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Abstract. In this note we study a discrete time approximation for the solution of a class of
delayed stochastic differential equations driven by a fractional Brownian motion with Hurst
parameter H ∈ (1/2, 1). In order to prove convergence we use rough paths techniques.
Theoretical bounds are established and numerical simulations are displayed.
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1. Introduction

The fractional Brownian motion with Hurst parameter H ∈ (0, 1) is a centered Gaussian
process (Xt)t∈[0,1] whose covariance function can be written as

E [XtXs] =
1

2

(
s2H + t2H − |t− s|2H

)
.

The family of processes {X; H ∈ (0, 1)} enjoys several nice properties:
• For H = 1/2, one recovers the classical Brownian motion.
• For any H ∈ (0, 1), the paths of X are almost surely (H − ρ)-Hölder continuous for any
arbitrarily small ρ > 0. Specifically, we have

|Xt −Xs| < F0|t− s|H−ρ a.s. t, s ∈ [0, T ], (1.1)

• The covariance of the increments of X on intervals decays asymptotically as a negative
power of the distance between the intervals.
• Fractional Brownian motion is the only finite-variance process which is self-similar (with
index H) and has stationary increments.
These characteristics have converted the fractional Brownian family into the one of the most
natural generalization of Brownian motion among the probability community, but also for
practitioners, in the recent years.

At a theoretical level, it should be noticed that the martingale type techniques used for
the construction of a stochastic calculus with respect to the usual Brownian motion B1/2

cannot be invoked anymore when H 6= 1/2. However, when H ∈ (1/2, 1) one can define
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stochastic integrals and solutions to differential equations thanks to Young (see e.g. [11, 14]
for an account on these techniques) or fractional calculus (as explained in [25, 31]) methods.
The case H ∈ (0, 1/2) is avoided in this article for sake of readability, but let us mention
that one has to appeal to rough paths techniques (for which we refer to [11, 14] again) in
order to solve stochastic equations in this situation.

As far as applications of differential systems are concerned, the wide range of contexts in
which fBm driven models are used includes Biophysics [17, 27, 28], electrical engineering [7]
and finance [4, 13, 15, 16, 29] situations. All those applications involve ordinary or Volterra
type differential equations, but delayed systems can also be of huge importance. Indeed, to
mention just a single biomedical example, bacteriophage systems are commonly described by
delayed equations. Specifically, what we call bacteriophages are harmless viruses meant to
attack bacteria involved in animal diseases according to a so-called lytic process. In short, the
virus genetic material penetrates into the bacteria and uses the host replication mechanism to
self-replicate. This lytic step induces a complex chain of reactions and takes about 30mn to be
completed, while treatments are usually measured in hours. Thus, mathematical modelings
of the treatment naturally involve delayed equations, as assessed by the recent articles [1, 3, 2,
26]. While the aforementioned references are concerned either with deterministic or Brownian
driven equations for sake of simplicity, let us stress the fact that there are experimental
evidences that fBm models should also be dealt with in this context.

At a more theoretical level, random delay systems can also be seen a first approximation
of stochastic infinite dimensional differential equations such as stochastic PDEs. This point
of view is developed at length e.g in [22]. Since stochastic PDEs are notoriously hard to
handle, it is worth trying o first understand better the behavior delay equations driven by
fractional Brownian motions. This gives another appeal to the study of these systems.

With those motivations in mind, let us proceed to the mathematical description of the
model we are dealing with. Namely, we consider the following stochastic delay differential
equation driven by a fractional Brownian motion X (FSDDE) with Hurst parameter H >
1/2,

dYt = b(Yt)dt+ σ(Yt−r, Yt)dX
H
t , t ∈ [0, T ] (1.2)

Ys = φ(s) s ∈ [−r, 0]
where φ is a Hölder continuous function on [−r, 0] and r is a positive time delay. As a
solution to this equation we shall define a process {Xt, t ∈ [−r, T ]} satisfying

Yt = φ(0) +

∫ t

0

b(Ys)ds+

∫ t

0

σ(Ys−r, Ys)dXs, t ∈ [0, T ]

Yt = φ(t), t ∈ [−r, 0], (1.3)

where the integral with respect to fractional Brownian motion is the generalized Riemann-
Stieltjes integral introduced by Young, expressed in the formalism given by [14]. It is worth
mentioning that this kind of equation has been first introduced in [24, 19] (see also [9] and
[10] for a diffusion coefficient of the form σ(Yt−r)).

In this context, the current article focuses on a sequence of discrete time approximations
Y n of the solution Y to the FSDDE (1.3), on a compact interval [0, T ]. In a natural way,
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this scheme will be based on a regular partition of [0, T ] with mesh proportional to 1/n and
we will pursue two dual objectives:

(1) At a theoretical level, we will show a strong convergence result for the sequence Y n.
Namely, under suitable assumptions on the coefficients of (1.3), we shall see that
almost surely, the difference supt∈[0,T ] |Y n

t −Yt| is of order n−(2H−1−ρ) for ρ arbitrarily
small. This means that one can reach the same rate of convergence as in the non-
delayed case, which was first obtained in [21, 23]. Moreover, comparing our result to
other studies concerning numerical schemes for pathwise equations [8, 12, 19], let us
highlight the fact that we are dealing here with coefficients b, σ with linear growth
(as opposed to bounded coefficients). This covers more realistic situations in terms
of modeling, but is also a non negligible part of the technical problems we have to
face in the sequel. We believe that our scheme is the first one covering the case of
coefficients with linear growth, even in cases with no delay.

(2) We then illustrate our theoretical results by simulations in order to depict the typical
path of a delayed differential equation driven by fractional Brownian motion. In
particular, the reader will observe the influence of the Hurst parameter H in terms
of regularity of the path and convergence of the numerical scheme.

This paper is organized as follows. Section 2 is devoted to some preliminaries related
to rough paths theory and conditions for existence and uniqueness for the fractional delay
equation (1.2). In section 3 we define our discrete Euler scheme for the solution of FSDDE
(1.3) and we study its rate of convergence. Finally, in section 4 some numerical examples
are given.
Notation. Let π : 0 = t0 < t1 < · · · < tn = T be a partition on [0, T ]. Take s, t ∈ [0, T ].
We denote by Js, tK the discrete interval that consists of tk’s such that tk ∈ [s, t]. Let I
be either the interval [s, t] or the discrete interval Js, tK. We denote by Sk(I) the simplex
{s ≤ t1 < · · · < tk ≤ t}. Throughout our computations, Cx designates a constant which
depends on some Hölder norm of the signal x. The value of this kind of constant can change
from line to line.

2. Preliminaries

This section is devoted to some preliminary considerations about Young integration, as
well as delay equations driven by a Hölder noisy signal.

2.1. Hölder continuous paths. In this subsection, we introduce some basic concepts of
Young integration theory, in both discrete and continuous settings. Let γ ≥ 1

2
, and call

T > 0 a fixed finite time horizon. The following notation will prevail until the end of the
paper: for a vector space V and two functions f ∈ C([0, T ], V ) and g ∈ C(S2([0, T ]), V ) we
set

δfst = ft − fs, and δgsut = gst − gsu − gut. (2.1)

We start with the definition of some Hölder semi-norms: consider here a path x ∈
C([0, T ],Rm). Then we set

‖x‖[s,t],γ := sup
(u,v)∈S2([s,t])

|δxuv|
|v − u|γ

. (2.2)
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We denote by Cγ([s, t];Rm), or Cγ([s, t]) in a shorter form, the space of continuous functions
taking values in Rm such that ‖x‖[s,t],γ is finite. In the same way, if g ∈ C(S2([0, T ]), V ) and
h ∈ C(S3([0, T ]), V ), we define:

‖g‖[s,t],γ := sup
(u,v)∈S2([s,t])

|guv|
|v − u|γ

, and ‖h‖µ = sup
(s,u,t)∈S3([0,T ])

|hsut|
|t− s|µ

. (2.3)

We also notice that the Hölder norms in (2.2) and (2.3) can be defined for functions on the
discrete grid J0, T K. The corresponding spaces will be denoted by Cµ(Sk(J0, T K)).

For Hölder continuous paths with Hölder exponent greater that 1/2 , the classical Young
(or generalized Stieltjes) integral can be defined in the following way (see [30]).

Proposition 2.1. Let f and g be two real-valued γ-Hölder functions on [0, T ], with γ > 1
2
.

Then for (s, t) ∈ S2([0, T ]) the integral ∫ t

s

fr dgr

is defined as a limit of Riemann sums. In addition, it can be bounded as follows:∣∣∣∣∫ t

s

fr dgr

∣∣∣∣ ≤ Cγ
(
|fs||δgst|+ ‖f‖γ,[s,t]‖g‖γ,[s,t]|t− s|2γ

)
.

Notice that equation (1.3), as well as all our noisy integrals, will be interpreted in the Young
sense in the remainder of the paper.

We now state a lemma which will be crucial in the analysis of our numerical scheme
(see [20] for a proof). It allows to get estimates of a function f ∈ Cµ

2 in terms of δf , which
might be a simpler object.

Lemma 2.2. Let f be a function defined on J0, T K and µ > 1. Then the following inequalities
hold true:
(i) Whenever ftiti+1

= 0 for all 0 ≤ i < n we have

‖f‖µ ≤ Cµ ‖δf‖µ .

(ii) In the general case where the quantities ftiti+1
do not all vanish, we obtain:

‖f‖µ ≤ Cµ ‖δf‖µ + sup
{
|ftiti+1

|; 0 ≤ i < n
}
.

2.2. Stochastic delay equation. Recall that our aim is to get some convergence results
for the fractional delay equation (1.3). However, observe that one can also solve recursively
equation (1.3) in the following way:
(i) First on [0, r] we solve the equation:

Yt = Y0 +

∫ t

0

b(Ys)ds+

∫ t

0

σ(h(0)s , Ys)dXs,

where Y0 = φ(0) and h(0)s = Ys−r = φ(s− r).
(ii) If we assume that the equation is solved on [(j − 1)r, jr], equation (1.3) on [jr, (j + 1)r]
becomes:

Yt = Yjr +

∫ t

jr

b(Ys)ds+

∫ t

jr

σ(h(j)s , Ys)dXs, (2.4)
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where h(j)r = Ys−r and Yjr is considered as an initial condition.
In any of those cases h(j) can be though of as an input of the system, as opposed to an
unknown. We are thus reduced to the discretization of the following equation on [0, T ] (we
shall take T = r for our application to delay equations):

Yt = Y0 +

∫ t

0

σ(hs, Ys)dXs for t ∈ [0, T ], (2.5)

where X = (Xt)t≥0 is a fractional Brownian motion with Hurst parameter H > 1/2 and
h could be any Rm-valued process whose trajectories are in Cγ for some γ ∈ (1/2, 1), as
defined in (2.2). Here again, the stochastic integral in equation (2.5) is understood thanks
to Proposition 2.1.

Once our delay equation (1.3) has been reduced to (2.5), let us give the set of hypothesis
we wish to consider for the coefficients:

Hypothesis 2.3. In equation (2.5), consider a measurable coefficient σ : Rm × Rm → Rm,
which is twice differentiable in x, y Moreover we assume:

(1) The path h is a given element of Cγ for some γ ∈ (1/2, 1).
(2) There exist a constant Cσ > 0 and C1

σ > 0 such that:

|σ(x1, y1)− σ(x2, y2)| ≤ Cσ{|x2 − x1|+ |y2 − y1|}, ∀x1, x2, y1, y2 ∈ Rm.

(3) The function σ also satisfies the bound:

|σ(x, y)| ≤ C1
σ(1 + |x|+ |y|), ∀x, y ∈ Rm.

As mentioned in the introduction, we point out that, in order to cover relevant cases
in terms of applications, we only assume a linear growth for σ in Hypothesis 2.3. This
induces some technical difficulties with respect to the standard bounded coefficient case.
Nevertheless, one can prove the following existence and uniqueness result (see [25] for a
proof based on fractional calculus).

Theorem 2.4. Consider a fBm X with Hurst parameter H ∈ (1/2, 1). Let σ and h functions
that satisfy Hypothesis 2.3. Then equation (2.5) admits a unique solution Y ∈ Cγ([0, r]) for
any 1

2
< γ < H. Furthermore, the increments of this solution Y can be decomposed as follows

for all (s, t) ∈ S2([0, T ]):
δYst = σ(hs, Ys) δXst +RY

st, (2.6)
where the increment RY satisfies |RY

st| ≤ Cx|t− s|2γ for an almost surely finite constant Cx
depending only on ‖X‖γ.

3. The Euler scheme

In this section we define properly and analyze the Euler scheme related to equation (1.3)
rewritten as (2.5). In order to alleviate notations, we will consider that the function σ, the
process h and Y are R-valued. It should be noticed that the extension of our considerations
to multidimensional situations is just a matter of adding indices, which is left to the patient
reader.
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3.1. A priori bounds on the scheme. For a given T > 0, let J0, T Kn be an equidistant
partition of the time interval [0, T ] with step size T/n, i.e.

J0, T Kn = {0 = t0 < t1 < · · · < tn = T}, where tj =
jT

n
.

If s, t ∈ [0, T ] with s < t, we denote

Js, tK := [s, t] ∩ J0, T Kn

According to our recursive expression for equation (2.4), the numerical approximation
considered here can be defined in the following way:

Definition 3.1. The Euler scheme related to Equation (2.5) is a sequence {Y n; n ≥ 1}
where Y n = {Y n

ti
; ti ∈ J0, T K} is defined recursively by:

Y n
ti+1

= Y n
ti
+ σ(hnti , Y

n
ti
)δXtiti+1

, (3.1)

where the process hn is an approximation of h satisfying the following hypothesis:

|hnt − ht| ≤ C1
h

1

n2γ−1−ε , (3.2)

as well as the uniform bounds

δhnst ≤ C2
h |t− s|γ, and |δ(h− hn)st| ≤ C2

h

|t− s|γ

n2γ−1−ε . (3.3)

In our definition (3.1) we also assume Y0 to be a fixed constant. In the sequel we will set
C3
h = C1

h + C2
h.

Remark 3.2. In case of a delay equation, on each interval of the form [lr, (l + 1)r] one can
take hn as the Euler approximation Y n|[(l−1)r,lr] of equation (1.3) on the interval [(l−1)r, lr].
As we shall see, Y n|[(l−1)r,lr] fulfills the assumptions (3.2) and (3.3).

Let us now collect some basic information about the approximation Y n. According to
relation (3.1) we have that, for any point ti of the uniform partition:

δY n
titi+1

= σ(hnti , Y
n
ti
)δXtiti+1

(3.4)

We can extend this relation to any couple of points (s, t) in S2(J0, T Kn) by writing:

δY n
st = σ(hns , Y

n
s )δXst +Rn

st, (3.5)

where we have just set:
Rn
st := δY n

st − σ(hns , Y n
s )δXst. (3.6)

With this definition, we have that Rn
titi+1

= 0 according to (3.4).
The dicrete increment Rn introduced in (3.6) is expected to be 2γ-Hölder continuous. One

of the key ingredients in the analysis of our scheme is the study of ‖Rn‖2γ. To this aim,
notice that by Lemma 2.2 it is enough to study ‖δRn‖2γ. The following lemma is a first step
in this direction.

Lemma 3.3. Assume that the coefficients of equation (2.5) fulfill Hypothesis 2.3, and let
Rn be the remainder defined by (3.6). Then, for (s, u, t) ∈ S3(J0, T Kn), the increment δRn

satisfies the following inequality:

|δRn
sut| ≤ Cσ

[
C2
h|s− u|γ + |δY n

su|
]
‖X‖γ |t− s|

γ, (3.7)
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where C2
h is defined by relation (3.3).

Proof. Let us apply the operator δ on both sides of relation (3.6). Invoking the fact that
δδY n = 0 and δδX = 0, we get:

|δRn
sut| = |δδY n

sut − δ[σ(hns , Y n
s )δX]sut|

= |δσ(hn, Y n)suδXut − σ(hns , Y n
s )δ(δX)sut|

= |δσ(hn, Y n)suδXut|. (3.8)

We now resort to the linear bound on σ given in Hypothesis 2.3, which yields

|δRn
sut| ≤ Cσ [|δhnsu|+ |δY n

su|] ‖X‖γ |t− u|
γ

≤ Cσ
[
C2
h|s− u|γ + |δY n

su|
]
‖X‖γ |t− s|

γ,

where the last inequality comes from our assumption (3.3). �

According to equation (3.7), the study of δRn
sut can be reduced to an upper bound on

|δY n
su| for s < u < t. The following lemma delivers this bound.

Lemma 3.4. Let Hypothesis 2.3 as well as the upper bounds (3.2) and (3.3) prevail. Let Y n

be the Euler approximation of equation (2.5). Then for all s, t ∈ J0, T Kn the following bound
holds true:

|δY n
st | ≤ Ĉ |t− s|γ, (3.9)

where the constant Ĉ satisfies Ĉ ≤ c1 exp(c2(1 + ‖X‖1/γγ )) for two strictly positive constants
c1, c2.

Proof. We will prove by induction that, for all l = 1, 2, . . . n and s, t ∈ J0, T Kn such that
0 ≤ s < t ≤ tl we have:

|δY n
st | ≤ C2|t− s|γ. (3.10)

This proof will be divided in several steps.
Step 1: case l = 1. For l = 1, owing to the Hölder continuity of the process X and the
linear growth of σ, we have

|δY n
0t1
| = |σ(hn0 , Y n

0 )‖δX0t1|
≤ C1

σ(1 + |hn0 |+ |Y n
0 |) ‖X‖γ t

γ
1 . (3.11)

This yields relation (3.10) for l = 1.
Step 2: Upper bound for Rn. Consider an index l = 1, . . . , n. Our induction assumption
is that (3.10) is true 0 ≤ s < t ≤ tl. We shall now propagate the induction, that is prove
that the inequality is true for its successor, l+1. We will thus study (3.10) for s, t ∈ J0, T Kn
with 0 ≤ s < t ≤ tl+1. Furthermore, if 0 ≤ s < t ≤ tl inequality (3.10) is trivially satisfied
thanks to our induction hypothesis. Let us now focus on the case 0 ≤ s < t = tl+1. Namely,
consider s < u < t with t = tl+1. Since |u − s| < |t − s|, owing to (3.7) and our induction
hypothesis we get that,

|δRn
sut| ≤ Cσ

[
C2
h|u− s|γ + |δY n

su|
]
‖X‖γ |t− s|

γ

≤ Cσ
[
(C2

h + C2)|u− s|γ
]
‖X‖γ |t− s|

γ

≤ Cσ(C
2
h + C2) ‖X‖γ |t− s|

2γ. (3.12)
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Since inequality (3.12) is also obviously true if t < tl+1, we can apply Lemma 2.2 over J0, tl+1K
in order to obtain:

‖Rn‖[s,t],γ ≤ CγCσ(C
2
h + C2) ‖X‖γ |t− s|

γ,

or otherwise stated, for 0 ≤ u ≤ v ≤ tl+1:

|Rn
uv| ≤ CγCσ(C

2
h + C2) ‖X‖γ |v − u|

2γ. (3.13)

Step 3: Local upper bound for δYn. Recall that the dynamics of Y n is governed by
equation (3.5). We will start by bounding uniformly the quantity Y n

t , which is obtained
thanks to an anlysis of the increment δY n

0t. Namely, invoking the dynamics (3.5), we get:

|δY n
0t| ≤ |σ(hn0 , Y n

0 )‖δX0t|+ |Rn
0t|

≤ C1
σ (1 + |hn0 |+ |Y n

0 |) |δX0t|+ |Rn
0t|

≤ C1
σ (1 + |hn0 |+ |Y n

0 |) ‖X‖γ |t|
γ + |Rn

0t|
≤ C1

σ

(
1 + |hn0 |+ |Y n

0 |+ CγCσ(C
2
h + C2)|t|γ

)
‖X‖γ |t|

γ, (3.14)

where the last inequality is due to (3.13). We thus end up with the following inequality on
J0, tl+1K:

|Y n
t | ≤ |Y n

0 |+
(
C1
σ (1 + |hn0 |+ |Y n

0 |) + CγCσ(C
2
h + C2)|t|γ

)
‖X‖γ |t|

γ

≡ K(Y n
0 , C2, σ, h

n
0 , X, t). (3.15)

Let us now handle the case of a general increment δY n
st . We first resort to (3.5) and

Hypothesis 2.3 in order to get

|δY n
st | ≤ |σ(hns , Y n

s )‖δXst|+ |Rn
st| ≤ C1

σ (1 + |hns |+ |Y n
s |) |δXst|+ |Rn

st|.

Now plug inequalities (3.3), (3.13) and(3.15), which yields:

|δY n
st | ≤ C1

σ

(
1 + |hn0 |+ C2

h|s|γ +K(Y n
0 , C2, σ, h

n
0 , X, s)

)
|δXst|+ |Rn

st|
≤ C1

σ

(
1 + |hn0 |+ C2

h|s|γ +K(Y n
0 , C2, σ, h

n
0 , X, s)

)
‖X‖γ |t− s|

γ + |Rn
st|

≤
(
C1
σ(1 + |hn0 |+ C2

h|s|γ +K(Y n
0 , C2, σ, h

n
0 , X, s)) + CγCσ(C

2
h + C2)|t− s|γ

)
‖X‖γ |t− s|

γ.

Gathering all the terms above, we thus obtain:

|δY n
st | ≤ ‖X‖γ |t− s|

γ
{
C1
σ

(
1 + |hn0 |+ |Y n

0 |+ C2
h|s|γ + C1

σ ‖X‖γ |s|
γ(1 + |hn0 |+ |Y n

0 |)

+ CγCσC
2
h ‖X‖γ |s|

2γ
)
+ CγCσC

2
h|t− s|γ + C2

(
C1
σCγCσ ‖X‖γ |s|

2γ + CγCσ|t− s|γ
)}

.

(3.16)

We shall now perform the steps allowing to go from an inequality of the form (3.16) to
our claim (3.10). We thus consider a small enough time τ . In the interval J0, tl+1K∩ [0, τ ] we
can recast (3.16) as:

‖δY n‖γ ≤ C3‖X‖γ + (C4 + C5C2) ‖X‖γ |τ |
γ (3.17)

where the constants C3, C4 and C5 are respectively given by C3 = C1
σ(1+ |hn0 |+ |Y n

0 |), C4 =
(1+CγCσ)C

2
h+‖X‖γ (C1

σ(1+|hn0 |+|Y n
0 |)+(CγCσ)C

2
h|T |γ) and C5 = CγCσ(C

1
σ ‖X‖γ |T |γ+1).



EULER SCHEME FOR SOLUTIONS TO FSDDE 9

In order to get some stability in our Hölder norms estimates, let us assume that the quantity
b(τ) ≡ C5 ‖X‖γ τ γ satisfies b(τ) < 1/2. Otherwise stated, assume that τ verifies:

τ =
1

(2C5(‖X‖γ + 1))1/γ
. (3.18)

Moreover, in inequality (3.10), let us choose the constant C2 such that

C2 ≥ 2
(
C3 ‖X‖γ + C4 ‖X‖γ |T |

γ
)
. (3.19)

Then plugging the values (3.18) and (3.19) into (3.17) we get the following bound on J0, tl+1K∩
[0, τ ]:

‖δY n‖γ ≤ C2 (3.20)

In conclusion, in J0, tl+1K ∩ [0, τ ] we have propagated our induction claim (3.10).
Step 4: Global upper bound for δYn. Up to now we have performed our computations
on [0, τ ] only, where τ is defined by (3.18). The computations on any interval of the form
[kτ, (k + 1)τ ] would be exactly the same, except for the fact that the initial value Y n

0 has
to be updated to Ykτ . Then recall that our quantities of interest are C2 in inequality (3.20)
and K(Y n

0 , C2, σ, h
n
0 , X, t) in relation (3.15). We will keep track of those constants below.

Let us also highlight the fact that the small time step τ given by (3.18) does not depend on
the initial condition Y0, which means that it can be considered as a given constant in the
remainder of the proof.

Let us now see how to update the initial data Y n
kτ in each sub-interval. To this aim we

notice that a straightforward generalization of (3.14) gives:

|Y n
(k+1)τ | ≤ A|Y n

kτ |+B, (3.21)

where

A = 1 + C1
σ‖X‖γτ γ, and B = C1

σ (1 + |hn0 |) ‖X‖γτ γ + CγCσ
(
C2 + C2

h

)
‖X‖γ |τ |

2γ.

In addition, starting from (3.21), an easy induction procedure yields:

|Y n
kτ | ≤ Ak|Y n

0 |+
Ak − 1

A− 1
B. (3.22)

In order to get a global bound for Y n, we are now reduced to compute the number of
intervals [kτ, (k + 1)τ ] necessary to cover [0, T ]. Calling nmax this number and resorting to
expression (3.18), it is readily checked that:

nmax =
T

τ
= T

(
2C5(1 + ‖X‖γ)

) 1
γ
.

Plugging this expression into (3.22) we end up with the following bound valid for all k ≤ nmax:

|Y n
kτ | ≤ c1(1 + |hn0 |+ |Y n

0 |) exp
(
c2(1 + ‖X‖1/γγ )

)
.

Taking into account relation (3.20), we let the patient reader check that this proves rela-
tion (3.9). �
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3.2. Convergence of the scheme. We are now ready to state the main result of this
section, which gives a theoretical bound on the speed of convergence for Y n.

Theorem 3.5. Let Y n be the Euler scheme given in Definition 3.1, and let Y be the solution
to equation (2.5). We set Zn = Y − Y n. Then for all 0 < ε < 2γ − 1 and 0 ≤ s < t ≤ T we
have the following bound:

|Zn
t | ≤

C1,x

n2γ−1−ε , where C1,x ≤ c1 exp(c2(1 + ‖x‖1/γγ )), (3.23)

for two strictly positive constants c1, c2 depending on σ and ε. Furthermore, the increments
of Zn also satisfy a bound of the form:

|δZn
st| ≤

C3,x|t− s|γ

n2γ−1−ε , where C3,x ≤ c3 exp(c4(1 + ‖x‖1/γγ )), (3.24)

for two strictly positive constants c3, c4.

Proof. Recall that Y n is defined recursively as:

δY n
titi+1

= σ(hnti , Y
n
ti
)δXtiti+1

(3.25)

while the increments of the solution Y to equation (2.5) can be expressed as:

δYtiti+1
= σ(hti , Yti)δXtiti+1

+RY
titi+1

, (3.26)

for a remainder RY such that ‖RY ‖2γ <∞. We now divide the proof in several steps.
Step 1: Dynamics for Zn. Thanks to a Taylor type expansion, one can linearize the
increment of Zn between two successive partition points as follows:

δZn
titi+1

=
(
σ(hti , Yti)− σ(hnti , Y

n
ti
)
)
δXtiti+1

+RY
ti,ti+1

=: (σ1
ti
(hti − hnti) + σ2

ti
Zn
ti
)δXtiti+1

+RY
titi+1

, (3.27)

where σ1 and σ2 are respectively given by

σ1
s =

∫ 1

0

∂1σ (λhs + (1− λ)hns , Ys) dλ, σ2
s =

∫ 1

0

∂2σ (h
n
s , λY

n
s + (1− λ)Ys) dλ. (3.28)

Observe that both σ1 and σ2 are bounded functions.
Starting from (3.27), we now follow some of the ideas of Lemma 3.4. Namely we assume in

general that for s, t in the discrete simplex S2(J0, τK), the increment δZn
st can be decomposed

as follows:
δZn

st = (σ1
s(hs − hns ) + σ2

sZ
n
s )δXst +Rn

st (3.29)

where we have just set:

Rn
st = δZn

st − (σ1
s(hs − hns ) + σ2

sZ
n
s )δXst. (3.30)

Notice that the increment Rn
st depends on Y as well as Y n through the paths σ1, σ2. Also

observe that for all 0 ≤ i ≤ n − 1 we have Rn
titi+1

= RY
titi+1

. In addition, similarly to what
we have done in Lemma 3.3, the increment δRn can be expressed as:

δRn
sut = δσ1

su(hu − hnu)δXut + σ1
sδ(h− hn)suδXut + δσ2

suZ
n
u δXut + σ2

sδZ
n
suδXut. (3.31)
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We will now formulate an induction assumption for Zn on the interval J0, tqK ∩ [0, τ ], for a
small enough time constant τ to be determined later on:

|Zn
0 | ≤

d1
n2γ−1−ε , |Zn

s | ≤
C1

n2γ−1−ε , and |δZn
su| ≤

C2

n2γ−1−ε |u− s|
γ, (3.32)

where C1, C2, d1 are three positive constants such that d1 ≤ C1 and where we have picked
ε such that 0 < ε < 2γ − 1. We shall dedicate our main efforts to the propagation of this
induction hypothesis (which is easily verified for q = 1).
Step 2: Upper bound for Rn. As in the proof of Lemma 3.4, we mainly focus our
attention on a bound for Rn

st with 0 ≤ s < t = tq with the additional condition tq ≤ τ . Then
introducing a parameter ε > 0 and plugging relations (3.3) and (3.32) into (3.31) we end up
with:

|δRn
sut| ≤

{
(C3

h + C1)max{
∥∥σ1
∥∥
γ
,
∥∥σ2
∥∥
γ
}+ 2C1

h

∥∥σ1
∥∥
∞ + C2

∥∥σ2
∥∥
∞

} ‖X‖γ (t− s)2γ
n2γ−1−ε

≤
{
(C3

h + C1)max{
∥∥σ1
∥∥
γ
,
∥∥σ2
∥∥
γ
}+ 2C1

h

∥∥σ1
∥∥
∞ + C2

∥∥σ2
∥∥
∞

} ‖X‖γ
n2γ−1−ε (t− s)

1+ετ 2γ−1−ε,

where σ1, σ2 have been defined by (3.28). Hence we easily deduce:

|δRn
sut| ≤

C3

n2γ−1−ε (t− s)
1+ε,

with a constant C3 defined by:

C3 =
{
(C3

h + C1)max{
∥∥σ1
∥∥
γ
,
∥∥σ2
∥∥
γ
}+ 2C1

h

∥∥σ1
∥∥
∞ + C2

∥∥σ2
∥∥
∞

}
‖X‖γ τ

2γ−1−ε

=
{
(C3

h + C1)Mσ,γ + 2C1
h

∥∥σ1
∥∥
∞ + C2

∥∥σ2
∥∥
∞

}
‖X‖γ τ

2γ−1−ε, (3.33)

and where Mσ,γ ≡ max(‖σ1‖γ, ‖σ2‖γ). We also recall that C3
h = C1

h + C2
h. Moreover, since

Y is governed by equation (2.6), observe that:

Rn
titi+1

= RY
titi+1

, and thus |Rn
titi+1
| ≤ Cx(ti+1 − ti)2γ. (3.34)

Therefore, since ti+1− ti = T
n
and choosing the parameter ε as in equation (3.32), we end up

with:
|Rn

titi+1
|

|ti+1 − ti|1+ε
≤ Cx
n2γ−1−ε

Hence, owing to Lemma 2.2 item (ii) and inequality (3.34), this yields:

‖Rn‖J0,τK,1+ε ≤
C1+εC3 + Cx
n2γ−1−ε =

C4

n2γ−1−ε , (3.35)

where we recall that the Hölder norms of the form ‖Rn‖J0,τK,1+ε are defined by (2.2). Sum-
marizing, we have obtained the global bound (3.35) on the norm of Rn in J0, τK.
Step 3: Upper bound for the increments of Zn. We now plug our global bound (3.35)
and our standing assumption (3.32) into (3.29), and we get the following bound for δZn

st,
where we recall that we consider a couple of points (s, t) ∈ S2(J0, τK) with t = tq:

|δZn
st| ≤ Mσ,γ ‖X‖γ

C1
h + C1

n2γ−1−ε |t− s|
γ +

C4

n2γ−1−ε |t− s|
1+ε

≤
Mσ,γ ‖X‖γ (C1

h + C1) + C4τ
1+ε−γ

n2γ−1−ε |t− s|γ ≤ C5

n2γ−1−ε |t− s|
γ, (3.36)
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where we have set C5 =Mσ,γ ‖X‖γ (C1
h + C1) + C4τ

1+ε−γ.
Let us write the constant C5 we have just defined in a more explicit manner. Indeed,

specifying the values of each constant C1, . . . , C4 we obtain:

C5 =Mσ,γ ‖X‖γ (C
3
h + C1) + C4τ

1+ε−γ (3.37)

=Mσ,γ ‖X‖γ (C
3
h + C1) + (C1+εC3 + Cx)τ

1+ε−γ

=Mσ,γ ‖X‖γ (C
3
h + C1)

+
(
C1+ε

{
(C3

h + C1)Mσ,γ + 2C1
h

∥∥σ1
∥∥
∞ + C2

∥∥σ2
∥∥
∞

}
‖X‖γ τ

2γ−1−ε + Cx

)
τ 1+ε−γ

=Mσ,γ ‖X‖γ (C
3
h + C1) + C1+ε

(
(C1

h + C1)Mσ,γ + 2C1
h

∥∥σ1
∥∥
∞ + C2

∥∥σ2
∥∥
∞

)
‖X‖γ τ

γ

+ Cxτ
1+ε−γ

Now in order to propagate the induction hypothesis (3.32), we need to choose our parameter
τ such that C5 ≤ C2. Going back to identity (3.37), we will first choose τ such that:

τ γ <
α1

‖X‖γ
, with α1 ≤

1

2C1+ε ‖σ2‖∞
. (3.38)

Then a sufficient condition in order to achieve C5 ≤ C2 is

C2

2
≥Mσ,γ ‖X‖γ (C

3
h + C1)

+ C1+ε

(
(C3

h + C1)Mσ,γ + 2C1
h

∥∥σ1
∥∥
∞

)
‖X‖γ τ

γ + Cxτ
1+ε−γ. (3.39)

If we further assume that τ ≤ 1, one can recast (3.39) as:

C2 ≥ 2
{
Mσ,γ ‖X‖γ (C

3
h + C1) + C1+ε

(
(C3

h + C1)Mσ,γ + 2C1
h

∥∥σ1
∥∥
∞

)
‖X‖γ + Cx

}
. (3.40)

We thus choose C2 = 2{Mσ,γ ‖X‖γ (C3
h+C1)+C1+ε((C

3
h+C1)Mσ,γ+2C1

h‖σ1‖∞)‖X‖γ+Cx}.
In conclusion, under the assumptions (3.38) and τ ≤ 1, we have propagated (3.32) as far as
the increments δZst are concerned.
Step 4: Upper bound for Zn. We still have to propagate our assumption on Zn

s in (3.32).
We thus consider again a time parameter τ and t ≤ τ . Furthermore, we simplify the notation
in (3.40) and remark that we can take C2 of the form

C2 = α1(1 + C1)(1 + ‖X‖γ),

for a large enough constant α1. Now according to the relation on Zn
0 and δZn imposed

by (3.32), we have:

|Zn
t | ≤ |Zn

0 |+ |δZn
0t| ≤

α2

n2γ−1−ε , with α2 = d1 + α1(1 + C1)(1 + ‖X‖γ)τ γ. (3.41)

With this expression of α2 in hand, if we further assume C1 ≥ 4d1 and d1 > 1
8
, it is readily

checked that

α2 ≤ C1, as soon as τ γ ≤ α3

1 + ‖X‖γ
with α3 =

1

4α1

. (3.42)
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Step 5: Global bounds. Gathering the conditions (3.38) and (3.42), we have obtained
that there exists α4 > 0 such that if

τ =
α4

(1 + ‖X‖γ)
1
γ

, (3.43)

then relation (3.32) holds on [0, τ ], with

C1 = 4d1, d1 >
1

8
and C2 = α1(1 + C1)(1 + ‖X‖γ). (3.44)

We now get bounds on successive intervals called Ij, denoted by Ij = [τj, τj+1]. In par-
ticular we take τ0 = 0 and τ1 = τ as defined in (3.43). In order to estimate the length
|Ij| = τj+1 − τj we remark that all the computations of the previous steps are valid except
for the fact that the initial value Zn

0 has to be updated to Zn
jτ . We thus start our induction

procedure on Ij by assuming

|Zn
0 | ≤

d1,j
n2γ−1−ε , |Zn

s | ≤
C1,j

n2γ−1−ε , and |δZn
su| ≤

C2,j

n2γ−1−ε |u− s|
γ. (3.45)

Then, owing to the same computations as in Step 4, we end up with a generalization of (3.43)
and (3.44) as follows:

C1,j+1 = 4C1,j, C2,j = α1(1 + C1,j)(1 + ‖X‖γ), τj+1 − τj =
α4

(1 + ‖X‖γ)
1
γ

. (3.46)

In particular we note that τj+1 − τj is constant, as well as the relation linking C2,j and C1,j.
In addition, iterating (3.46) we obviously get

C1,j = C0 4
j. (3.47)

We can now bound the number of iterations needed in order to fill the interval [0, T ]. Indeed,
according to (3.46) it is enough to take j ≥ (1+‖X‖γ)1/γ T

α4
in order to have τj ≥ T . Plugging

this value into (3.46) and (3.47) and then reporting into equation (3.32) stated for each
[τj, τj+1], our claims (3.23) and (3.24) are now proved. �

4. Numerical examples

This section is devoted to an illustration of our numerical scheme with simulations. We
shall focus on the particular FSDDE given by

dYt = aYtdt+ (b1Yt + b2Yt−1)dXt, t ∈ [0, 1.5] (4.1)
Ys = 1 + s s ∈ [−1, 0],

where X = (Xt)t≥0 is a fractional Brownian motion with Hurst parameter H > 1/2.
Since this linear equation can be solved explicitly, comparisons of our approximation with

the real solution will be easy. For example, if b1 = 0, one may consider equation (4.1) as a
deterministic linear equation perturbed by a delayed fractional noise.

Let us start by examining the Euler approximation introduced in Section 3. In Figure 1
and Figure 2 we show the exact solution (red line) to the deterministic equation dYt = aYtdt
when the coefficient a satisfies a = −2, together with four sample paths for the FSDDE (4.1)
with b1 = 0, b2 = 0.7 and H = 0.75 (Figure 1), H = 0.9 (Figure 2). The Euler approximation
of the solution to equation (4.1) was done with n = 10000 steps. These pictures show the
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perturbation of the deterministic equation dYt = aYtdt under the influence of the noisy term,
according to the value of the parameter b2 in equation (4.1).

0 0.5 1 1.5

Time
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-0.2

0
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0.4

0.6

0.8

1

Figure 1. Sample path of the deterministic exact solution dYt = aYtdt with
a = −2 (red line) and four paths of the approximated solution to (4.1) by our
Euler scheme, with b1 = 0, b2 = 0.7 and H = 0.75.
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Figure 2. Sample path of the deterministic exact solution dYt = aYtdt with
a = −2 (red line) and four paths of the approximated solution to (4.1) by our
Euler scheme, with b1 = 0, b2 = 0.7 and H = 0.9.
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As far as convergence rate of our approximation is concerned, we have made two different
experiments:

(i) First we have simulated 1000 sample paths of (4.1) with a = −2, b1 = 0, b2 = 0.7 and
H = 0.85 according to our approximation and compared the result with the true value of
the solution. We have found that the tail of the error |YT −Y n

T | at the terminal time T = 1.5
seems to behave roughly as the absolute value of a Gaussian random variable.
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0
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20
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40
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70

80

90

100

Absolute error

Figure 3. Histogram for the absolute value of the error obtained on 1000
paths of equation (4.1) for H = 0.85.

(ii) Figure 4 shows the rate of convergence evaluated at the terminal time T = 1.5. Namely,
for different values of the Hurst parameter H we simulate m = 1000 paths of Y and Y n.
Then for each path we compute the absolute value |YT − Y n

T | and we take the mean of those
errors. We observe that the averaged error becomes smaller when H is close to 1, which is
consistent with Theorem 3.5.
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