Determinants

Samy Tindel

Purdue University

Differential equations and linear algebra - MA 262

Taken from *Differential equations and linear algebra*Pearson Collections

Outline

Introduction to determinants

Properties of determinants

3 Cramer's rule, volume and linear transformations

Samy T.

Outline

Introduction to determinants

Properties of determinants

Cramer's rule, volume and linear transformations

Samy T.

Particular cases

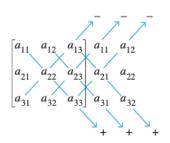
 1×1 matrix:

$$A = [a_{11}] \implies \det(A) = a_{11}$$

 2×2 matrix:

$$A = egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} \quad \Longrightarrow \quad \det(A) = a_{11}a_{22} - a_{12}a_{21}$$

 3×3 matrix:



Remarks

Generalization: The determinant is defined for any $n \times n$ matrix \hookrightarrow Combinatorics involved

Motivation: In general

$$det(A) \neq 0 \iff A \text{ is invertible}$$

Notation:

$$\det(A) \equiv |A|$$

Examples

 2×2 matrix:

$$\begin{vmatrix} 1 & 3 \\ 2 & 5 \end{vmatrix} = -1$$

 3×3 matrix:

$$\begin{vmatrix} 1 & 3 & -4 \\ 2 & 5 & -1 \\ 1 & 0 & 6 \end{vmatrix} = 11$$

Recursive method: strategy

Fact:

The determinant computation requires n! operations

Aim:

Reduce the order of a determinant by an expansion

Vocabulary:

First we have to introduce the notions of

- Minor
- Cofactor

Minors of a matrix

Definition 1.

Let A be a $n \times n$ matrix. Then

 $A_{ij} = \det(\text{matrix obtained by deleting } i \text{th row and } j \text{th column of } A)$

The quantity A_{ij} is called minor of a_{ij} .

Example:

$$A = \begin{bmatrix} 1 & 3 & -4 \\ 2 & 5 & -1 \\ 1 & 0 & 6 \end{bmatrix} \implies A_{12} = \begin{vmatrix} 2 & -1 \\ 1 & 6 \end{vmatrix} = 13$$

Cofactors of a matrix

Definition 2. Let A be a $n \times n$ matrix. Then

$$C_{ij} = (-1)^{i+j} A_{ij}$$

The quantity C_{ij} is called cofactor of a_{ij} .

Example:

$$A = \begin{bmatrix} 1 & 3 & -4 \\ 2 & 5 & -1 \\ 1 & 0 & 6 \end{bmatrix} \implies C_{12} = -M_{12} = -13$$

Remark: Alternate signs assignment for C_{ii}

Cofactor expansion

Theorem 3.

Let

• A be a $n \times n$ matrix.

Then

① One can expand the determinant along the *i*-th row:

$$\det(A) = \sum_{k=1}^{n} a_{ik} C_{ik}$$

② One can expand the determinant along the j-th column:

$$\det(A) = \sum_{k=1}^n a_{kj} C_{kj}$$

Example of application

Rule:

To simplify computations, choose row or column with 0's

Example:

Here we expand along the 3rd row

$$\begin{vmatrix} 1 & 3 & -4 \\ 2 & 5 & -1 \\ 1 & 0 & 6 \end{vmatrix} = \begin{vmatrix} 3 & -4 \\ 5 & -1 \end{vmatrix} + 6 \begin{vmatrix} 1 & 3 \\ 2 & 5 \end{vmatrix} = 11$$

Samy T.

Outline

Introduction to determinants

Properties of determinants

3 Cramer's rule, volume and linear transformations

Samy T.

Introduction

Problem with determinants:

- For a $n \times n$, matrix, they require n! operations
- This is computationally too demanding

Aim of this section:

See properties in order to shorten computation time

Determinants of triangular matrices

Theorem 4.

Let

- A be an upper or lower triangular matrix.
- $n \equiv \text{size of } A$.

Then

$$\det(A) = a_{11} a_{22} \cdots a_{nn} = \prod_{i=1}^{n} a_{ii}$$

Example:

$$\begin{vmatrix} 1 & 3 & -4 \\ 0 & 5 & -1 \\ 0 & 0 & 6 \end{vmatrix} = 30$$

Elementary row operations and determinants

Effect of elementary row operations:

If A is a $n \times n$ matrix, then

Let B be the matrix obtained by permuting 2 rows of A. Then

$$\det(B) = -\det(A)$$

② Let B obtained by multiplying 1 row of A by $k \in \mathbb{R}$. Then

$$\det(B) = k \, \det(A)$$

3 Let B obtained by adding $k \times a$ row of A to a different row of A. Then

$$\det(B) = \det(A)$$

Example of application

3×3 matrix:

$$\begin{vmatrix} 1 & 3 & -4 \\ 2 & 5 & -1 \\ 1 & 0 & 6 \end{vmatrix} \xrightarrow{A_{12}(-2), A_{13}(-1)} \begin{vmatrix} 1 & 3 & -4 \\ 0 & -1 & 7 \\ 0 & -3 & 10 \end{vmatrix}$$

$$\stackrel{M_2(-1), M_3(-1)}{=} (-1)^2 \begin{vmatrix} 1 & 3 & -4 \\ 0 & 1 & -7 \\ 0 & 3 & -10 \end{vmatrix} \xrightarrow{A_{23}(-3)} \begin{vmatrix} 1 & 3 & -4 \\ 0 & 1 & -7 \\ 0 & 0 & 11 \end{vmatrix} = 11$$

Remark:

This technique is really useful for $n \ge 4$

Samy T.

Further properties of determinants

Some more properties:

We have

$$\det(A^T) = \det(A)$$

If A has a column of 0's, then

$$\det(A) = 0$$

1 If 2 rows or columns of A are the same, then

$$det(A) = 0$$

For two matrices A and B, we have

$$\det(AB) = \det(A) \, \det(B)$$

Application of Property 4

Example:

When further simplifications are available for columns

$$\begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 5 \\ -1 & 3 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ 0 & 5 & 2 \end{vmatrix} \begin{vmatrix} A_{23}(-5) \\ = \begin{vmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & -13 \end{vmatrix} = -13$$

Samy T.

Outline

Introduction to determinants

Properties of determinants

3 Cramer's rule, volume and linear transformations

Cramer's rule

Theorem 5.

Consider a $n \times n$ matrix A, a vector **b** and the system

$$A\mathbf{x} = \mathbf{b}.\tag{1}$$

For $1 \le k \le n$ set (**b** inserted at column k):

$$A_k(\mathbf{b}) = \begin{bmatrix} a_{11} & a_{12} & \dots & b_1 & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & b_2 & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & b_n & \dots & a_{nn} \end{bmatrix}$$

Then if $det(A) \neq 0$ the solution of (1) is given by

$$x_k = \frac{\det(A_k(\mathbf{b}))}{\det(A)}$$

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ト り へ ②

20 / 31

Example

System:

$$3x_1 +2x_2 -x_3 = 4x_1 +x_2 -5x_3 = -3-2x_1 -x_2 +4x_3 = 0$$

Determinants:

$$\det(A) = \begin{vmatrix} 3 & 2 & -1 \\ 1 & 1 & -5 \\ -2 & -1 & 4 \end{vmatrix} = 8, \qquad \det(A_1(\mathbf{b})) = \begin{vmatrix} 4 & 2 & -1 \\ -3 & 1 & -5 \\ 0 & -1 & 4 \end{vmatrix} = 17$$

Solution:

$$x_1=\frac{17}{8}$$

Samy T.

Determinar

Differential equations

Cofactors of a matrix

Definition 6. Let A be a $n \times n$ matrix. Then

$$C_{ij} = (-1)^{i+j} A_{ij}$$

The quantity C_{ij} is called cofactor of a_{ij} .

Example:

$$A = \begin{bmatrix} 1 & 3 & -4 \\ 2 & 5 & -1 \\ 1 & 0 & 6 \end{bmatrix} \implies C_{12} = -M_{12} = -13$$

Remark: Alternate signs assignment for C_{ii}

22 / 31

Adjoint matrix

Definition 7.

Let A be a $n \times n$ matrix. Then

- Matrix of cofactors:
 Obtained by replacing each term of A by its cofactor
 Denoted by M_C
- Adjoint matrix: Denoted by adj(A) and defined as

$$adj(A) = M_C^T$$

The adjoint method

Theorem 8.

Let A be a $n \times n$ matrix. Assume:

$$\det(A) \neq 0$$
.

Then

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A).$$

Remark: Along the same lines we have

A invertible
$$\iff$$
 $det(A) \neq 0$

Example

Matrix:

$$A = \begin{bmatrix} 2 & 0 & -3 \\ -1 & 5 & 4 \\ 3 & -2 & 0 \end{bmatrix}$$

Cofactor and adjoint matrix:

$$M_C = \begin{bmatrix} 8 & 12 & -13 \\ 6 & 9 & 4 \\ 15 & -5 & 10 \end{bmatrix}, \quad adj(A) = \begin{bmatrix} 8 & 6 & 15 \\ 12 & 9 & -5 \\ -13 & 4 & 10 \end{bmatrix}$$

Inverse: det(A) = 55 and thus

$$A^{-1} = \frac{1}{55} \begin{bmatrix} 8 & 6 & 15\\ 12 & 9 & -5\\ -13 & 4 & 10 \end{bmatrix}$$

Determinant as area or volume

Theorem 9.

Let A be a 2×2 or 3×3 matrix. Then

- (1) If A is a 2×2 matrix we have
 - det(A) = area of parallelogram given by columns of A
- (2) If A is a 3×3 matrix we have
 - det(A) = volume of parallepiped given by columns of A

Example of area

Aim: Compute area of parallelogram given by

$$(-2, -2),$$
 $(0, 3),$ $(4, -1),$

$$(4, -1),$$

Translation: We translate by (2,2) to get a vertex at $\mathbf{0}$

Area:

$$Area = \begin{vmatrix} 2 & 6 \\ 5 & 1 \end{vmatrix} = 28$$

Area and linear transformation in \mathbb{R}^2

Theorem 10.

Let

- $T: \mathbb{R}^2 \to \mathbb{R}^2$ linear transformation
- A matrix of T
- ullet S parallelogram in \mathbb{R}^2

Then we have

$$Area (T(S)) = |\det(A)| Area (S)$$

Area and linear transformation in \mathbb{R}^3

Theorem 11.

Let

- $T: \mathbb{R}^3 \to \mathbb{R}^3$ linear transformation
- A matrix of T
- S parallepiped in \mathbb{R}^3

Then we have

$$Volume(T(S)) = |\det(A)| Volume(S)$$

Application (1)

Aim: Find area of region E delimited by ellipse

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$$

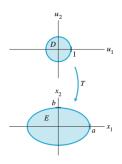
Strategy: Let $D = \text{unit disk in } \mathbb{R}^2$. We write

$$E = T(D)$$
, with $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$

30 / 31

Application

Illustration:



Area:

$$Area(E) = Area(T(D)) = |det(A)| Area(D) = \pi ab$$

Samy T. Determinants Differential equations 31 / 31