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Abstract. Rough paths techniques give the ability to define solutions of stochastic differential equations driven by signals X which
are not semimartingales and whose p-variation is finite only for large values of p. In this context, rough integrals are usually Riemann–
Stieltjes integrals with correction terms that are sometimes seen as unnatural. As opposed to those somewhat artificial correction
terms, our endeavor in this note is to produce a trapezoid rule for rough integrals driven by general d-dimensional Gaussian processes.
Namely we shall approximate a generic rough integral

∫
y dX by Riemann sums avoiding the usual higher order correction terms,

making the expression easier to work with and more natural. Our approximations apply to all controlled processes y and to a wide
range of Gaussian processes X including fractional Brownian motion with a Hurst parameter H > 1/4. As a corollary of the trapezoid
rule, we also consider the convergence of a midpoint rule for integrals of the form

∫
f (X)dX.

Résumé. La théorie des trajectoires rugueuses ouvre la possibilité de résoudre des équations différentielles stochastiques dirigées par
un signal général X. Cette théorie va au-delà du cas d’une semi-martingale, et concerne un signal X dont la p-variation est finie pour p

arbitrairement grand. Dans ce contexte les intégrales rugueuses sont généralement définies comme des intégrales de Riemann–Stieljes,
corrigées par des termes qui peuvent paraître non naturels. Dans la présente note nous proposons de remplacer ces termes quelque peu
artificiels par une approximation trapézoïdale, dans le cas où X est un processus Gaussien d-dimensionnel général. Plus précisément,
nous approchons une intégrale rugueuse de la forme

∫
y dX par une somme de Riemann tout en évitant les termes correctifs d’ordre

supérieur, ce qui rend l’expression plus facile à manipuler et plus naturelle. Nos approximations fonctionnent pour tous les processus
contrôlés y, ainsi que pour une classe importante de processus Gaussiens X comprenant le mouvement brownien fractionnaire avec
paramètre de Hurst H > 1/4. Nous énonçons aussi un résultat de convergence concernant la règle du point milieu pour des intégrales
de la forme

∫
f (X)dX. Ce dernier résultat est un corollaire de notre règle trapézoïdale.
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1. Introduction

Inspired by the seminal series of papers [2,27], rough paths were first introduced in [20] in 1998 to study differential
equations of the form:

(1.1) yt = y0 +
d∑

j=1

∫ t

0
Vj (ys) dX

j
s ,

where Vj are smooth bounded vector fields, X : [0, T ] → R
d is a given function with finite p-variation, usually a stochas-

tic process, and y : [0, T ] → R
d is what is being solved for. Even though the final goal of the rough paths theory is to solve

differential systems of the form (1.1) driven by arbitrary noisy inputs, the main step in the approach can be reduced to a
proper definition of stochastic integrals like

∫ t

0 Vj (ys) dX
j
s above. In order to discuss this kind of integral, we consider a
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generic partition P = {0 = t0 < t1 < · · · < tn+1 = t} of [0, t] and the following Riemann sum:

(1.2) Rt
0

(
Vj (y),Xj

) :=
n∑

k=0

Vj (ytk )δX
j
tktk+1

,

where we define δXst := Xt − Xs . In a classical setting, one obviously expects Rt
0(Vj (y),Xj ) to converge to∫ t

0 Vj (ys) dX
j
s as the mesh of P goes to 0. Let us recall what this Riemann sum convergence becomes in a rougher

and/or stochastic context.

(i) When X is a semimartingale on a filtered probability space (�,F,Ft ,μ), we can use techniques from Itô calculus
to take limits in (1.2). For example, assuming that X is a L2 continuous martingale, then we define the stochastic
integral

(1.3)
∫ t

0
Vj (ys) dX

j
s

L2(�)= lim
|P |→0

Rt
0

(
Vj (y),Xj

)
,

where the limit of the Riemann sums is understood in the L2(�) sense. The stochastic integral (1.3) can be extended
to all processes which are adapted to the filtration Ft and square integrable with respect to the bracket of X.

(ii) When X is not a semimartingale, but is assumed to have finite p-variation for p < 2, one can rely on the classical
Young–Stieltjes integration to take limits in (1.2). Then one invokes a result in [27] which can be summarized as
follows.

Proposition 1.1. Let f ∈ Cp-var([0, T ],Rd) and g ∈ Cq-var([0, T ],Rd) with 1/p + 1/q > 1. Then the Riemann–
Stieltjes integral exists:

(1.4)
∫ t

0
fs dgs = lim

|P |→0
Rt

0(f, g).

Proposition 1.1 can be applied directly in order to analyze (1.2). Specifically, if we assume that y should have the
same p-variation as X, then we can make sense of (1.1) in Young–Stieltjes sense whenever X is a stochastic process
with finite p-variation almost surely for p < 2. In this case we define:

(1.5)
∫ t

0
Vj (ys) dX

j
s

a.s.= lim
|P |→0

Rt
0

(
Vj (y),Xj

)
,

that is
∫ t

0 Vj (ys) dX
j
s is defined as an almost sure limit of Riemann sums.

However, if we want to solve (1.1) beyond the semimartingale or the finite p-variation case with p < 2, rough paths
theory is the main available path-wise type method. We give a brief introduction to this method in Section 2.1, and refer
to [5,6,20] for a more comprehensive guide. At this point we just mention that rough path theory let us solve (1.1) for
X ∈ Cp-var and for arbitrary p, provided we can define the following stack of iterated integrals of order n = 1,2, . . . , �p�:

X
1,i
st =

∫ t

s

dXi
r , X

2,ij
st =

∫ t

s

∫ r

s

dXi
u dX

j
r ,

X
3,ijk
st =

∫ t

s

∫ r

s

∫ u

s

dXi
v dX

j
u dXk

r , . . . .

(1.6)

Notice that in this paper the analysis is restricted to the case p < 4, which corresponds to needing to define the first
three integrals in (1.6). This is due to issues in defining these integrals for worse p-variation. As mentioned above, once
the iterated integrals in (1.6) are properly defined, we can solve (1.1) thanks to the rough paths machinery whenever
X ∈ Cp-var. In particular if y is the solution to (1.1), one can define the stochastic integral

∫
y dX as the following limit

of modified Riemann sums:

(1.7)
∫ t

0
ys dXs = lim

n→∞

n∑
k=0

ytkX
1
tk,tk+1

+ V (ytk )X
2
tk tk+1

+ V ′V (ytk )X
3
tk tk+1

,

where we have considered a 1-dimensional situation (namely d = 1) in order to avoid cumbersome indices. Standard
and relevant applications of rough paths techniques are the ability to define and solve stochastic differential equations



1436 Y. Liu, Z. Selk and S. Tindel

driven by fractional Brownian motion or other processes with low regularity that are not semimartingales. Even for
equations driven by usual Brownian motions, the continuity results related to rough paths techniques bring simplifications
in classical stochastic analysis results such as large deviations principles, see [17]. Other relevant applications include data
analysis, see [11] and filtering theory, see [3].

Nevertheless, in spite of the rough paths theory’s numerous achievements, the definition (1.7) for an integral of y

with respect to X is sometimes seen as somehow not natural due to the higher order “correction” terms. In addition, the
presence of the high order iterated integrals in the right hand side of (1.7) makes the rough integral approximation difficult
to implement numerically. Ideally, one would thus like to take limits on simple Riemann sums like (1.2).

The natural endeavor of approximating rough (or other generalized stochastic) integrals by suitable Riemann sums has
been mostly carried out in case of a 1-dimensional fractional Brownian motion B and for integrals of the form

∫
f (B)dB .

The contributions in this direction includes [1,10,12,16,21–23,25]. We should also mention that the approximation of
rough integrals like (1.7) by trapezoid rules, for a 1-d fractional Brownian motion and a general controlled process y, has
been considered in [19]. Namely, the following approximation of a rough integral

∫
y dB is proposed in [19]:

(1.8) tr-J t
0 (y,B) :=

n∑
k=0

ytk + ytk+1

2
δBtktk+1 ,

where B is a one-dimensional fractional Brownian motion with Hurst parameter H ≥ 1/6 and where y is a process whose
increments are controlled by B (see Definition 2.8 below for the notion of controlled process). For H > 1/6 it is proven
that this trapezoid rule converges to the rough integral (1.7), while in the case H = 1/6 an additional Brownian term pops
out in the limit and the convergence holds in the weak sense only. Notice that this phenomenon had already been observed
in [12,22,23] for integrands of the form yt = f (Bt ) for a sufficiently smooth function f .

With those preliminary remarks in mind, the main aim of the current contribution is to extend the scope of trapezoid
type approximations to rough integrals. Our generalizations will go in two directions, that is (i) we shall prove the conver-
gence of trapezoid rules for d-dimensional Gaussian processes and (ii) we handle the case of a general class of Gaussian
processes beyond the fractional Brownian case. Our prototype of convergence theorem is stated below in an informal
way. The reader is referred to Theorem 3.12 for a more precise statement.

Theorem 1.2. Let X be a centered Gaussian process on [0, T ] admitting a sufficiently regular covariance function R

in the 2-d ρ-variation sense. Denote the rough path lift of X by X = (X1,X2,X3). Let y = (y, y1, y2) be a process
controlled by X (examples of controlled processes include yt = f (Xt ) and solutions of SDEs driven by X). For a given
partition of [0, T ], P = {0 = t0 < t1 < · · · < tn+1 < T }, we define the trapezoidal rule:

(1.9) tr-J T
0 (y,X) =

n∑
k=0

ytk + ytk+1

2
X1

tk tk+1
.

Then as the mesh size |P| → 0 we have

tr-J T
0 (y,X) −→

a.s.

∫ T

0
ys dXs ,

where the right hand side above designates the rough integral of y against X.

As mentioned above, our main Theorem 1.2 shows that one can approximate rough integrals by very natural Riemann
sums, for a wide class of integrands y and Gaussian driving noises X. As a corollary of our trapezoid rule, we will also
prove a midpoint rule for rough integrals of the form

∫
f (X)dX; see Corollary 3.15.

Remark 1.3. For conciseness we have assumed in the statement of our main result (see Theorem 3.12) that y and X are
both paths in the space R

d . In fact, the trapezoid rule holds for a general form
∫

y ⊗ dX of rough integrals as long as y

is a controlled process of X. We leave the details of this simple generalization to the patient reader.

Remark 1.4. It is interesting to observe that on top of the higher order iterated integrals for the Gaussian rough paths
X, the derivatives of the controlled process y are also avoided in the computation of the integral

∫
y dX in Theorem 1.2.

This is part of the novelty in our main result. We will say more about this fact in Remark 3.13, once our main objects of
interest are rigorously introduced.
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Let us mention a few words about the techniques employed for our proofs. Indeed, most of the aforementioned 1-d
contributions concerning convergences of trapezoid rules rely heavily on integration by parts techniques from Malliavin
calculus, together with central limit theorems for random variables in a fixed chaos. The generalization described in
Theorem 1.2 requires a new set of methods. Specifically, we shall use a combination of rough paths techniques in discrete
time in order to single out the main terms in (1.8). Then we can simplify the main part of the computations by performing
our integration by parts on the building blocks of our rough path X only. Eventually we invoke some limit theorems for
weighted sums in order to get our limit results.

Here is a brief outline of our paper. In Section 2 we set the ground for our computations by recalling some basic
facts about rough paths analysis, Gaussian processes and Malliavin calculus. Section 3 is then devoted to the trapezoid
rule. Namely Section 3.1 gives some preliminary results about Young integrals and convergence of random sequences.
Then some random sums in a finite chaos are analyzed in Section 3.2. The corresponding weighted sums are handled in
Section 3.3. With all those results in hand, our main theorem is proved in Section 3.4. Eventually we give a brief list of
processes to which our general result applies in Section 3.5.

In this article, C denotes a constant which may change from line to line. In the same way, G will denote a generic
integrable random variable whose value may change from line to line.

2. Preliminary material

This section contains some basic tools from Malliavin calculus and rough paths theory, as well as some analytical results
which are crucial for the definition and integration of controlled processes.

2.1. Elements of rough paths

In this section we shall recall the notion of a rough path above a continuous path X, and how this applies to Gaussian
processes. The interested reader is referred to [5,6] for further details.

2.1.1. Basic rough paths notions
For s < t and m ≥ 1, consider the simplex Sm([s, t]) = {(u1, . . . , um) ∈ [s, t]m;u1 < · · · < um}. We start by introducing
the notion of increments, which turns out to be handy in the definition of a rough path.

Definition 2.1. Let k ≥ 1. Then the space of (k − 1)-increments, denoted by Ck([0, T ],Rd) or simply Ck(R
d), is defined

as

Ck

(
R

d
)≡

{
g ∈ C

(
Sk

([0, T ]);Rn
); lim

ti→ti+1
gt1···tk = 0, for all i ≤ k − 1

}
.

In the sequel we will also often resort to a finite difference operator called δ, which acts on increments and is useful to
split iterated integrals into simpler pieces.

Definition 2.2. Let g ∈ C1(R
d), h ∈ C2(R

d). Then for (s, u, t) ∈ S3([0, T ]), we set

δgst = gt − gs, and δhsut = hst − hsu − hut .

In order to define rough integrals, some minimal regularity assumptions on increments will have to be made. In partic-
ular, it will be convenient to measure the regularity of increments in C1 and C2 in terms of p-variation.

Definition 2.3. For f ∈ C2(R
d), p > 1 we set

‖f ‖p-var = ‖f ‖p-var;[0,T ] = sup
P⊂[0,T ]

(∑
i

|fti ti+1 |p
)1/p

,

where the supremum is taken over all subdivisions P of [0, T ]. The set of increments in C2(R
n) with finite p-variation is

denoted by Cp-var
2 (Rd). For f ∈ C1(R

d), we denote ‖f ‖p-var = ‖δf ‖p-var.

We will also make an extensive use of Hölder norms, whose definition is recalled below:
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Definition 2.4. We denote by Cγ

2 (Rd) the space of γ -Hölder functions on [0, T ]. That is,

(2.1) Cγ

2

(
R

d
)=

{
f ∈ C2

(
R

d
) : sup

s,t∈[0,T ]
|fst |

|t − s|γ < ∞
}
.

We define Cγ

1 (Rd) the space of functions f such that δf ∈ Cγ

2 (Rd).

In the following we define the notion of control function:

Definition 2.5. A control function is a continous map ω : S2([0, T ]) → [0,∞) such that ω(s, s) = 0 for 0 ≤ s ≤ T which
satisfies the super-additivity, that is for all s ≤ t ≤ u in [0, T ]: ω(s, t) + ω(t, u) ≤ ω(s,u).

A 2d control function is a continuous map ω : S2([0, T ])×S2([0, T ]) → [0,∞) which is zero on degenerate rectangles
and satisfies ωR(D) ≥∑n

i=1 ωR(Di) if Di : 0 ≤ i ≤ n are disjoint rectangles such that D = ∪iDi .

With these preliminary definitions in hand, we now define the notion of a rough path above a continuous p-variation
path x with p > 1.

Definition 2.6. Let x be a continuous Rd -valued p-variation path for some p > 1. We say that x gives rise to a geometric
p-rough path if there exists a continuous path (xn

st , (s, t) ∈ S2([0, T ])) with values in (Rd)⊗n for each n ≤ �p� such that
x1
st = δxst , and a control function ωx such that

(1) Regularity: For all n ≤ �p�, xn satisfies |xn
st | ≤ ωx(s, t)

n/p .
(2) Multiplicativity: With δxn as in Definition 2.2, we have

(2.2) δxn
sut =

n−1∑
n1=1

xn1
su ⊗ x

n−n1
ut .

(3) Geometricity: Let xε be a sequence of piecewise linear approximations of x. For any n ≤ �p� we assume that xε,n

converges in p
n

-variation norm to xn, where x
ε,n
st is defined for (s, t) ∈ �2 by

(2.3) x
ε,n
st =

∫
(u1,...,un)∈Sn([s,t])

dXε
u1

⊗ · · · ⊗ dxε
un

.

In the sequel we will write x for the rough path above x, that is

xst = (
x1
st , . . . , x

�p�
st

)
, (s, t) ∈ S2

([0, T ]).
One of the key success factors of the rough path theory is its ability to give a proper definition of stochastic calculus in

very general contexts. Within this framework, the generic integrands in stochastic type integrals are so-called controlled
paths, whose definition is recalled below. We first introduce some necessary notations about matrix products.

Notation 2.7. In order to avoid lengthy indices in our formulae throughout the paper, we will adopt the following con-
vention for matrix products: two generic elements v ∈ (Rd)⊗k and u ∈ L((Rd)⊗k,Rm) will stand for families

v = {
vj1···jk ; j1, . . . , jk ∈ {1, . . . , d}},

u = {
uij1···jk ; i ∈ {1, . . . ,m}, j1, . . . , jk ∈ {1, . . . , d}},

where vj1···jk and uij1···jk are real numbers. In this context the product uv is defined as an element of Rm such that for
1 ≤ i ≤ m we have

(uv)i :=
d∑

j1,...,jk=1

uij1···jk × vj1···jk .

Similarly for 1 ≤ k′ ≤ k and w ∈ (Rd)⊗k′
, we define uw as an element of L((Rd)⊗(k−k′),Rm) such that for 1 ≤ i ≤ m

and 1 ≤ jk′+1, . . . , jk ≤ d we have

(uw)ijk′+1···jk :=
d∑

j1,...,jk′=1

uij1···jk′ jk′+1···jk × wj1···jk′ .
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We can now state the definition of controlled process in the p-variation framework.

Definition 2.8. Let x = (x1, . . . , x�p�) be a p-variation rough path as introduced in Definition 2.6. Let y0, . . . , y	−1 be
continuous processes yk : [0, T ] → L((Rd)⊗k,Rm) and define the remainder terms:

(2.4) rk
st = δyk

st − yk+1
s x1

st − · · · − y	−1
s x	−k−1

st

and r	−1
st = δy	−1

st , where we recall the notation δ given in Definition 2.2 and our Notation 2.7 on matrix products. If there
is a control function ωy such that ∣∣δyk

st

∣∣≤ ωy(s, t)
1/p and

∣∣rk
st

∣∣≤ ωy(s, t)
(	−k)/p

for all k = 0,1, . . . , 	 − 1, then we say that y = (y0, . . . , y	−1) is a R
m-valued path of order 	 controlled by x.

Remark 2.9. A controlled path has to be seen as a continuous path whose increments are “dominated” by the increments
of x. Namely, y0 is a continuous path taking values in R

m such that the increments δy0
st as given in Definition 2.2 are

given by

(2.5) δy0
st = y1

s x1
st + · · · + y	−1

s x	−1
st + r0

st .

The other relations in Definition 2.8 are imposed for algebraic sake.

Remark 2.10. In this paper, our main integration results will concern controlled paths. Hence it is worth recalling that
this class of processes is rich enough. It includes for instance solutions of differential equations driven by x such as (1.1),
as well as continuous paths of the form g(x) for a smooth enough function g.

Remark 2.11. We will also use γ -Hölder norm versions of Definitions 2.6 and 2.8 in our discussion. We will omit these
definitions for sake of conciseness. As an example, let us just mention that in a γ -Hölder version of (2.4) we would
assume yk ∈ Cγ

1 and rk ∈ C(	−k)γ

2 .

The following proposition contains the classical result about integration of controlled processes with respect to a rough
path, together with an approximation of the integral by enriched Riemann type sums.

Proposition 2.12. Let x be a continuous p-variation rough path on [0, T ] and let y be a R
d -valued path of order 	 = �p�

controlled by x as introduced in Definition 2.8. Consider a sequence of partitions of [0, T ] with mesh size |P| → 0. Then
the following limit:

(2.6) lim
|P |→0

n∑
k=0

y0
tk
x1
tk tk+1

+ y1
tk
x2
tk tk+1

+ · · · + y	−1
tk

x	
tktk+1

exists almost surely. It is called rough integral of y with respect to x and is denoted by
∫ T

0 ysdxs .

One of the crucial ingredients in rough paths theory is the sewing lemma for integration. We label two discrete versions
of this lemma, taken from [18], for further use. In the following we denote Sm(�s, t �) = {(u1, . . . , um) ∈ �s, t �m;u1 <

· · · < um}, where �s, t � denotes the discrete interval related to a given partition of [s, t] (see our forthcoming Notation 3.4).
For notational sake, we just write Sm for Sm(�0, T �).

Lemma 2.13. Consider a Banach space (B,‖·‖) and Q : S2 → B. Recall that we set δQsut = Qst −Qsu −Qut . Suppose
that ω is a control on �0, T �. Moreover, assume that Qtktk+1 = 0 for all tk ∈ �0, T � and that there exists a constant μ > 1
such that

(2.7) ‖δQsut‖ ≤ ω(s, t)μ

for all (s, u, t) ∈ S3. Then the following relation holds for all (s, t) ∈ S2:

‖Qst‖ ≤ Kμω(s, t)μ, where Kμ = 2μ

∞∑
l=1

l−μ.
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The following lemma is a particular case of Lemma 2.13 with ω(s, t) = |t − s|, which can be seen as the sewing lemma
in Hölder norm.

Lemma 2.14. Fix a constant μ > 1. Let Q be as in Lemma 2.13, and we further assume that there exists a constant
C > 0 such that

|δQsut | ≤ C · |t − s|μ, for all (s, u, t) ∈ S3.

Then for all (s, t) ∈ S2 we have

(2.8) |Qst | ≤ CKμ|t − s|μ.

2.1.2. Gaussian processes as rough paths
Let us now turn to a more probabilistic setting for our computations. Namely we assume that Xt = (X1

t , . . . ,X
d
t ) is a

continuous, centered Gaussian process with i.i.d. components, defined on a complete probability space (�,F,P). The
covariance function of X is defined as follows

(2.9) R(s, t) := E
[
X

j
s X

j
t

]
,

where Xj is any of the components of X. We shall also resort to the following notation in the sequel

(2.10) σ 2
t := E

[(
X

j
t

)2]
, and σ 2

st := E
[(

δX
j
st

)2]
.

The information concerning X used below is mostly encoded in the rectangular increments of the covariance function R,
which are given for s, t, u, v ∈ [0, T ] by

(2.11) Rst
uv := R(t, v) − R(t, u) − R(s, v) + R(s,u).

Notice that whenever the function R is given as a covariance function like in (2.9), the rectangular increments of R can
also be written as

(2.12) Rst
uv = E

[(
X

j
t − X

j
s

)(
Xj

v − X
j
u

)]
.

Related to rectangular 2-d increments, the notion of 2-dimensional ρ-variation leads to an efficient way of constructing
rough paths above a Gaussian process X. It will also feature prominently in our considerations, and thus we label its
definition for further use.

Definition 2.15. For a general continuous function R : [0, T ]2 →R and a parameter ρ ≥ 1, we set

(2.13) ‖R‖ρ−var;[s,t]×[u,v] := sup
(ti )∈P([s,t])
(t ′j )∈P([u,v])

(∑
i,j

∣∣Rt ′j t ′j+1
ti ti+1

∣∣ρ) 1
ρ

,

where P([s, t]) denotes the set of all partitions of [s, t] and where R
tj ′ tj ′+1
ti ti+1

is defined in (2.11).

We also define the space of functions in the plane with finite 2-d ρ-variation:

Definition 2.16. Given a finite dimensional vector space E, we define Cρ-var([0, T ]2,E) to be the space of all functions
f : [0, T ]2 → E such that ‖f ‖ρ-var < ∞.

The standard assumption allowing to build a rough path above a generic Gaussian process concerns the ρ-variation of
its covariance function. This is why we assume that the following hypothesis holds throughout the paper.

Hypothesis 2.17. We assume that X is a centered continuous Gaussian process with covariance function R such that
‖R‖ρ-var < ∞ for ρ ∈ [1,2).
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Remark 2.18. Note that the ρ-variation norm ‖ · ‖ρ-var introduced in Definition 2.15 uses grid-like partitions. As pointed
out in [7], those ρ-variations do not enjoy super-additivity properties. A standard way to circumvent this problem is to
replace the ρ-variation of Definition 2.15 by the so-called controlled 2-d ρ-variation norm (see [7, Definition 1]), which
we denote by | · |ρ-var. The norm | · |ρ-var does satisfy sup-additivity properties (cf [7, Theorem 1(iii)]). Therefore, although
we have not assumed |R|ρ-var < ∞ in Hypothesis 2.17, we can consider a ρ′ = (ρ + ε) > ρ for ε arbitrarily small such

that |R|ρ′-var < ∞ (this is ensured by [7, relation (1.2)]). Then one is allowed to pick the control ωR(D) = |R|ρ′
ρ′-var(D).

This kind of manipulation is routinely performed in e.g. [4,9].

With Remark 2.18 in mind and for notational sake, throughout the section we will skip the replacement of ρ by ρ′ and
pretend that the following is a consequence of Hypothesis 2.17.

Hypothesis 2.19. We assume that X is a centered continuous Gaussian process with covariance function R, ρ is a
parameter lying in [1,2) and ωR is a 2-d control (see Definition 2.5) such that for any rectangle D we have

‖R‖ρ-var,D ≤ ωR(D)1/ρ.

The following result (stated e.g. in [6, Theorem 15.33]) relates the 2-d ρ-variation of R with the pathwise assumptions
allowing to apply the abstract rough paths theory.

Proposition 2.20. Let X = (X1, . . . ,Xd) be a continuous centered Gaussian process with i.i.d. components and covari-
ance function R defined by (2.9). If R satisfies Hypothesis 2.17 then X gives raise to a geometric p-rough path according
to Definition 2.6, provided p > 2ρ.

2.2. Wiener spaces associated to general Gaussian processes

In this section we consider again the continuous, centered Gaussian process X of Section 2.1. Recall that its covariance
function R is defined by (2.9). We will describe the Cameron–Martin space assuming that we are in a real valued situation,
the generalization to a R

d -valued process being left to the patient reader.
The analysis of iterated integrals performed in Section 3 will be based on a Hilbert space H allowing a proper definition

of Wiener integrals as defined e.g. in [24]. Namely H is defined to be the completion of the linear space of functions of
the form

E =
{

n∑
i=1

ai1[0,ti ] : ai ∈R, ti ∈ [0, T ]
}

,

with respect to the inner product

(2.14)

〈
n∑

i=1

ai1[0,ti ],
m∑

j=1

bj 1[0,sj ]

〉
H

=
n∑

i=1

m∑
j=1

aibjR(ti , sj ).

Remark 2.21. Consider the special case X0 = 0, which means in particular that R(0,0) = 0. Then, as suggested by
(2.14), for any h1, h2 ∈H, we can infer that

(2.15) 〈h1, h2〉H =
∫ T

0

∫ T

0
h1(s)h2(t) dR(s, t),

whenever the 2-d Young integral on the right-hand side is well-defined (one can refer e.g. to [6] for more details).

Since H is the completion of E with respect to the inner product defined by (2.14), it is isometric to the Hilbert space
H 1(X) ⊆ L2(�,F,P) which is defined to be the | · |L2(�)-closure of the set

{
n∑

i=1

aiXti : ai ∈ R, ti ∈ [0, T ], n ∈ N

}
.

In particular, we have that |1[0,t]|H = |Xt |L2(�). The isometry between H and H 1(X) is denoted by X(h), and is called
a Wiener integral.
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Remark 2.22. As mentioned above in (2.14), the space H is a closure of indicator functions. Hence it can be defined on
any interval [a, b] ⊂ [0, T ]. We denote by H([a, b]) this restriction. For [a, b] ⊂ [0, T ], one can then check the following
identity by a limiting procedure on simple functions

(2.16) 〈f 1[a,b], g1[a,b]〉H = 〈f,g〉H([a,b]).

2.3. Malliavin calculus for Gaussian processes

In this section we review some basic aspects of Malliavin calculus. The reader is referred to [24] for further details.
As in Section 2.2, the family Xt = (X1

t , . . . ,X
d
t ) designates a continuous, centered Gaussian process with i.i.d. com-

ponents, defined on a complete probability space (�,F,P). For sake of simplicity, we assume that F is generated by
{Xt ; t ∈ [0, T ]}. An F -measurable real-valued random variable F is said to be cylindrical if it can be written, for some
m ≥ 1, as

F = f (Xt1, . . . ,Xtm), for 0 ≤ t1 < · · · < tm ≤ 1,

where f : Rm →R is a C∞
b function. The set of cylindrical random variables is denoted by S.

The Malliavin derivative is defined as follows: for F ∈ S, the derivative of F by

DF =
m∑

i=1

∂f

∂xi

(Xt1, . . . ,Xtm)1[0,ti ].

More generally, we can introduce iterated derivatives. Namely, if F ∈ S, we set

DkF = D · · ·DF.

For any p ≥ 1, it can be checked that the operator Dk is closable from S into Lp(�;H⊗k). We denote by D
k,p(H) the

closure of the class of cylindrical random variables with respect to the norm

‖F‖k,p =
(

E
[|F |p]+

k∑
j=1

E
[∥∥DjF

∥∥p

H⊗j

]) 1
p

,

and we also set D∞(H) = ∩p≥1 ∩k≥1 D
k,p(H). The divergence operator δ� is then defined to be the adjoint operator of D.

Namely, for a process u = {ut ; t ∈ [0, T ]} in the domain of δ� we have

(2.17) E
[
δ�(u)F

]= E
[〈DF,u〉H

]
,

for all F ∈ D
1,2. Notice that if u ∈ D

1,2(H), then we also have u ∈ Dom(δ�). A typical elementary increment which can
be represented thanks to the divergence operator is the following: for (s, t) ∈ S2([0, T ]) and 1 ≤ i ≤ d we have

(2.18) δXi
st = δ�(1[s,t]ei),

where ei denotes the i-th element of the canonical basis in R
d .

We close this section by recalling the following results on Hermite polynomials. Those polynomials are defined by
H0(x) = 1, H1(x) = x and then recursively by (n + 1)Hn+1(x) = xHn(x) − Hn−1(x). They form an orthonormal basis
of L2-functions with respect to the standard Gaussian measure on R. For further use, we recall that

(2.19) H1(x) = x, H2(x) = 1

2

(
x2 − 1

)
, H3(x) = 1

6
x3 − 1

2
x.

We shall also invoke the following property of Gaussian vectors.

Proposition 2.23. Let X, Y be jointly normal random variables with X,Y ∼ N (0,1) and denote by Hn the nth Hermite
polynomial. Then the following holds true:

(2.20) E
[
Hn(X)Hm(Y )

]=
⎧⎨
⎩

0 if n �= m,
1

n!
(
E[XY ])n if n = m.
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3. The trapezoid rule

This section is devoted to a complete statement and proof of the informal Theorem 1.2. We will first analyze some discrete
sums in a finite chaos related to our rough path X in Section 3.2, then move to some useful weighted sums in Section 3.3.
Eventually the main part of our proof will be achieved in Section 3.4.

Throughout the section we consider a general centered Gaussian process X which satisfies Hypothesis 2.19. In par-
ticular, the covariance function R is defined by (2.9) and the variance of the increments δXi

st is denoted by σ 2(s, t) (see
our notation (2.10)). As in Section 2, X admits a rough path lift X. We also label a notation which will be useful for our
future computations.

Notation 3.1. Let [s, t] × [u,v] be a generic rectangle in [0, T ]2. Consider a grid-like partition P = {[tk, tk+1] ×
[t̃k′ , t̃k′+1]; s = t0 < · · · < tm = t, u = t̃0 < · · · < t̃n = v}. Then we set Dkk′ = [tk, tk+1] × [t̃k′ , t̃k′+1].

3.1. Two inequalities

We first derive an inequality on 2-d Young integrals which we make extensive use of. It is an elaboration of the Young–
Loeve–Towghi inequality [26, Theorem 1.2]. Recall that for y ∈ C([0, T ]2), yst

uv denotes the rectangular increment of y

over [s, t] × [u,v] defined in (2.11).

Lemma 3.2. Let z ∈ Cρ-var([0, T ]2,Rd) and consider a function y sitting in the space Cθ -var([0, T ]2,L(Rd,Rd)) with
1/ρ + 1/θ > 1, where Cρ-var and Cθ -var are given in Definition 2.16. For some given s < t < σ and u < v < η we set
D = [s, σ ] × [u,η] and

(3.1) ŷtv :=
∫

[s,t]×[u,v]
ysr
ur ′ dzrr ′ .

Then the ρ-variation of ŷ on D can be bounded as follows:

(3.2) ‖ŷ‖ρ-var,D ≤ C · ‖y‖θ -var;D · ‖z‖ρ-var;D.

Proof. We consider partitions s = t0 < · · · < tm = σ and u = t̃0 < · · · < t̃n = η of [s, σ ] and [u,η], respectively. Recall
from Notation 3.1 that we denote Dkk′ = [tk, tk+1] × [t̃k′ , t̃k′+1] ⊂ D, and write

ŷ(Dkk′) = ŷ
tk tk+1

t̃k′ t̃k′+1
= ŷtk+1 t̃k′+1

− ŷtk+1 t̃k′ − ŷtk t̃k′+1
+ ŷtk t̃k′ .

Using expression (3.1), one can decompose ŷ(Dkk′) according to our partition in the following way:

(3.3)

ŷ(Dkk′) =
∫

Dkk′
ysr
ur ′ dzrr ′

=
∫

Dkk′
y

tkr

t̃k′ r ′ dzrr ′ +
∫

Dkk′
y

stk
t̃k′ r ′ dzrr ′ +

∫
Dkk′

y
tkr

ut̃k′ dzrr ′ +
∫

Dkk′
y

stk
ut̃k′ dzrr ′

:= I1 + I2 + I3 + I4.

It should be noticed that the term I1 above can be bounded directly thanks to the Young–Loeve–Towghi inequality [26,
Theorem 1.2]. We get

(3.4) |I1| ≤ C‖y‖θ -var,Dkk′ · ‖z‖ρ-var,Dkk′ .

The term I4 can also be treated easily. Indeed, we have

I4 = y
stk
ut̃k′ · ztktk+1

t̃k t̃k+1
,

and thus

(3.5) |I4| ≤ ‖y‖θ -var,[u,t̃k′ ]×[s,tk] · ‖z‖ρ-var,Dkk′ .
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We now focus on the 1-d type integral I2 in equation (3.3). In order to bound this term one can use the classical Young
inequality [27] in order to get

(3.6)

|I2| =
∣∣∣∣
∫

[t̃k′ ,t̃k′+1]
y

stk
t̃k′ r ′d(ztk+1r

′ − ztkr
′)

∣∣∣∣
≤ C

∥∥ystk
t̃k′ ·
∥∥

θ -var,[t̃k′ ,t̃k′+1] · ‖ztk+1· − ztk ·‖ρ-var,[t̃k′ ,t̃k′+1]

≤ C‖y‖θ -var,[s,tk]×[t̃k′ ,t̃k′+1] · ‖z‖ρ-var,Dkk′ .

In the same way, we can also upper bound the term I3 in (3.3) as

(3.7) |I3| ≤ C‖y‖θ -var,[u,t̃k′ ]×[tk,tk+1] · ‖z‖ρ-var,Dkk′ .

Plugging (3.4)–(3.7) into (3.3), we have thus obtained that∣∣ŷ(Dkk′)
∣∣≤ C

{‖y‖θ -var,Dkk′ + ‖y‖θ -var,[s,tk]×[t̃k′ ,t̃k′+1]

+ ‖y‖θ -var,[u,t̃k′ ]×[tk,tk+1] + ‖y‖θ -var,[u,t̃k′ ]×[s,tk]
} · ‖z‖ρ-var,Dkk′ .

Therefore by trivial monotonicity properties of θ -variations, we arrive at

(3.8)
∣∣ŷ(Dkk′)

∣∣≤ C‖y‖θ -var,D · ‖z‖ρ-var,Dkk′ .

As explained in Remark 2.18, we will skip the routine procedure of replacing ρ by ρ′ in order to apply super-additivity
relations to 2-dimensional ρ-variations. Hence summing relation (3.8) over k, k′ and invoking super-additivity, we finally
prove the desired inequality (3.2). �

We close this section by giving a general convergence lemma for a sequence of stochastic processes. It is borrowed
from [18, Lemma 3.5].

Lemma 3.3. Let α,β > 0. Let {zn,n ∈N} be a sequence of stochastic processes such that∥∥δzn
st

∥∥
Lp(�)

≤ Cpn−α(t − s)β,

for all p ≥ 1, where Kp is a constant depending on p and where we recall the notation δ given in Definition 2.2. Then
for 0 < γ < β and κ > 0, we can find an integrable random variable Gγ,κ independent of n and admitting moments of
any order, such that:

(3.9)
∥∥zn

∥∥
γ

≤ Gγ,κn−α+κ .

3.2. Upper-bounds for processes in a finite chaos

With the notions of Section 2 in hand, we now introduce a family of processes defined as sums of iterated integrals of X

which appear naturally in the analysis of the approximation (1.9). We start by proving a bound on sums of Lévy area type
processes which generalizes [14,15,18]. We first label a notation for further use.

Notation 3.4. Let P = {0 = t0 < · · · < tn = T } be a partition of [0, T ]. Take s, t ∈ [0, T ]. Then �s, t � : = {tk ∈ P : tk ∈
[s, t]}. We denote Sk(�s, t �) = {(t1, . . . , tk) : t1, . . . , tk ∈P and s ≤ t1 ≤ · · · ≤ tk ≤ t} as the discrete simplex.

The main bound involving Lévy area type objects is the following.

Lemma 3.5. Suppose that Hypothesis 2.19 holds true for the R
d -valued Gaussian process X = (X1, . . ., Xd) with co-

variance function R, 2-d control ωR and ρ ∈ [1,2). Consider a partition {tk : 0 ≤ k ≤ n} of [0, T ] and define the process
F on �0, T � by

(3.10) F
ij
t =

⎧⎪⎪⎨
⎪⎪⎩

∑
0≤tk<t

X
2,ij
tk tk+1

for i �= j,

∑
0≤tk<t

X
2,ii
tk tk+1

− E
[
X

2,ii
tk tk+1

]
for i = j,
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with the convention that F
ij

0 = 0. Then for any p ≥ 1 there exists a strictly positive constant C = Cp such that for all
(s, t) ∈ S2 and 0 ≤ ε ≤ 2 − ρ we have

(3.11)
∥∥δF ij

st

∥∥2
p

≤ C max
k,k′ ωR(Dkk′)

ε
ρ · ωR

([s, t]2) 2−ε
ρ ,

where ‖ · ‖p denotes the Lp(�) norm and where the rectangle Dkk′ is defined in Notation 3.1.

Proof. By hypercontractivity for random variables in the second chaos (see [24, Theorem 1.4.1]), we just need to consider
p = 2. Furthermore, when i = j notice that

(3.12) X
2,ii
tk tk+1

=
∫ tk+1

tk

∫ u1

tk

dXi
u2

dXi
u1

= 1

2

(
δXi

tktk+1

)2
,

where a complete justification of (3.12) is due to the Definition 2.6 and the fact that X is assumed to be geometric.
Therefore one can recast the definition of δF ii

tk tk+1
in (3.10) as

(3.13)

δF ii
tk tk+1

= X
2,ii
tk tk+1

− E
[
X

2,ii
tk tk+1

]= 1

2

(
X

1,i
tk tk+1

)2 − 1

2
E
[(

X
1,i
tk tk+1

)2]

= σ 2
tk tk+1

H2

(
X

1,i
tk tk+1

σtktk+1

)
,

where H2(x) = 1
2 (x2 − 1) as recalled in (2.19) and where the notation σ 2

st has been introduced in (2.10). Then putting
together relations (3.10), (3.12) and (3.13) we have

∥∥δF ii
st

∥∥2
2 = E

[∑
k

(
X

2,ii
tk tk+1

− E
[
X

2,ii
tk tk+1

])∑
k′

(
X

2,ii
tk′ tk′+1

− E
[
X

2,ii
tk′ tk′+1

])]

= E

[∑
k

σ 2
tk tk+1

H2

(
X

1,i
tk tk+1

σtktk+1

)∑
k′

σ 2
tk′ tk′+1

H2

(
X

1,i
tk′ tk′+1

σtk′ tk′+1

)]
.

Next, expanding the double sum in k, k′ above we get

(3.14)
∥∥δF ii

st

∥∥2
2 =

∑
k,k′

σ 2
tk,tk+1

σ 2
tk′ ,tk′+1

E

[
H2

(
X

1,i
tk tk+1

σtk,tk+1

)
H2

(
X

1,i
tk′ tk′+1

σtk′ ,tk′+1

)]
.

Since each X
1,i
tk tk+1

is a Gaussian random variable, we can now apply Proposition 2.23 with X = σ−1
tk tk+1

X
1,i
tk tk+1

and Y =
σ−1

tk′ tk′+1
X

1,i
tk′ tk′+1

. This yields

(3.15)

∥∥δF ii
st

∥∥2
2 = 1

2

∑
k,k′

σ 2
tk,tk+1

σ 2
tk′ ,tk′+1

(
E

[
X

1,i
tk tk+1

X
1,i
tk′ tk′+1

σtk,tk+1σtk′ ,tk′+1

])2

= 1

2

∑
k,k′

(
R

tktk+1
tk′ tk′+1

)2
.

Notice that the sum on the right hand side of (3.15) is a sum over rectangles Dk,k′ = [tk, tk+1] ×[tk′ , tk′+1]. Since we have
|Rtktk+1

tk′ tk′+1
| ≤ ωR(Dkk′)1/ρ thanks to Hypothesis 2.19, we obtain

∥∥δF ii
st

∥∥2
2 ≤ 1

2

∑
k,k′

ωR(Dkk′)2/ρ(3.16)

≤ 1

2
max
k,k′ ωR(Dkk′)

ε
ρ ·

∑
k,k′

ωR(Dkk′)
2−ε
ρ .(3.17)
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Now recall that in our statement we have chosen 0 ≤ ε ≤ 2 − ρ, which yields (2 − ε)/ρ ≥ 1. Hence invoking the super-
additivity of ωR and thus of ω

(2−ε)/ρ
R , we arrive at

(3.18)
∥∥δF ii

st

∥∥2
2 ≤ 1

2
max
k,k′ ωR(Dkk′)

ε
ρ · ωR

([s, t]2) 2−ε
ρ .

Putting together inequality (3.18) and the aforementioned hypercontractivity argument, our claim (3.11) is proved for
i = j .

Let us now handle the case i �= j . Similarly to what we did in (3.14), we compute

(3.19)

∥∥δF ij
st

∥∥2
2 =

∑
k,k′

E
[
X

2,ij
tk tk+1

X
2,ij
tk′ tk′+1

]

=
∑
k,k′

E

[∫ tk+1

tk

X
1,i
tkr

dX
1,j
r

∫ tk′+1

tk′
X

1,i
tk′ r ′ dX

1,j

r ′

]
.

In order to compute the right and side of (3.19) we proceed as in [6, p. 402]. Namely, we consider a Gaussian regularization
Xε of X whose rough path lift Xε also converges to X. Let us write Rε for the covariance function of the process Xε and
Fε be the process F defined similarly to (3.10) for the process Xε . A simple application of Fubini’s theorem yields

(3.20)

∥∥δF ε,ij
st

∥∥2
2 =

∑
k,k′

E

[∫ tk+1

tk

∫ tk′+1

tk′
X

ε,1,i
tk′ r ′ X

ε,1,i
tkr

dX
ε,1,j
r dX

ε,1,j

r ′

]

=
∑
k,k′

∫
Dk,k′

R
ε,tkr

tk′ r ′ dRε
(
r, r ′),

where we recall that Dk,k′ = [tk, tk+1] × [tk′ , tk′+1]. Taking limits in (3.20) as ε → 0 we get

(3.21)
∥∥δF ij

st

∥∥2
2 =

∑
k,k′

∫
Dk,k′

R
tkr

tk′ r ′ dR
(
r, r ′).

Then a direct application of inequality (3.2) yields

(3.22)
∥∥δF ij

st

∥∥2
2 ≤ C

∑
k,k′

‖R‖2
ρ-var;Dk,k′ ,

which in turn implies relation (3.16) thanks to Hypothesis 2.19. Starting from (3.22), we can thus conclude as we did for
(3.17) and (3.18) in the case i = j . Our result (3.11) is now shown for the case i �= j , which concludes our proof. �

We now state an elaboration of Lemma 3.5 for third-order integrals.

Lemma 3.6. Suppose that Hypothesis 2.19 holds for the Gaussian process X = (X1, . . . ,Xd) with covariance function
R, 2-d control ωR and ρ ∈ [1,2). For i, j, 	 ∈ {1, . . . , d}, (s, t) ∈ S2 and a generic partition {ti;0 ≤ k ≤ n} of [0, T ] we
denote

(3.23) δg
ij	
st =

∑
s≤tk<t

X
3,ij	
tktk+1

.

Then for any p ≥ 2 there exists a positive constant C = Cρ,p such that for all (s, t) ∈ S2 we have

(3.24)
∥∥δgij	

st

∥∥2
Lp(�)

≤ C
∑
k,k′

ωR(Dkk′)3/ρ + C
∑
k,k′

[
ωR(Dkk)ωR(Dk′k′)ωR(Dkk′)

]1/ρ
,

where we recall our Notation 3.1 for Dkk′ .

Proof. Along the same lines as Lemma 3.5, by hypercontractivity of random variables in the third chaos, we just need to
consider p = 2. We focus on this case in the remainder of the proof. We split our considerations in several steps.

Step 1: equal indices. In this step, we show that (3.24) holds when the indices are equal: i = j = 	. We first note that using
geometricity similarly to what we have done in (3.12), we get X

3,iii
tk tk+1

= 1
6 (δXi

tktk+1
)3. We now expand the cubic power in
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terms of Hermite polynomials along the same lines as for (3.13). Namely, owing to (2.19) we recall that x3 = 6H3(x)+3x.
Therefore, renormalizing (δXi

tktk+1
)3 by σtktk+1 (recall that σst is defined by (2.10)), we get

(3.25) X
3,iii
tk tk+1

= σ 3
tk tk+1

H3
(
σ−1

tk tk+1
δXi

tktk+1

)+ 1

2
σ 2

tk tk+1
δXi

tktk+1
.

Let us now go back to our expression (3.23) for i = j = 	. By linearity of the expected value we have

(3.26)
∥∥δgiii

st

∥∥2
2 =

∑
k,k′

E
[
X

3,iii
tk tk+1

X
3,iii
tk′ tk′+1

]
.

Plugging relation (3.25) into (3.26), invoking Proposition 2.23 and recalling that σ 2
tk tk+1

= R
tktk+1
tk tk+1

, we obtain the existence
of a universal constant C > 0 such that:

(3.27)

∥∥δgiii
st

∥∥2
2 =

∑
k,k′

(
R

tk′ tk′+1
tk tk+1

)3 + 1

4

∑
k,k′

R
tktk+1
tk tk+1

R
tk′ tk′+1
tk′ tk′+1

R
tk′ tk′+1
tk tk+1

≤ C
∑
k,k′

ωR(Dkk′)3/ρ + C
∑
k,k′

[
ωR(Dkk)ωR(Dk′k′)ωR(Dkk′)

]1/ρ
,

where the last inequality stems from Hypothesis 2.19 and the fact that |Rst
uv| ≤ ωR([u,v] × [s, t])1/ρ and where we have

used our Notation 3.1 for Dkk′ . We have thus proved our claim (3.24) for p = 2 and i = j = 	. As mentioned above, the
general case p ≥ 2 follows by hypercontractivity.

Step 2: three distinct indices. We turn to the proof of (3.24) for i, j , 	 all distinct. To this aim, we first note that a
regularization procedure similar to the one which lead to (3.21) yields

∥∥δgij	
st

∥∥2
2 =

∑
k,k′

E
[
X

3,ij	
tk tk+1

X
3,ij	
tk′ tk′+1

]

=
∑
k,k′

E

[∫ tk+1

tk

∫ u

tk

X
1,i
tk,v

dX1,j
v dX1,	

u

∫ tk′+1

tk′

∫ u′

tk′
X

1,i
tk′ ,v′ dX

1,j

v′ dX
1,	
u′

]

=
∑
k,k′

E

[∫ tk+1

tk

∫ tk′+1

tk′

∫ u

tk

∫ u′

tk′
X

1,i
tk,v

X
1,i
tk′ ,v′ dX1,j

v dX
1,j

v′ dX1,	
u dX

1,	
u′

]
,

for all (s, t) ∈ S2(�0, T �). Then using independence and Fubini’s theorem (here again the standard regularization argu-
ments are outlined in (3.21)) we get

(3.28)
∥∥δgij	

st

∥∥2
2 =

∑
k,k′

∫ tk+1

tk

∫ tk′+1

tk′

∫ u

tk

∫ u′

tk′
R

tkv

tk′v′ dR
(
v, v′)dR

(
u,u′).

Now applying twice inequality (3.2) to the right side of (3.28), we easily get

(3.29)
∥∥δgij	

st

∥∥2
2 ≤ C

∑
k,k′

ωR(Dkk′)3/ρ.

Our claim (3.24) is now proved for i, j , 	 distinct.

Step 3: two distinct indices. We now turn to the case of two distinct indices in i, j , 	. In fact we should divide this case
into 3 distinct subcases, namely i = j �= 	, i �= j = 	 and i = 	 �= j .

Case i = j �= 	. Recalling Notation 3.1 for the intervals [tk, tk+1] × [t̃k′ , t̃k′+1], we get

(3.30)

∥∥δgii	
st

∥∥2
2 =

∑
k,k′

E
[
X

3,ii	
tk tk+1

X
3,ii	
tk′ tk′+1

]

= 1

4

∑
k,k′

∫
Dkk′

E
[(

X
1,i
tku

)2(
X

1,i
tk′u′

)2]
dR

(
u,u′).
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In order to evaluate the term E[(X1,i
tku

)2(X
1,i
tk′u′)2] above, we reproduce the steps leading from (3.13) to (3.15) in the proof

of Lemma 3.5 (based on Hermite polynomial decompositions). This yields

(3.31)
∥∥δgii	

st

∥∥2
2 := I1 + I2,

where the terms I1 and I2 are defined by

(3.32) I1 = 1

4

∑
k,k′

∫
Dkk′

R
tku
tku

R
tk′u′
tk′u′ dR

(
u,u′) and I2 = 1

4

∑
k,k′

∫
Dkk′

(
R

tk′u′
tku

)2
dR

(
u,u′).

In the following we bound the two quantities I1 and I2.

In order to bound the term I2 in (3.32), let us set ϕ(u,u′) = (R
tk′u′
tku

)2. We will first estimate the ρ-var norm of ϕ. To
this aim, we decompose the rectangular increments of ϕ as follows

(3.33) ϕv′u′
vu = Rv′u′

vu

(
R

tk′v′
tku

+ R
tk′v′
tkv

)+ R
tk′u′
vu

(
Rv′u′

tku
+ Rv′u′

tkv

)
.

From this decomposition it is readily checked using Hypothesis 2.19 that for [v,u] × [v′, u′] ⊂ Dkk′ we have

(3.34)

∣∣ϕv′u′
vu

∣∣≤ CωR

([v,u] × [
v′, u′])1/ρ · ωR(Dkk′)1/ρ

+ CωR

([v,u] × [tk′ , tk′+1]
)1/ρ · ωR

([tk, tk+1] × [
v′, u′])1/ρ

.

This inequality can be used in order to evaluate the 2-d ρ-var norm of ϕ over the rectangle Dkk′ . Indeed, let P and P ′ be
partitions of [tk, tk+1] and [tk′ , tk′+1], respectively. From (3.34) we have∑

(v,u)∈P,(v′,u′)∈P ′

∣∣ϕv′u′
vu

∣∣ρ ≤ ωR(Dkk′)
∑

(v,u)∈P,(v′,u′)∈P ′
ωR

([v,u] × [
v′, u′])

+
∑

(v,u)∈P
ωR

([v,u] × [tk′ , tk′+1]
) ·

∑
(v′,u′)∈P ′

ωR

([tk, tk+1] × [
v′, u′]),

which, by the super-additivity of ωR , easily yields∑
(v,u)∈P,(v′,u′)∈P ′

∣∣ϕv′u′
vu

∣∣ρ ≤ ωR(Dkk′)2.

Since P and P ′ are generic partitions of [tk, tk+1], this implies that

(3.35) ‖ϕ‖ρ-var;Dkk′ ≤ ωR(Dkk′)2/ρ.

With relation (3.35) in hand, we can now establish a bound for I2. Indeed, recall that ϕ(u,u′) = (R
tk′u′
tku

)2. In particular,
we have ϕ(tk, u

′) = 0 and ϕ(u, tk′) = 0, and we get∫
Dkk′

(
R

tk′u′
tku

)2
dR

(
u,u′)=

∫
Dkk′

ϕ
tk′u′
tku

dR
(
u,u′).

Therefore, plugging (3.35) in the definition (3.32) of I2 and applying Lemma 3.2, we end up with

(3.36) |I2| ≤ C ·
∑
k,k′

ωR(Dkk′)3/ρ.

The estimation of I1 can be done along the same lines as for I2. Namely, we define a function ψ(u,u′) = R
tku
tku

R
tk′u′
tk′u′ .

Then the rectangular increments of ψ can be decomposed as

ψv′u′
vu = (

Rvu
tku

+ Rvu
tkv

)(
Rv′u′

tk′u′ + Rv′u′
tk′v′

)
.

from which we can deduce

(3.37)
∣∣ψv′u′

vu

∣∣≤ C · ωR

([tk, tk+1] × [v,u])1/ρ · ωR

([tk′ , tk′+1] × [
v′, u′])1/ρ

.
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Starting from (3.37) we can proceed as in (3.35)–(3.36). We arrive at

‖ψ‖ρ-var;Dkk′ ≤ CωR(Dkk)
1/ρωR(Dk′k′)1/ρ.

Now applying Lemma 3.2 again we end up with

(3.38) |I1| ≤ C
∑
k,k′

ωR(Dkk)
1/ρωR(Dk′k′)1/ρωR(Dkk′)1/ρ.

Let us conclude our estimates for this step: plugging (3.38) and (3.36) into (3.31) we have obtained

(3.39)
∥∥δgii	

st

∥∥2
2 ≤ C

∑
k,k′

[
ωR(Dkk′)3/ρ + ωR(Dkk)

1/ρωR(Dk′k′)1/ρωR(Dkk′)1/ρ
]
.

Case i = 	 �= j . We are now considering the general term

X
3,ij i
tk tk+1

=
∫

tk<u<v<w<tk+1

dXi
u dXj

v dXi
w.

We first apply the shuffle identities for weakly geometric rough paths to get

X
3,ij i
tk tk+1

= X
1,i
tk tk+1

· X2,ij
tk tk+1

− 2X
3,iij
tk tk+1

.

Plugging the above expression into our definition of g, we have obtained

(3.40)
∥∥δgiji

st

∥∥
2 ≤

∥∥∥∥ ∑
s≤tk<t

X
1,i
tk tk+1

· X2,ij
tk tk+1

∥∥∥∥
2
+ 2

∥∥δgiij
st

∥∥
2.

Note that the last term 2‖δgiij
st ‖2 above is bounded by (3.39). In the following we thus focus on the estimate for the

first term in the right hand side of (3.40). To this aim, we compute

∥∥∥∥ ∑
s≤tk<t

X
1,i
tk tk+1

· X2,ij
tk tk+1

∥∥∥∥
2

2
=
∑
k,k′

E
[
X

1,i
tk tk+1

· X2,ij
tk tk+1

· X1,i
tk′ tk′+1

· X2,ij
tk′ tk′+1

]
.

Then invoking the same regularization procedure as for (3.28), we get

∥∥X1,i
tk tk+1

· X2,ij
tk tk+1

∥∥2
2 =

∑
k,k′

∫
Dkk′

E
[
X

1,i
tk tk+1

· X1,i
tku

· X1,i
tk′ tk′+1

· X1,i
tk′u′

]
dR

(
u,u′).

Along the same lines as for (3.31), we then obtain the decomposition

(3.41)

∥∥∥∥ ∑
s≤tk<t

X
1,i
tk tk+1

· X2,ij
tk tk+1

∥∥∥∥
2

2
=: I3 + I4 + I5,

where the integrals I3, I4, I5 are respectively defined by

(3.42)

I3 =
∑
k,k′

R
tk′ tk′+1
tk tk+1

∫
Dkk′

R
tk′u′
tku

dR
(
u,u′), I4 =

∑
k,k′

∫
Dkk′

R
tk′ tk′+1
tku

R
tktk+1
tk′u′ dR

(
u,u′),

I5 =
∑
k,k′

∫
Dkk′

R
tk′ tk′+1
tk′u′ R

tktk+1
tku

dR
(
u,u′).

Let us bound the three terms above. First, a direct application of Lemma 3.2 yields

(3.43) |I3| ≤ C
∑
k,k′

ωR(Dkk′)3/ρ.
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We turn to the estimate of I4 and I5 in (3.42). Towards this aim and similarly to what we did in order to get (3.36), set
φ(u,u′) = R

tk′ tk′+1
tku

R
tktk+1
tk′u′ . Then it is readily checked that the rectangular increments of φ are upper bounded by

∣∣φu′v′
uv

∣∣≤ ∣∣Rtk′ tk′+1
uv

∣∣ · ∣∣Rtktk+1
u′v′

∣∣.
Therefore, we can write ∑

(u,v)∈P

∑
(u′,v′)∈P ′

∣∣φu′v′
uv

∣∣ρ ≤
∑

(u,v)∈P

∣∣Rtk′ tk′+1
uv

∣∣ρ ·
∑

(u′,v′)∈P ′

∣∣Rtktk+1
u′v′

∣∣ρ.

Note that by the definition of 2D-variation both summations on the right side above are bounded by ωR(Dkk′). We thus
obtain

(3.44) ‖φ‖ρ-var,Dkk′ ≤ CωR(Dkk′)2/ρ.

Now applying Lemma 3.2 to I4 in (3.42) and using (3.44) we obtain the estimate

(3.45) |I4| ≤ C
∑
k,k′

ωR(Dkk′)3/ρ.

The estimation of I5 can be obtained along the lines as for I4, and we obtain

(3.46) |I5| ≤ C
∑
k,k′

ωR(Dkk′)1/ρωR(Dkk)
1/ρωR(Dk′k′)1/ρ.

To finish this step, let us gather our estimates for the case i = 	 �= j . Plugging inequalities (3.43), (3.45) and (3.46)
into (3.41), and then back into (3.40), we get a relation which mimics (3.39):

(3.47)
∥∥δgiji

st

∥∥2
2 ≤ C

∑
k,k′

[
ωR(Dkk′)3/ρ + ωR(Dkk)

1/ρωR(Dk′k′)1/ρωR(Dkk′)1/ρ
]
.

Case i �= j = 	. This situation is handled along the same lines as in the previous cases, and details are left to the reader.
Namely, applying Fubini’s theorem we have

X
3,ijj
tk tk+1

= 1

2

∫ tk+1

tk

(
X

1,j
utk+1

)2
dX1,i

u .

Using this relation we can write ‖δgijj
st ‖2

2 as in (3.30) with X
1,i
tku

and X
1,i
tk′u′ replaced respectively by X

1,i
utk+1

and X
1,i
u′tk′+1

.

The estimation of ‖δgijj
st ‖2

2 is thus similar to the case when i �= j = 	 and we can show that the relation (3.39) also holds

true for δg
ijj
st .

Step 4: Conclusion. Let us summarize our considerations so far. Gathering the upper bounds (3.27), (3.29), (3.39), (3.40)
and the case i �= j = 	, we have proved relation (3.24) for all possible values of i, j, 	 ∈ {1, . . . , d} and p = 2. Recall
again that the general case p ≥ 2 is obtained by hypercontractivity, which finishes our proof. �

Let g be the increment in relation (3.23). We now wish to obtain an upper bound for g similar to the bound (3.11) we
have derived for F . This is the content of the next proposition.

Proposition 3.7. Let X and g be as in Lemma 3.6. Let θ > 1 be such that 1
θ

+ 1
ρ

= 1. Then there exists a constant C > 0
such that for all i, j, 	 ∈ {1, . . . , d} and (s, t) ∈ S2 we have

(3.48)
∥∥δgij	

st

∥∥2
p

≤ C max
k,k′ ωR(Dkk′)3/ρ−1 · ωR

([s, t]2)+ C max
k

ωR(Dkk)
2(1/ρ−1/θ) · ωR

([s, t]2)2/θ+1/ρ
.

In particular, for ε such that 0 ≤ ε ≤ (3 − ρ) ∧ (2 − 2ρ/θ) we have

(3.49)
∥∥δgij	

st

∥∥2
p

≤ C max
k,k′ ωR(Dkk′)

ε
ρ · ωR

([s, t]2) 3−ε
ρ .
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Proof. We first observe that since ρ < 2 and 1
θ

+ 1
ρ

= 1, we have θ > 2 > ρ. Applying Hölder’s inequality to the second
term on the right side of (3.24) yields

∣∣∣∣∑
k,k′

[
ωR(Dkk)ωR(Dk′k′)ωR(Dkk′)

]1/ρ

∣∣∣∣≤
(∑

k,k′

[
ωR(Dkk)ωR(Dk′k′)

]θ/ρ
)1/θ

·
(∑

k,k′
ωR(Dkk′)

)1/ρ

.

Hence thanks to an elementary algebraic manipulation and according to the definition of ρ-variation we get

∣∣∣∣∑
k,k′

[
ωR(Dkk)ωR(Dk′k′)ωR(Dkk′)

]1/ρ

∣∣∣∣ ≤
(∑

k

ωR(Dkk)
θ/ρ

)2/θ

ωR

([s, t]2)1/ρ

=
(∑

k

ωR(Dkk)
θ/ρ−1ωR(Dkk)

)2/θ

ωR

([s, t]2)1/ρ
.

Thus bounding the term ωR(Dkk)
θ/ρ−1 above by maxk,k′ ωR(Dkk)

(θ−ρ)/ρ and owing to the super additive property of
Hypothesis 2.19, we end up with

(3.50)

∣∣∣∣∑
k,k′

[
ωR(Dkk)ωR(Dk′k′)ωR(Dkk′)

]1/ρ

∣∣∣∣≤ (
max

k
ωR(Dkk)

2(1/ρ−1/θ)
)

· ωR

([s, t]2)2/θ · ωR

([s, t]2)1/ρ

=
(

max
k

ωR(Dkk)
2(1/ρ−1/θ)

)
· ωR

([s, t]2)2/θ+1/ρ
.

On the other hand, it is easy to see that

(3.51)
∑
k,k′

ωR(Dkk′)3/ρ ≤ max
k,k′ ωR(Dkk′)3/ρ−1 · ωR

([s, t]2).
Gathering (3.50) and (3.51) in (3.24), this concludes relation (3.48). Relation (3.49) follows immediately from (3.48) and
the fact that ωR(Dkk′) ≤ ωR([s, t]2). �

In the following, we turn to the estimate of another third-chaos functional.

Lemma 3.8. Let X and F be as in Lemma 3.5. For i, j, 	 = 1, . . . , d and (s, t) ∈ S2, we define the increment h
ij	
st as:

h
ij	
st =

∑
s≤tk<t

X
1,	
stk

δF
ij
tk tk+1

.

In addition, consider ε such that 0 ≤ ε ≤ 2 − ρ. Then the following inequality holds true:

(3.52)
∥∥hij	

st

∥∥2
p

≤ 4
(
ωR

([s, t]2) 3
ρ
− 2ε

ρ + ωR

([s, t]2) 3
ρ
− ε

ρ
) · max

k
ωR

([tk, tk+1] × [0, T ]) 2ε
ρ .

Proof. As in the proof of Lemma 3.6 we should distinguish cases according to possible equalities in the indices i, j , 	.
We focus on the case i = j in Step 1 to 3 below, and then deal with the case i �= j in Step 4.

Step 1: A decomposition of ‖h‖2
2. As mentioned above, let us first consider the case i = j and find an estimate for hii	

st .
We start by writing

(3.53) E
[∣∣hii	

st

∣∣2]=
∑
k,k′

E
[
X

1,	
stk

X
1,	
stk′ δF

ii
tk tk+1

δF ii
tk′ tk′+1

]
.

In addition, recall from (2.18) and (3.13) that

(3.54) δXi
st = δ�(1[s,t]ei), and δF ii

tk tk+1
= 1

2
σ 2

tk tk+1
H2

(
X

1,i
tk tk+1

σtktk+1

)
.
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Therefore, one can recast (3.53) as

(3.55) E
[∣∣hii	

st

∣∣2]= 1

4

∑
k,k′

σ 2
tk tk+1

σ 2
tk′ tk′+1

E
[
δ�(1[s,tk]e	)Zkk′

]
,

where the random variable Zkk′ is defined by

(3.56) Zkk′ = X
1,	
stk′ H2

(
X

1,i
tk tk+1

σtktk+1

)
H2

(
X

1,i
tk′ tk′+1

σtk′ tk′+1

)
.

Hence resorting to the integration by parts formula (2.17), we get that:

E
[∣∣hii	

st

∣∣2]= 1

4

∑
k,k′

σ 2
tk tk+1

σ 2
tk′ tk′+1

E
[〈1[s,tk]e	,DZkk′ 〉H

]
,

where we recall that e	 stands for the 	-th element of the canonical basis in R
d . Computing the Malliavin derivative of

Zkk′ (and recalling that H ′
2(x) = x), we let the reader check that we get the formula

(3.57) E
[∣∣hii	

st

∣∣2]= 1

4

∑
k,k′

(
J 1

kk′ + J 2
kk′ + J 3

kk′
)
,

where the terms J 1
kk′ , J 2

kk′ , J 3
kk′ are respectively defined by

(3.58)

J 1
kk′ = E

[
X

1,	
stk

X
1,	
stk′

] · E[
δF ii

tk tk+1
δF ii

tk′ tk′+1

]
,

J 2
kk′ = 〈1[s,tk],1[tk,tk+1]〉H · 〈1[s,tk′ ],1[tk′ ,tk′+1]〉H · 〈1[tk,tk+1],1[tk′ ,tk′+1]〉H · 1{i=	},

J 3
kk′ = 〈1[s,tk],1[tk′ ,tk′+1]〉H · 〈1[s,tk],1[tk,tk+1]〉H · 〈1[tk,tk+1],1[tk′ ,tk′+1]〉H · 1{i=	}.

In the following, we show that the upper-bound in (3.52) holds for each J a
kk′ , a = 1,2,3, and therefore concludes the

lemma.

Step 2: Estimate for J1
kk′ . In order to bound J 1

kk′ , we use the definition (2.12) as well as Hypothesis 2.19 in order to get

∣∣E[
X

1,	
stk

X
1,	
stk′

]∣∣= ∣∣Rstk′
stk

∣∣≤ ωR

([s, tk] × [s, tk′ ])1/ρ ≤ ωR

([s, t]2)1/ρ
.

Furthermore, invoking relations (3.13) and (3.15), we get

∣∣E[
δF ii

tk tk+1
δF ii

tk′ tk′+1

]∣∣= 1

2

(
R

tktk+1
tk′ tk′+1

)2 ≤ ωR(Dkk′)2/ρ.

Hence resorting to the same arguments as in Lemma 3.5 in order to get inequality (3.17), we get that for any ε ≤ 2 − ρ

we have:

(3.59)
∑
k,k′

∣∣J 1
kk′
∣∣≤ ωR

([s, t]2)1/ρ ·
∑
k,k′

ωR(Dkk′)2/ρ ≤ max
k

ωR(Dkk′)
ε
ρ · ωR

([s, t]2) 3−ε
ρ .

Otherwise stated, inequality (3.52) is satisfied for
∑

k,k′ |J 1
kk′ |.

Step 3: Estimate for J2
kk′ and J3

kk′ . We turn to an upper bound of the term J 2
kk′ in (3.58). To this aim, consider θ > 2 such

that 1
θ

+ 1
ρ

= 1. Then applying Hölder’s inequality to the summation in k, k′ of (3.58), we get

∑
k,k′

J 2
kk′ ≤

(∑
k,k′

∣∣〈1[s,tk],1[tk,tk+1]〉H〈1[s,tk′ ],1[tk′ ,tk′+1]〉H
∣∣θ)1/θ

×
(∑

k,k′

∣∣〈1[tk,tk+1],1[tk′ ,tk′+1]〉H
∣∣ρ)1/ρ

.
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Now we apply the estimate 〈1[u,v],1[u′,v′]〉H ≤ ‖R‖ρ-var,[u,v]×[u′,v′] to the three inner products in the above inequality.
We arrive at

(3.60)

∑
k,k′

J 2
kk′ ≤

(∑
k,k′

∣∣‖R‖ρ-var,[tk,tk+1]×[s,t] · ‖R‖ρ-var,[tk′ ,tk′+1]×[s,t]
∣∣θ)1/θ

·
(∑

k,k′
‖R‖ρ

ρ-var,Dkk′

)1/ρ

≤
(∑

k

‖R‖θ
ρ-var,[tk,tk+1]×[s,t]

)2/θ

· ωR

([s, t]2)1/ρ
.

Similarly to what we have done in the proof of Proposition 3.7, we note that θ > 2 > ρ. Hence combining Hypothesis 2.19
and the super-additivity of ωR we get the following estimate for 0 < ε ≤ 2 − ρ:

(3.61)
∑
k,k′

J 2
kk′ ≤ max

k
ωR

([tk, tk+1] × [s, t])ε/ρ · max
k′ ωR

([tk′ , tk′+1] × [s, t])ε/ρ · ωR

([s, t]2) 3−2ε
ρ .

This implies that the upper-bound estimate (3.52) holds for J 2
kk′ . It can also be shown that the same estimate holds for

J 3
kk′ . The proof is similar to that of J 2

kk′ and will be omitted. Combining (3.59) and (3.61), this completes the proof of
(3.52) for i = j .

Step 4: The case i �= j . We now turn to an estimate of h
ij	
st when i �= j . To this aim we first write an expression for

E[|hij	
st |2] mimicking (3.53), with the important difference that the term δF

ij
tk tk+1

cannot be represented by Hermite poly-

nomials as in (3.54). Note that when i �= j the integral
∫ t

s
δXi

su dX
j
u can be interpreted as a Wiener integral and thus it is

also a Skorohod integral. Hence the equivalents for (3.55) and (3.56) whenever i �= j is

(3.62) E
[∣∣hij	

st

∣∣2]=
∑
k,k′

E
[
δ�(1[s,tk]e	)Z̃kk′

]
,

where

Z̃kk′ = X
1,	
stk′ · δ�(X1,i

tk · · 1[tk,tk+1]ej

) · δ�(X1,i
tk′ · · 1[tk′ ,tk′+1]ej

)
.

Integrating relation (3.62) by parts similarly to (3.57), we end up with

E
[∣∣hij	

st

∣∣2]=
∑
k,k′

(
J̃ 1

kk′ + J 4
kk′
)
,

where J̃ 1
kk′ is given by

J̃ 1
kk′ = 〈1[s,tk],1[s,tk′ ]〉HE

[
δ�(X1,i

tk · · 1[tk,tk+1]ej

) · δ�(X1,i
tk′ · · 1[tk′ ,tk′+1]ej

)]
,

which can be bounded in a similar way as for J 1
kk′ in (3.58) and (3.59). As far as the term J 4

kk′ is concerned, it is defined
by

(3.63)

J 4
kk′ =

∫
Dkk′

(
R

tk′u
stk

R
tku

′
stk′ + R

tku
′

stk
R

tk′u
stk′

)
dR

(
u,u′) · 1{i=	}

+
∫

Dkk′

(
R

utk′+1
stk

R
u′tk+1
stk′ + R

u′tk+1
stk

R
utk′+1
stk′

)
dR

(
u,u′) · 1{j=	}.

In order to bound the expression above, we set φ(u,u′) = R
tk′u
stk

R
tku

′
stk′ . Then one of the terms in (3.63) is

∫
Dkk′ φ(u,

u′) dR(u,u′). We wish to bound this term thanks to Lemma 3.2. To this aim, similarly to what we did in (3.33)–(3.34),
we estimate the rectangular increments of φ. We get

∣∣φu′v′
uv

∣∣= ∣∣Ruv
stk

Ru′v′
stk′

∣∣≤ ‖R‖ρ-var,[s,t]×[u,v] · ‖R‖ρ-var,[s,t]×[u′,v′].
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Now we consider P and P ′ generic partitions of [tk, tk+1] and [tk′ , tk′+1] respectively, as well as θ such that 1
θ

+ 1
ρ

= 1.
Then we have ∑

[u,v]×[u′,v′]∈P×P ′

∣∣φu′v′
uv

∣∣θ ≤
∑

[u,v]∈P
‖R‖θ

ρ-var,[s,t]×[u,v] ·
∑

[u′,v′]∈P ′
‖R‖θ

ρ-var,[s,t]×[u′,v′]

≤ ‖R‖θ
ρ-var,[s,t]×[tk,tk+1] · ‖R‖θ

ρ-var,[s,t]×[tk′ ,tk′+1].

Therefore, we obtain

(3.64) ‖φ‖θ -var,Dkk′ ≤ ‖R‖ρ-var,[s,t]×[tk,tk+1] · ‖R‖ρ-var,[s,t]×[tk′ ,tk′+1].

Note that the estimate (3.64) of φ also holds for the other three functions in the right-hand side of (3.63), namely:

R
tku

′
stk

R
tk′u
stk′ , R

utk′+1
stk

R
u′tk+1
stk′ , R

u′tk+1
stk

R
utk′+1
stk′ .

The proof is similar and will be left to the reader. With (3.64) in hand, we can now invoke Lemma 3.2 for the right-hand
side of relation (3.63). This yields the existence of a constant C such that

(3.65)
∣∣J 4

kk′
∣∣≤ C · ‖R‖ρ-var,[s,t]×[tk,tk+1] · ‖R‖ρ-var,[s,t]×[tk′ ,tk′+1] · ‖R‖ρ-var,Dkk′ .

Starting from (3.65), we easily get an upper bound similar to (3.60) for
∑

k,k′ J 4
kk′ . Then we can proceed as in relation

(3.61). We conclude that (3.52) holds for the case i �= j . The proof is now complete. �

3.3. Upper-bounds for weighted sums

In this section we give some estimates for weighted sums of the processes F and g defined in the previous subsection.
These sums will be a part of our main terms in the analysis of the trapezoid rule.

Lemma 3.9. Let X be a R
d valued Gaussian process with covariance function R such that Hypothesis 2.17 holds with

ρ ∈ [1,2), and therefore Hypothesis 2.19 is guaranteed by Remark 2.18 and subsequent comments. Let ωR be the control
in Hypothesis 2.19. Recall that the increment F is defined in (3.10) and fix a partition P with mesh |P|. We also consider
a controlled process of order 2 according to Definition 2.8, which means in particular that the increments of y can be
decomposed as

(3.66) yst = y1
s X1

st + rst , s, t ∈ [0, T ].
We call ω the control ωy related to the increments of y in Definition 2.8, and recall that we have

(3.67)
∣∣δy1

st

∣∣≤ ω(s, t)1/p, |rst | ≤ ω(s, t)2/p, for all (s, t) ∈ S2
([0, T ])

almost surely. Eventually, we introduce below a parameter p such that 1
p

= 1−ε
2ρ

for ε small enough. Then the following
holds true:

(i) For every M > 0, we set AM = {ω(0, T ) ≤ M}. Then for all (s, t) ∈ S2 and (i, j) ∈ {1, . . . , d}2 we have:

(3.68) E

[
1AM

·
∣∣∣∣ ∑
s≤tk<t

ytk δF
ij
tk tk+1

∣∣∣∣
]

≤ C · max
k

ωR

([tk, tk+1] × [0, T ]) ε
2ρ .

In particular, ∑
s≤tk<t

ytk δF
ij
tk tk+1

−→ 0, in probability as |P| → 0.

(ii) In case of Hölder continuous processes X and y, one can improve the convergence as follows. Namely suppose that
δy1 ∈ C1/p and r ∈ C2/p almost surely and that

(3.69) ωR

([s, t] × [0, T ])≤ C|t − s|, for all (s, t) ∈ S2
([0, T ]).
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Furthermore, assume that the uniform partition 0 = t0 < · · · < tn = T over [0, T ] is considered. Then

(3.70)
∑

s≤tk<t

ytk δF
ij
tktk+1

−→ 0, almost surely as n → ∞.

Proof. Step 1: A decomposition. Consider (s, t) ∈ S2, where we recall that S2 stands for S2([0, T ]). With the help of
(3.66) we have the following decomposition

(3.71)
∑

s≤tk<t

ystk δF
ij
tk tk+1

= y1
s

∑
s≤tk<t

X1
stk

δF
ij
tk tk+1

+ r̃st ,

where we denote

(3.72) r̃st =
∑

s≤tk<t

rstk δF
ij
tk tk+1

.

Step 2: Calculations for δr̃ . In the following, in order to estimate r̃ we first estimate δr̃ . To this aim we observe that a
simple computation yields δrsut = δy1

suX
1
ut . Therefore, starting from (3.72) and using Definition 2.2 for the increment δr̃ ,

some elementary calculations show that

(3.73)

δr̃sut = rsu
∑

u≤tk<t

δF
ij
tk tk+1

+
∑

u≤tk<t

δrsutk δF
ij
tk tk+1

= rsu
∑

u≤tk<t

δF
ij
tk tk+1

+ δy1
su

∑
u≤tk<t

X1
utk

δF
ij
tk tk+1

.

Step 3: Moment estimates of δr̃ and r̃ . We now hinge on relation (3.73) in order to upper bound r̃ . We start by denoting

(3.74)
y1,M = 1AM

· y1, rM = 1AM
· r, r̃M = 1AM

· r̃ ,
δr̃M = 1AM

· δr̃, ωM(s, t) = E
[
1AM

· ω(s, t)
]
.

It is easy to see that ωM is a control. By the inequalities in (3.67) we also have

(3.75) E
[∣∣y1,M

su

∣∣p]≤ ωM(s,u), and E
[∣∣rM

su

∣∣p/2]≤ ωM(s,u).

We also recall that Hypothesis 2.19 holds with some 2-d control ωR .
Next we multiply both sides of (3.73) by 1AM

. According to our notation (3.74), we get

(3.76) δr̃M
sut = rM

su

∑
u≤tk<t

δF
ij
tk tk+1

+ δy1,M
su

∑
u≤tk<t

X1
utk

δF
ij
tk tk+1

.

We are now in a position to apply Hölder’s inequality, Lemma 3.5, Lemma 3.8 and the upper bound (3.75) in order to get
the existence of a constant C > 0 such that

(3.77)

E
[∣∣δr̃M

sut

∣∣]≤ CωM(s, t)2/p · ωR

([s, t]2) 1
ρ
− ε

2ρ · max
k,k′ ωR(Dkk′)

ε
2ρ

+ CωM(s, t)1/p · ωR

([s, t]2) 3
2ρ

− ε
2ρ · max

k
ωR

([tk, tk+1] × [0, T ]) ε
ρ .

Let us now discuss the exponents in (3.77). Indeed, recall that we have chosen p such that 1
p

= 1−ε
2ρ

. Therefore, owing to
the fact that ρ ∈ [1,2), ε can be chosen small enough so that

(3.78) νp,ρ ≡
(

2

p
+ 1 − ε/2

ρ

)
∧
(

1

p
+ 3

2ρ
− ε

2ρ

)
> 1.

In the sequel we pick a μ such that 1 < μ < νp,ρ . With this notation in hand define a bivariate function ω̃ by

ω̃(s, t) = (
ωM(s, t)2/p · ωR

([s, t]2) 1
ρ
− ε

2ρ
)1/μ + (

ωM(s, t)1/p · ωR

([s, t]2) 3
2ρ

− ε
2ρ
)1/μ

.
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As a direct application of [7, Exercise 1.9 item (iii)], it is readily checked that ω̃ is a control. In addition, one can recast
(3.77) as

(3.79) E
(∣∣δr̃M

sut

∣∣)≤ C max
k

ωR

([tk, tk+1] × [0, T ]) ε
2ρ · ω̃(s, t)μ,

where we recall that C is a constant that can change from line to line.
Summarizing our considerations for this step, we have obtained that r̃ is an increment from S2 to the Banach space

B = L1(�). Moreover, relation (3.72) easily entails r̃M
t	t	+1

= 0 for any point t	 of the partition P , and r̃ satisfies (3.79).

Therefore, a direct application of Lemma 2.13 on B = L1(�) yields

E
(∣∣r̃M

st

∣∣)≤ 2Kμ max
k

ωR

([tk, tk+1] × [0, T ]) ε
2ρ · ω̃(s, t)μ.

Plugging this estimate into (3.71) and combining it with (3.52), the proof of our claim (3.68) is now achieved.

Step 4: Path-wise estimates of F . We now turn to item (ii) in our lemma, assuming Hölder-continuity for y, y1, r and
considering uniform partitions of [0, T ] with tk+1 − tk = T/n. In this context, condition (3.69) allows to write the upper-
bound estimate of F (3.11) in Lemma 3.5 as:

∥∥δF ij
st

∥∥
q

≤ C|t − s| 1
ρ
−ε · |P|ε = C|t − s| 1

ρ
−ε · n−ε, for all q > 1 and (s, t) ∈ S2.

Applying Lemma 3.3 with zn = F , β = 1
ρ

− ε, and α = ε we obtain

(3.80)
∣∣δF ij

st

∣∣≤ G · (t − s)
1
ρ
−2ε · n−ε/2,

where G is a random variable admitting moments of all orders. In a similar way and with the help of Lemma 3.8, we can
show that

(3.81)

∣∣∣∣ ∑
s≤tk<t

X1
stk

F
ij
tk tk+1

∣∣∣∣≤ G · |t − s| 3
ρ
−2ε · n−ε/4.

With those preliminaries in mind, we will upper bound the increment
∑

s≤tk<t ytk δF
ij
tk tk+1

thanks to relation (3.71).
Namely in the right-hand side of (3.71) we have that almost surely

y1
s

∑
s≤tk<t

X1
stk

δF
ij
tk tk+1

→ 0, for all (s, t) ∈ S2

thanks to (3.81). Therefore, in order to show (3.70) it remains to show the convergence of r̃ .

Step 5: Path-wise estimates of δr̃ and r̃ . In order to bound δr̃ in the Hölder case, we plug (3.80) and (3.81) into the
expression (3.73) we have obtained for δr̃ . We end up with

|δr̃sut | ≤ G
(‖r‖2/p|t − s| 2

p
+ 1

ρ
−2ε · n−ε/2 + ∥∥y1

∥∥
1/p

|t − s| 1
p

+ 3
ρ
−2ε · n−ε/4)

≤ n−ε/4G
(‖r‖2/p + ∥∥y1

∥∥
1/p

) · |t − s|μ,

where similarly to what we did in Step 3, we take 1 < μ < ν̃p,ρ with

ν̃p,ρ =
(

2

p
+ 1

ρ
− 2ε

)
∧
(

1

p
+ 3

ρ
− 2ε

)
.

Hence one can resort to the Hölder version of the sewing lemma contained in Lemma 2.14. We get

|r̃st | ≤ CG
(‖r‖2/p + ∥∥y1

∥∥
1/p

) · n−ε/4|t − s|μ,

from which we easily deduce

(3.82) lim
n→∞|r̃st | = 0.

In conclusion, plugging (3.82) and (3.81) into (3.71) we have obtained relation (3.70). The proof is complete. �
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We now handle some weighted sums of the increment X3 which will feature in our trapezoid sums.

Lemma 3.10. As in Lemma 3.9, we consider a Gaussian process X whose covariance R satisfies Hypothesis 2.17 with
ρ ∈ [1,2). We call ωR the control defined in Hypothesis 2.19. Let X3 = {X3,ij	

st ; (s, t) ∈ S2([0, T ]), i, j, 	 = 1, . . . , d} be
the third order element in the rough path above X and take a sequence of partitions P with mesh |P|. We also consider a
continuous process y such that y0 = 0. Then the following holds true:

(i) Let us assume that the increments of y are dominated by a control ω over [0, T ]. Namely we suppose that for
all (s, t) ∈ S2([0, T ]) we have |δyst | ≤ ω(s, t)1/p almost surely, where p is such that 1

p
= 1−ε

2ρ
as in Lemma 3.9.

Consider a generic index (i, j, 	) ∈ {1, . . . , d}3, and recall that AM is defined by AM = {ω(0, T ) ≤ M} for M > 0.
Then we have

(3.83) E

[
1AM

·
∣∣∣∣ ∑
s≤tk<t

δystkX
3,ij l
tk tk+1

∣∣∣∣
]

≤ C · max
k,k′ ωR(Dkk′)

ε
2ρ .

In particular,

(3.84)
∑

s≤tk<t

δystkX
3,ij l
tk tk+1

−→ 0, in probability as |P| → 0.

(ii) If we are in a Hölder setting, namely y ∈ C1/p and ωR verifying (3.69), and if we also consider the uniform partition
P (see Lemma 3.9 item (ii)), then we get

(3.85)
∑

s≤tk<t

δystkX
3,ij l
tk tk+1

−→ 0, almost surely as n → ∞.

Proof. The proof is very similar to what we did for Lemma 3.9. For sake of conciseness we will only outline some of the
steps, focusing mainly on getting an equivalent of (3.77). Along the same lines as (3.74), we set

yM
s = 1AM

ys, rM
st = 1AM

·
∑

s≤tk<t

δystkX
3,ij l
tk tk+1

.

In this context we let the reader check that the equivalent of relation (3.76) becomes

δrM
sut = δyM

su ·
∑

u≤tk<t

X
3,ij l
tk tk+1

.

Hence applying Hölder’s inequality with p, q such that 1
p

+ 1
q

= 1, invoking Proposition 3.7 and recalling that ωM is
introduced in relation (3.74), we get

(3.86)

E
[∣∣δrM

sut

∣∣]≤ E
[∣∣δyM

su

∣∣p]1/p ·
∥∥∥∥ ∑

u≤tk<t

X
3,ij l
tk tk+1

∥∥∥∥
q

≤ CωM(s,u)1/p · max
k,k′ ωR(Dkk′)

ε
2ρ · ωR

([s, t]2) 3−ε
2ρ ,

for a positive constant C. Observe that (3.86) corresponds to (3.77) in the proof of Lemma 3.9. Also notice that we have
chosen p (with a small enough ε) so that 1

p
+ 3−ε

2ρ
> 1. Otherwise stated, condition (3.78) holds in the current context.

Therefore one can prove our claims (3.83), (3.84) and (3.85) exactly as in Lemma 3.9. �

Remark 3.11. Combining Lemma 3.8 with the above considerations, one can easily extend the conclusions of
Lemma 3.10 to sums of the form ∑

s≤tk<t

δystkX
2,ij
tk tk+1

X
1,	
tk tk+1

.

Details are ommited for sake of conciseness.
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3.4. Convergence of the trapezoid rule

With the previous preliminary results in hand, we are now ready to give a complete statement and carry out the proof of
our main Theorem 1.2.

Theorem 3.12. Let X be a centered R
d -valued Gaussian process on [0, T ] with covariance function R. Suppose that

Hypothesis 2.17 holds true for ρ ∈ [1,2). Denote the rough path lift of X by X = (X1,X2,X3). Next consider an R
d -

valued controlled process y of order 3, according to Definition 2.8. Specifically, there exist processes y1, y2, r0, r1 with
regularities to be specified below and such that

(3.87) δyst = y1
s X1

st + y2
s X2

st + r0
st , δy1

st = y2
s X1

st + r1
st ,

where we recall again our Notation 2.7 on matrix products. For a given partition of [0, T ]: P = {0 = t0 < t1 < · · · <

tn+1 = T } with mesh size |P|, we define the trapezoid rule:

(3.88) tr-J T
0 (y,X) =

n∑
k=0

ytk + ytk+1

2
· X1

tk tk+1
,

where we denote yt = (y1
t , . . . , yd

t ) and simply write (ytk + ytk+1) · X1
tk tk+1

for the inner product
∑d

i=1(y
i
tk

+ yi
tk+1

)X
1,i
tk tk+1

.
Then the following holds true:

(i) Assume that the framework of Definition 2.8 prevails and call ω the control function over [0, T ] such that for 1
p

of

the form 1−ε
2ρ

we have

(3.89)
∣∣r0

st

∣∣≤ ω(s, t)3/p,
∣∣δy2

st

∣∣≤ ω(s, t)1/p,
∣∣r1

st

∣∣≤ ω(s, t)2/p.

Then as the mesh size of the partition |P| goes to 0, we have

(3.90) tr-J T
0 (y,X) →

∫ T

0
ys dXs in probability,

where the right hand side above designates the rough integral of y against X as given in Proposition 2.12.
(ii) Assume we are in a Hölder setting, that is ωR verifies (3.69). Then recall that X generates a 1

p
-Hölder rough path,

and we also assume that r0 ∈ C3/p , r1 ∈ C2/p and y, y1, y2 ∈ C1/p . Eventually, consider the uniform partition 0 =
t0 < · · · < tn = T over [0, T ] with mesh T/n. Then the convergence in (3.90) holds almost surely.

Remark 3.13. As mentioned in Remark 1.4, our trapezoid sum (3.88) does not involve the derivatives y1, y2 of y. This
is an important point, and we now elaborate on this aspect of our work.

(i) The derivatives of a controlled process are usually non unique, unless X is a truly rough path (see [5, Proposition 6.4]
for a proof). However our main Hypothesis 2.17, as well as (3.69), are just regularity properties of the covariance
function R. They do not imply that X is a truly rough path, for which non degeneracy properties of R are required.

(ii) Furthermore, it is possible to find examples for which the rough integral
∫ T

0 ys dXs does depend on the derivative
process of y. See Example 3.14 below for a concrete case.

(iii) A byproduct of Theorem 3.12 is thus the following: we have found that in a fairly general Gaussian context, the
rough integral of a controlled process y does not depend on the derivatives y1, y2. This side remark is an interesting
result in its own right.

Example 3.14. Related to Remark 3.13, we now provide an example (kindly shared by Xi Geng [8]) of rough integral
depending on the derivative of the integrand, based on a pure area process x. Namely consider the canonical basis (e1, e2)

of R2 and the R
2 ⊕ (R2)2-valued rough path x defined by

(3.91) x1
st = 0, x2

st = (t − s)[e1, e2],
where [e1, e2] stands for the free Lie bracket of e1 and e2. It is easily checked that x is a rough path according to
Definition 2.6. Moreover x is a 1

2 -Hölder rough path, which means that it is a geometric α-Hölder rough path for all
α < 1

2 (see [7] for a justification).
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In this context, consider a controlled process y = (y0, y1), with y0, y1 arbitrary but smooth. Since x1 = 0, we have
r0 = δy0 − y1x1 = δy0. Hence r0 is smooth due to the fact that y0 is smooth. This yields that y is a controlled process.
Now owing to (2.6), using the notation of Proposition 2.12 and invoking (3.91) we have

∫ T

0
ys dxs = lim

|P |→0

∑
0≤tk<T

y0
tk
x1
tk tk+1

+ y1
tk
x2
tk tk+1

=
(∫ T

0
y1
s ds

)
[e1, e2].

It is thus obvious that
∫ T

0 ys dxs depends on the derivative y1.

With those few remarks in hand, we can now turn to the proof of our main theorem.

Proof of Theorem 3.12. Proceeding with the implicit assumption that we sum over tk ∈ P , omiting the summation sign
for notational convenience we get

(3.92) tr-J T
0 (y,X) = ytk · X1

tk tk+1
+ 1

2
δytktk+1 · X1

tk tk+1
.

Hence plugging the decomposition (3.87) into (3.92) and invoking Notation 2.7 on matrix products with m = d , we obtain

(3.93) tr-J T
0 (y,X) = ytk · X1

tk tk+1
+ 1

2

(
y1
tk
X1

tk tk+1
+ y2

tk
X2

tk tk+1
+ r0

tk tk+1

) · X1
tk tk+1

.

Let us rearrange the right-hand side above by setting

I1 = ytk · X1
tk tk+1

+ y1
tk

· X2
tk tk+1

+ y2
tk

· X3
tk tk+1

,

I2 = 1

2
y1
tk
X1

tk tk+1
· X1

tk tk+1
− y1

tk
· X2

tk tk+1
,

I3 = 1

2
y2
tk
X2

tk tk+1
· X1

tk tk+1
− y2

tk
· X3

tk tk+1
,

I4 = 1

2
r0
tk tk+1

· X1
tk tk+1

,

where we have written u · v for inner products of vectors as well as matrices. Then one can recast (3.93) as

(3.94) tr-J T
0 (y,X) = I1 + I2 + I3 + I4.

Now we analyze the terms I1, . . . , I4 in (3.94) in order to prove (3.90). We will focus on the assumptions and conclusions
of item (i), item (ii) being treated along the same lines.

First we observe that I1 is exactly of the form (2.6), with p < 4 and thus m = 3. Hence a direct application of
Proposition 2.12 yields the almost sure limit

I1 →
∫ T

0
y dX as |P| → 0.

Let us now analyze the term I2 in (3.94). To this aim, an elementary examination of matrix indices reveals that

(3.95) I2 = y1
tk

·
(

1

2
X1

tk tk+1
⊗ X1

tk tk+1
− X2

tk tk+1

)
.

Furthermore, since X is a geometric rough path, notice that a consequence of (2.2) is that for all (s, t) ∈ S2([0, T ]) we
have

Sym
(
X2

st

)= 1

2
X1

st ⊗ X1
st .

Hence one can write (3.95) as

I2 = −y1
tk

· Antisym
(
X2

tk tk+1

)= 1

2

d∑
i,j=1

y
1,ij
tk

(
X

2,j i
tk tk+1

− X
2,ij
tk tk+1

)
ij
.
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Thanks to our definition (3.10) of the increment F , this becomes

(3.96) I2 = 1

2

d∑
i,j=1

y
1,ij
tk

(
δF

ji
tk tk+1

− δF
ij
tk tk+1

)
.

Hence owing to identity (3.96), and since we have assumed that the increments of y1 are dominated by the control ω,
Lemma 3.9 item (i) shows that

lim
|P |→0

I2 = 0, in probability.

We now handle the sum I3 in (3.94). To this aim, we resort to Lemma 3.10 item (i) for the terms y2
tk

· X3
tk tk+1

and to

Remark 3.11 for the terms y2
tk
X2

tk tk+1
· X1

tk tk+1
. We end up with

lim
|P |→0

I3 = 0, in probability.

In order to show the convergence in (3.90), it remains to show that I4 → 0 in probability. Towards this aim, recall from
Definition 2.8 that the increment r0

tk tk+1
is dominated by ω(tk, tk+1)

3/p . Hence for a small ε > 0 we get

(3.97)

|I4| = 1

2

∑
0≤tk<T

∣∣r0
tk tk+1

· X1
tk tk+1

∣∣≤ 1

2

∑
0≤tk<T

ω(tk, tk+1)
3/p‖X‖p-var,[tk,tk+1]

≤ 1

2
max

k
ω(tk, tk+1)

ε ·
∑

0≤tk<T

ω(tk, tk+1)
3/p−ε‖X‖p-var,[tk,tk+1].

Now set

ω̃(s, t) = ω(s, t)3/p−ε · ‖X‖p-var,[s,t], (s, t) ∈ S2.

Using the same argument as for (3.79), it is easy to see that ω̃ is a control. Therefore, by the super-additivity of ω̃ we get

|I4| ≤ 1

2
max

k
ω(tk, tk+1)

ε · ω(0, T )3/p−ε · ‖X‖p-var,[0,T ].

Since maxk ω(tk, tk+1) → 0 as |P| → 0 it follows that I4 → 0 almost surely. This completes the proof of (3.90). Moreover,
recall that claim (ii) in our statement is obtained easily by adapting slightly the considerations above, similarly to what
we have done in Lemma 3.9. This completes the proof of our theorem. �

As mentioned in Theorem 1.2, typical examples of controlled processes are given by solutions of rough differential
equations and processes of the form y = f (X). Hence one can apply Theorem 3.12 in order to get a trapezoid rule (3.88)
for f (X). However, we would also like to consider Riemann sums which are closer to the ones handled in [1,12]. This is
why we wish to consider sums fo the form:

(3.98) m-J T
0

(
f (X),X

) :=
n−1∑
k=0

f

(
Xtk + Xtk+1

2

)
δXtktk+1 .

We now state a corollary of Theorem 3.12 giving the convergence of m-J T
0 (f (X),X) above.

Corollary 3.15. Let X be as in Theorem 3.12. Consider function f ∈ C3
b(Rd) and the midpoint rule m-J T

0 (f (X),X)

defined by (3.98). Then we have

(3.99) m-J T
0

(
f (X),X

)→
∫ T

0
f (Xs) dXs

as the mesh size |P| → 0. As in Theorem 3.12, the convergence holds in probability if p-variation regularity is considered,
and almost surely if Hölder continuity is assumed.
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Proof. We first recall that for a, b ∈R
d we have the following mean value identity

(3.100)
f (a) + f (b)

2
− f

(
a + b

2

)
= 1

2
∂2f (c)

(
b − a

2
⊗ b − a

2

)
,

where c ∈R
d satisfies c = a + θ(b − a) for some θ ∈ [0,1]. Let us take the difference of (3.88) and (3.98) and then apply

the mean value identity (3.100) with a = Xtk , b = Xtk+1 . Then we obtain

(3.101) tr-J T
0

(
f (X),X

)− m-J T
0

(
f (X),X

)= 1

8

n−1∑
k=0

∂2f (c)(δXtktk+1 ⊗ δXtktk+1) · δXtktk+1 ,

with c = Xtk + θδXtktk+1 . In order to prove (3.99), it suffices to show that the right-hand side of (3.101) converges to zero.
To this aim, we observe that

(3.102) ∂2f (c) = ∂2f (Xtk ) + θ∂3f (d)δXtktk+1 ,

where d = Xtk + λδXtktk+1 for some λ ∈ [0,1]. Substituting (3.102) into the right-hand side of (3.101) we obtain two
terms. It is then easy to see that one of the two terms is in the form of

∑
0≤tk<T ytkX

3
tk tk+1

with y = ∂2f (X). It then
follows from Lemma 3.10 that it converges to zero. The other term can be treated in a similar way as for I4 in (3.97),
which completes the proof. �

3.5. Applications

In this section we will briefly list some important examples of Gaussian processes satisfying our standing Hypothesis 2.17.
Notice that in the current paper we only request Vρ(R) < ∞ with ρ ∈ [1,2), which is a weaker condition than in [4],
and certainly weaker than in [9]. Hence all the examples listed in those two references also apply to our context. We just
highlight some of them below.

(i) The most obvious example is given by a fractional Brownian motion (fBm) BH for which the covariance function
R in (2.9) is given by

RH (s, t) = 1

2

(
t2H + s2H − |t − s|2H

)
.

Then RH satisfies Hypothesis 2.17 whenever H ∈ ( 1
4 ,1), with ωR([s, t]2) = |t − s|. One can also verify that (3.69)

holds.
(ii) If one considers a process X given as X = BH1 + BH2 with H1,H2 ∈ ( 1

4 ,1) and two independent Rd -valued fBms
BH1 and BH2 , then one can also apply our main Theorem 1.2 to X, with R(s, t) = RH1(s, t) + RH2(s, t).

(iii) The bifractional Brownian motion, introduced in [13] is a centered Gaussian process whose covariance RH,K is
given by

RH,K(s, t) = 1

2K

((
t2H + s2H

)K − |t − s|2HK
)
.

This process generalizes fBm (obtained for K = 1), and fulfills our Hypothesis 2.17 whenever HK ∈ (1/4,1).
(iv) We refer to [4] for a thorough exploration of random Fourier series, some of which yield a control such that

ωR([s, t]2) �= |t − s|, but still satisfying Hypothesis 2.17.
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