parameter H ∈ (0, 1), then it is easily checked that
he integrals in (66), (69) and (71) are well-defined as Riemann integrals.

.2.2. Generality of the integrand y
Apart from the aforementioned case y = f (x) handled in [15], the only rough-Skorohod

ntegral correction formula we are aware of is contained in [4]. More specifically in [4] the
elationship between

∫ t
0 yr dxr and

∫ t
0 yr d⋄xr is studied, where x satisfies Hypotheses 2.8 and

.12 and y is the solution to the rough differential equation (3) with σ being sufficiently regular.
his is a typical example of application for our Theorem 3.1, if one can verify that the process

y considered in [4] satisfy all conditions therein. This task is far from being trivial and is indeed
ne of the main achievements in [4]. Otherwise stated, the main ingredients that are needed in
he verification of the assumptions for Theorem 3.1 have already been obtained in [4]. To be

ore precise:

i) The condition E[∥y∥
2
p−var;[0,T ]] < ∞ is a direct consequence of [4, Theorem 2.25].

ii) The assumption E[∥D0 y∥
2
p−var;[0,T ]] + E[∥Dy∥

2
p−var;[0,T ]2 ] < ∞ follows from the relation

Ds yt = 1[0,t)(s)J x
t (J x

s )−1σ (ys), (84)

lus an application of [4, Theorem 2.27]. See also the end of the proof of [4, Proposition 4.10].
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With those relations in mind, our main Theorem 3.1 covers the analysis of y given as the
olution to a rough differential equation.

.2.3. Rough differential equations with drift and other possible extensions
The reader might wonder if Theorem 3.1 encompasses new cases of application, beyond

he aforementioned Refs. [4,15]. An easy step in this direction is given by rough differential
quations with drift, of the form

dyr = b(yr )dr + σ (yr )dxr , (85)

here we assume that b and σ are C∞-bounded vector fields. In this case the main conditions
in Theorem 3.1 are verified as follows:

(i) The bound E[∥y∥
2
p−var;[0,T ]] < ∞ stems directly from [3, Theorem 7.2].

(ii) The relation

E[∥D0 y∥
2
p−var;[0,T ]] + E[∥Dy∥

2
p−var;[0,T ]2 ] < ∞ (86)

also holds for Eq. (85). Indeed, identity (84) still holds true for the rough differential equation
with drift. In addition, the p-variation ∥J x

∥p−var;[0,T ] has finite n-moment for all n ⩾ 0 (see [12,
Proposition 2.26] and [5, Theorem 6.5]). This easily yields (86).

In conclusion, Theorem 3.1 also covers the case of rough differential equations with drift.
Let us briefly comment on other possible extensions. As mentioned in the introduction, we

firmly believe that our general methodology based on controlled paths with Malliavin calculus
conditions (plus convergence of weighted sums of processes with finite chaos expansions) can
be applied to a wider variety of contexts. To name a few, our framework can be extended to
delay equations [19], Volterra equations [6,7,14] and even to rough PDEs. However, this kind of
extension would require some significant additional effort. Indeed, the controlled path structure
as well as the building blocks of the rough path are quite different in the cases mentioned above.
A detailed analysis would thus be in order. We leave this kind of development to a subsequent
publication for the sake of conciseness.
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