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Newton’s second law of motion
Quantities: For an object of mass m

Force F
Velocity v(t) at time t
Displacement y = y(t)

Newton’s law:
m dv

dt = F

Differential equation: Since v = dy
dt , we get

m d2y
dt2 = F
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Spring force

Physical system: spring-mass with no friction

Hooke’s law: The spring force is given by

Fs = −k y
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Second order differential equation

Differential equation:
Equation involving the derivatives of a function
In particular the unknown is a function

Equation for spring-mass system:
According to Newton’s and Hooke’s laws

m d2y
dt2 = −ky (1)
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Second order differential equation (2)

Equation for spring-mass system (2): Set

ω =
√

k
m

Then (1) is equivalent to

d2y
dt2 + ω2y = 0.

Solution: Of the form

y(t) = A cos(ωt − φ).
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Order of a differential equation

Definition: Order of a differential equation
= Order of highest derivative appearing in equation

Examples:
Second law of motion, spring: second order
First order: y ′ = 4− y 2

General form of n-th order differential equation:

G(y , y ′, . . . , y (n)) = 0 (2)
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More vocabulary
Linear equations: of the form

a0(x)y (n) + a1(x)y (n−1) + · · ·+ an(x)y = F (x)

Initial value problem: A differential equation

G(y , y ′, . . . , y (n)) = 0,

plus initial values in order to get a unique solution:

y(x0) = y0, y ′(x0) = y1, . . . , y (n−1)(x0) = yn−1

General solution: When no initial condition is specified
↪→ Solution given in terms of constants c1, . . . , cn
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Simplest case of differential equation

Equation: The rhs does not depend on y

y ′ = f (x)

General solution: For all C ∈ R,

y(x) =
∫

f (x) dx + C

Family of solutions:
We get a family indexed by C ∈ R
Two solutions for C1 6= C2 are parallel
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Example of parallel curves

Illustration:
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Example of direct integration (1)

Equation: We want to solve

y ′ = 2x + 3
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Example of direct integration (2)

General solution:

y =
∫

(2x + 3) dx = x2 + 3x + C
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Initial value problem

Particular solution: given by specifying an initial data

y ′ = f (x), and y(x0) = y0

Advantage:

An initial value problem yields a unique solution
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Example of initial value problem (1)

Equation: We want to solve

y ′ = 2x + 3, and y(1) = 2
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Example of initial value problem (2)

Unique solution: we get

y =
∫

(2x + 3) dx = x2 + 3x − 2
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Lunar lander problem (1)
Situation:

Lunar lander falling freely at speed 450m/s
Retrorockets provide deceleration of 2.5m/s2

Question:
At what height should we activate the retrorockets
↪→ in order to ensure v = 0 at the surface?
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Lunar lander problem (2)
Time origin: We set

t = 0 when the retrorockets should be fired

Initial value problem: We want to solve

v ′ = 2.5, and v(0) = −450

Expression for v :
v(t) = 2.5t − 450

Time such that v = 0: We find

t = 450
2.5 = 180s
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Lunar lander problem (3)

Expression for x :

x(t) =
∫

v(t) dt = 1.25t2 − 450t + x0

Aim: We wish to have

v = 0 when x = 0, or otherwise stated x = 0 for t = 180

Solution: We find
x0 = 40, 500
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Swimmer’s problem (1)

Situation:
River width parametrized by −a ≤ x ≤ a
Velocity of the water flow is vertical and satisfies

vR = v0
(
1− x2

a2

)

Swimmer starts from (−a, 0) with constant horizontal speed vS

Question:
Find an equation for the function y(x) of the swimmer
Particular case: v0 = 9mi/h, vS = 3mi/h and a = 1/2mi
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Swimmer’s problem (2)

Equation: We have

dy
dx = tan(α) = v0

vS

(
1− x2

a2

)

Particular case: with v0 = 9mi/h, vS = 3mi/h and a = 1/2mi we get

dy
dx = 3

(
1− 4x2

)
Thus

y(x) = 3x − 4x3 + C
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Swimmer’s problem (3)

Initial value problem: The initial condition is

y
(
−1
2

)
= 0

Thus
y(x) = 3x − 4x3 + 1

Downstream velocity at the end of the river:

y
(1
2

)
= 2

Samy T. First order Differential equations 23 / 124



Outline
1 Differential equations and mathematical models

2 Integrals as general and particular solutions

3 Slope fields and solution curves

4 Separable equations and applications

5 Linear equations

6 Substitution methods and exact equations
Homogeneous equations
Bernoulli equations
Exact differential equations
Reducible second order differential equations

7 Chapter review

Samy T. First order Differential equations 24 / 124



Existence and uniqueness result

General nonlinear equation:

y ′ = f (t, y), y(t0) = y0 ∈ R. (3)

Hypothesis:
(t0, y0) ∈ R , where R = (α, β)× (γ, δ).
f and ∂f

∂y continuous on R .

Conclusion:
One can find h > 0 such that there exists a unique function y
↪→ satisfying equation (3) on (t0 − h, t0 + h).

Theorem 1.
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Example of existence and uniqueness (1)

Equation considered:

y ′ = 3x y 1/3, and y(0) = a.
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Example of existence and uniqueness (2)

Application of Theorem 1: we have

f (x , y) = 3x y 1/3,
∂f
∂y (x , y) = xy−2/3

Therefore if a 6= 0:
1 There exists rectangle R such that

I (0, a) ∈ R
I f and ∂f

∂y continuous on R
2 According to Theorem 1 there is unique solution on interval

(−h, h), with h > 0
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Second example of existence and uniqueness (1)

Equation considered:

y ′ = 3x2 + 4x + 2
2(y − 1) , and y(0) = −1.
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Second example of existence and uniqueness (2)

Application of Theorem 1: we have

f (x , y) = 3x2 + 4x + 2
2(y − 1) ,

∂f
∂y (x , y) = −3x2 + 4x + 2

2(y − 1)2

Therefore:
1 There exists rectangle R such that

I (0,−1) ∈ R
I f and ∂f

∂y continuous on R
2 According to Theorem 1 there is unique solution on interval

(−h, h), with h > 0
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Second example of existence and uniqueness (3)

Comparison with explicit solution: We will see that

y = 1−
(
(x + 2)(x2 + 2)

)1/2

Interval of definition: x ∈ (−2,∞)
↪→ much larger than predicted by Theorem 1

Changing initial condition: consider y(0) = 1, on line y = 1. Then:
1 Theorem 1: nothing about possible solutions
2 Direct integration:

I We find y = 1± (x3 + 2x2 + 2x)1/2

I 2 possible solutions defined for x > 0
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Second example of existence and uniqueness (3)

Interval of definition on integral curves:

Comments:
Interval of definition delimited by vertical tangents
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Example with non-uniqueness (1)
Equation considered:

y ′ = y 1/3, and y(0) = 0.

Application of Theorem 1: f (y) = y 1/3. Hence,
f : R→ R continuous on R, differentiable on R∗

Theorem 1: gives existence, not uniqueness

Solving the problem: Separable equation, thus

General solution: for c ∈ R, y =
[
2
3(t + c)

]3/2

With initial condition y(0) = 0,

y =
(2t
3

)3/2
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Example with non-uniqueness (2)
3 solutions to the equation:

φ1(t) =
(2t
3

)3/2
, φ2(t) = −

(2t
3

)3/2
, ψ(t) = 0.

Family of solutions: For any t0 ≥ 0,

χ(t) = χt0(t) =

0 for 0 ≤ t < t0
±
(
2(t−t0)

3

)3/2
for t ≥ t0

Integral curves:
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Slope field for a gravity equation (1)

Gravity equation with friction

dv
dt = 9.8− v

5 (4)
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Slope field for a gravity equation (2)

Meaning of the graph:
↪→ Values of dv

dt according to values of v
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Slope field for a gravity equation (3)

What can be seen on the graph:
Critical value: vc = 49ms−1, solution to 9.8− v

5 = 0
If v < vc : positive slope
If v > vc : negative slope

Samy T. First order Differential equations 36 / 124



Outline
1 Differential equations and mathematical models

2 Integrals as general and particular solutions

3 Slope fields and solution curves

4 Separable equations and applications

5 Linear equations

6 Substitution methods and exact equations
Homogeneous equations
Bernoulli equations
Exact differential equations
Reducible second order differential equations

7 Chapter review

Samy T. First order Differential equations 37 / 124



General form of separable equation

General form of first order differential equation:

y ′ = f (x , y)

A first order separable differential equation is of the form

h(y)dydx = g(x) ⇐⇒ h(y) dy = g(x) dx (5)

Definition 2.

Solving separable equations:
Integrate on both sides of (5).
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Example of separable equation (1)

Equation:
(1 + y 2)dydx = x cos(x)
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Example of separable equation (2)

General solution: After integration by parts

y 3 + 3y = 3(x sin(x) + cos(x)) + c ,

where c ∈ R

Remark: Solution given in implicit form.
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Example 2 of separable equation

Equation:
x dx + y exp(−x) dy = 0, y(0) = 1

Unique solution:

y(x) = (2 exp(x)− 2x exp(x)− 1)1/2

Remark:
Radical vanishes for x1 ' −1.7 and x2 ' 0.77
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Example 3 of separable equation (1)

Equation considered:

dy
dx = x2

1− y 2 ⇐⇒ −x
2 + (1− y 2)dydx = 0. (6)
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Example 3 of separable equation (2)

Chain rule:
df (y)
dx = f ′(y) dydx

Application of chain rule:

(1− y 2)dydx = d
dx

(
y − y 3

3

)
, and x2 = d

dx

(
x3
3

)
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Example 3 of separable equation (3)
Equation for integral curves: We have, for c ∈ R,

(6)⇐⇒ d
dx

(
−x3

3 + y − y 3
3

)
= 0⇐⇒ −x3 + 3y − y 3 = c

Some integral curves obtained by approximation:
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General solution for separable equations

Equation considered:

M(x) + N(y) dydx = 0. (7)

Antiderivatives: let H1,H2 such that

H ′1(x) = M(x) and H ′2(y) = N(y).

Then general solution to (7) is given by:

H1(x) + H2(y) = c ,

with c ∈ R.

Proposition 3.
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Solvable example of separable equation (1)

Equation considered:

dy
dx = 3x2 + 4x + 2

2(y − 1) , and y(0) = −1. (8)
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Solvable example of separable equation (2)

Integration: for a constant c ∈ R,

(8) ⇐⇒ 2(y − 1) dy =
(
3x2 + 4x + 2

)
dx

⇐⇒ y 2 − 2y = x3 + 2x2 + 2x + c

Solving the equation: if y(0) = −1, we have c = 3 and

y = 1±
(
x3 + 2x2 + 2x + 4

)1/2

Samy T. First order Differential equations 47 / 124



Solvable example of separable equation (3)
Determination of sign: Using y(0) = −1 again, we get

y = 1−
(
x3 + 2x2 + 2x + 4

)1/2
= 1−

(
(x + 2)(x2 + 2)

)1/2

Interval of definition: x ∈ (−2,∞)
↪→ boundary corresponds to vertical tangent on graph below
Integral curves:
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Example of equation with implicit solution (1)

Equation considered:
dy
dx = 4x − x3

4 + y 3 .

General solution: for a constant c ∈ R,

y 4 + 16y + x4 − 8x2 = c

Initial value problem: if y(0) = 1, we get

y 4 + 16y + x4 − 8x2 = 17
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Example of equation with implicit solution (2)

Integral curves:

Interval of definition:
↪→ boundary corresponds to vertical tangent on graph
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Cooling cup example
Description of experiment:

Cup of coffee cooling in a room

Notation:
T (t) ≡ temperature of cup
τ ≡ temperature of room

Newton’s law for thermic exchange:
Variations of temperature proportional to difference between T and τ

Equation:
dT
dt = −k (T − τ) , T (0) = T0.
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Malthusian growth

Hypothesis:
Rate of change proportional to value of population

Equation: for k ∈ R and P0 ≥ 0,

dP
dt = k P, P(0) = P0

Solution:
P = P0 exp(kt)
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Exponential growth (2)

Integral curves:

Limitation of model:
Cannot be valid for large time t.
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Logistic population model

Basic idea:
Growth rate decreases when population increases.

Model:
dP
dt = r

(
1− P

C

)
P, (9)

where
r ≡ reproduction rate
C ≡ carrying capacity
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Logistic model: qualitative study
Information from slope field:

Equilibrium at P = C
If P < C then t 7→ P increasing
If P > C then t 7→ P decreasing
Possibility of convexity analysis

Samy T. First order Differential equations 55 / 124



Logistic model: solution
First observation: Equation (9) is separable

Integration: Integrating on both sides of (9) we get

ln
(∣∣∣∣∣ P

C − P

∣∣∣∣∣
)

= rt + c1

which can be solved as:

P(t) = c2C
c2 + e−rt

Initial value problem: If P0 is given we obtain

P(t) = C P0

P0 + (C − P0)e−rt

Samy T. First order Differential equations 56 / 124



Information obtained from the resolution

Asymptotic behavior:
lim

t→∞
P(t) = C

Prediction: If
Logistic model is accurate
P0, r and C are known

Then we know the value of P at any time t
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General form of 1st order linear equation

General form 1:
dy
dt + p(t)y = g(t)

General form 2:
P(t)dydt + Q(t)y = G(t)

Remark:
2 forms are equivalent if P(t) 6= 0
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Example with direct integration

Equation: (
4 + t2

) dy
dt + 2t y = 4t

Equivalent form:
d
dt
[(
4 + t2

)
y
]

= 4t

General solution: For a constant c ∈ R,

y = 2t2 + c
4 + t2
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Method of integrating factor
General equation:

dy
dt + p(t)y = g(t) (10)

Recipe for the method:
1 Consider equation (10)
2 Multiply the equation by a function µ
3 Try to choose µ such that equation (10) is reduced to:

d (µ y)
dt = a(t) (11)

4 Integrate directly equation (11)

Notation: If previous recipe works, µ is called integrating factor
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Example of integrating factor (1)

Equation:
dy
dt + 1

2 y = 1
2 et/3 (12)
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Example of integrating factor (2)

Multiplication by µ:

µ(t)dydt + 1
2 µ(t) y = 1

2 µ(t) et/3

Integrating factor: Choose µ such that µ′ = 1
2 µ, i.e µ(t) = et/2

Solving the equation: We have, for c ∈ R

(12) ⇐⇒
d
(
et/2y

)
dt = 1

2 e 5t
6

⇐⇒ y(t) = 3
5 e t

3 + c e− t
2

Samy T. First order Differential equations 63 / 124



Example of integrating factor (3)
Solution for a given initial data: If we know y(0) = 1, then

y(t) = 3
5 e t

3 + 2
5 e− t

2

Direction fields and integral curves:
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General case with constant coefficient

Equation considered:

dy
dt + ay = g(t), and y(t0) = y0. (13)

Hypothesis:

a ∈ R, g : R+ −→ R continuous.

Then general solution to (13) is given by:

y(t) = e−at
∫ t

t0
eas g(s) ds + c e−at .

with t0 ≥ 0 and c ∈ R.

Proposition 4.
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Example with exponential growth

Equation:
dy
dt − 2y = 4− t
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Example with exponential growth (2)
General solution: for c ∈ R,

y(t) = −7
4 + t

2 + c e2t

Direction fields and integral curves:
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General first order linear case

Equation considered:

dy
dt + p(t)y = g(t), (14)

Integrating factor:

µ(t) = exp
(∫

p(r) dr
)
.

Then general solution to (14) is given by:

y(t) = 1
µ(t)

[∫ t

t0
µ(s) g(s) ds + c

]
.

with t0 ≥ 0 and c ∈ R.

Proposition 5.
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Example with unbounded p (1)

Equation considered:

t y ′ + 2y = 4t2, y(1) = 2. (15)
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Example with unbounded p (2)

Equivalent form:

y ′ + 2
t y = 4t, y(1) = 2.

Integrating factor:
µ(t) = t2.

Solution:
y(t) = t2 + 1

t2 (16)
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Example with unbounded p (2)
Some integral curves:

Comments:
1 Example of solution which is not defined for all t ≥ 0
2 Due to singularity of t 7→ 1

t
3 Integral curves for t < 0: not part of initial value problem
4 According to value of y(1), different asymptotics as t → 0
5 Boundary between 2 behaviors: function y(t) = t2
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Example with no analytic solution (1)

Equation considered:
2y ′ + t y = 2.
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Example with no analytic solution (2)
Integrating factor:

µ(t) = exp
(
t2
4

)
.

General solution:

y(t) = exp
(
−t2

4

)∫ t

0
exp

(
s2
4

)
ds + c exp

(
−t2

4

)
.

Some integral curves obtained by approximation:
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Existence and uniqueness: linear case

General linear equation:

y ′ + p(t)y = g(t), y(t0) = y0 ∈ R. (17)

Hypothesis:
t0 ∈ I , where I = (α, β).
p and g continuous on I .

Conclusion:
There exists a unique function y satisfying equation (17) on I .

Theorem 6.

Remark: According to Theorem
↪→ Solution fails to exists only when p or g are discontinuous
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Maximal interval in a linear case
Equation considered: back to equation (15), namely

t y ′ + 2y = 4t2, y(1) = 2.

Equivalent form:

y ′ + 2
t y = 4t, y(1) = 2.

Application of Theorem 6:
g(t) = 4t continuous on R
p(t) = 2

t continuous on (−∞, 0) ∪ (0,∞) only
1 ∈ (0,∞)

We thus get unique solution on (0,∞)
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Maximal interval in a linear case (2)

Comparison with explicit solution: We have seen (cf (16)) that

y ′ + 2
t y = 4t, y(1) = 2 =⇒ y(t) = t2 + 1

t2 .

This is defined on (0,∞) as predicted by Theorem 6.

Changing initial condition: consider

y ′ + 2
t y = 4t, y(−1) = 2.

Then:
Solution defined on (−∞, 0)
On (−∞, 0) we have y(t) = t2 + 1

t2 .
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Salt concentration example
Description of experiment:

At t = 0, Q0 lb of salt dissolved in 100 gal of water
Water containing 1

4 lb salt/gal entering, with rate r gal/min
Well-stirred mixture draining from tank, rate r
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Salt concentration example (2)
Notation: Q(t) ≡ quantity of salt at time t

Hypothesis: Variations of Q due to flows in and out,

dQ
dt = rate in− rate out

Equation:
dQ
dt = r

4 −
rQ
100 , Q(0) = Q0

Equation, standard form:

dQ
dt + r

100 Q = r
4 , Q(0) = Q0
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Salt concentration example (3)
Integrating factor: µ(t) = e rt

100

Solution:
Q(t) = 25 + (Q0 − 25) e− rt

100

Integral curves:

Samy T. First order Differential equations 79 / 124



Salt concentration example (4)
Expression for Q:

Q(t) = 25 + (Q0 − 25) e− rt
100

Question: time to reach q ∈ (Q0, 25)?

Answer: We find

Q(t) = q ⇐⇒ t = 100
r ln

(
Q0 − 25
q − 25

)

Application: If r = 3, Q0 = 50 and q = 25.5, then:

t = 130.4 min
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Chemical pollution example
Description of experiment:

At t = 0, 107 gal of fresh water
Water containing unwanted chemical component entering
↪→ with rate 5 · 106 gal/year
Water flows out, same rate 5 · 106 gal/year
Concentration of chemical in incoming water:

γ(t) = 2 + sin(2t) g/gal
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Chemical pollution example (2)
Notation: Q(t) ≡ quantity of chemical comp. at time t
↪→ measured in grams

Remark: Volume is constant

Hypothesis: Variations of Q due to flows in and out,

dQ
dt = rate in− rate out

Equation:

dQ
dt = 5 · 106 γ(t)− 5 · 106 · Q

107 , Q(0) = 0
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Chemical pollution example (3)
Equation, standard form: We set Q = 106q and get

dq
dt + 1

2 q = 10 + 5 sin(2t), q(0) = 0

Integrating factor: µ(t) = e t
2

Solution:

q(t) = 20− 40
17 cos(2t) + 10

17 sin(2t)− 300
17 e− t

2

Integral curve:
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General form of homogeneous equation
General form of first order equation:

dy
dx = f (x , y) (18)

General form of homogeneous equation:

dy
dx = F

(y
x

)
.

How to see if an equation is homogeneous: When in (18) we have

f (tx , ty) = f (x , y)

Heuristics to solve homogeneous equations:
Go back to a separable equation
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Solving homogeneous equations
Equation:

dy
dx = F

(y
x

)
. (19)

General method:
1 Set y(x) = x V (x), and express y ′ in terms of x ,V ,V ′.
2 Replace in equation (19) −→ separable equation in V .
3 Solve the separable equation in V .
4 Go back to y recalling y = x V .

For equation (19), the function V satisfies

1
F (V )− V dV = 1

x dx ,

which is a separable equation

Theorem 7.
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Example of homogeneous equation (1)

Equation:
dy
dx = 4x + y

x − 4y
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Example of homogeneous equation (2)

Equation for V :
1− 4V

4(1 + V 2) dV = 1
x dx

Solution for V :

1
4 arctan(V )− 1

2 ln(1 + V 2) = ln(|x |) + c1

Solution for y :

1
2 arctan

(y
x

)
− ln

(
x2 + y 2

)
= c2 (20)
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Example of homogeneous equation (3)
Polar coordinates: Set

x = r cos(θ), and y = r sin(θ)

that is
r =

(
x2 + y 2

)1/2
, and θ = arctan

(y
x

)
Solution in polar coordinates: Equation (20) becomes

r = c3e
θ
4
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Another example of homogeneous equation (1)

Equation:
dy
dx = y − 4x

x − y
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Another example of homogeneous equation (2)

Equation for V :
1− V
V 2 − 4

dV
dx = 1

x

Solution for the V equation: for c ∈ R,

|V − 2|1/4|V + 2|3/4 = c
|x |
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Another example of homogeneous equation (3)
Solution for the y equation: for c ∈ R,

|y − 2x |1/4|y + 2x |3/4 = c
Graph for the implicit equation: observe symmetry w.r.t origin

(abs(y-2 x))1/4 (abs(y+2 x))3/4-1 = 0
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Jacob Bernoulli

Some facts about Bernoulli:
Lifespan: 1654-1705, in Switzerland
Discovers constant e
Establishes divergence of ∑ 1

n
Contributions in diff. eq
Bernoulli:
family of 8 prominent mathematicians
Fierce math fights between brothers
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Bernoulli equations

A Bernoulli equation is of the form

y ′ + p(x)y = q(x)yn (21)

Definition 8.

Recipe to solve a Bernoulli equation:
1 Divide equation (21) by yn

2 Change of variable: u = y 1−n

3 The equation for u is a linear equation of the form

1
1− nu

′ + p(x)u = q(x)
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Example of Bernoulli equation (1)

Equation:

y ′ + 3
x y = 12y 2/3

(1 + x2)1/2
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Example of Bernoulli equation (2)

Solution:
1 Divide the equation by y 2/3. We get

y−2/3y ′ + 3
x y

1/3 = 12
(1 + x2)1/2

2 Change of variable u = y 1/3. We end up with the linear equation

u′ + 1
x u = 4

(1 + x2)1/2
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Example of Bernoulli equation (3)

Solving the linear equation: Integrating factor given by

µ(x) = x

Then integrating we get

u(x) = x−1
(
4(1 + x2)1/2 + c

)

Going back to y : We have u = y 1/3. Thus

y(x) = x−3
(
4(1 + x2)1/2 + c

)3
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Example of exact equation

Equation considered:

2x + y 2 + 2xyy ′ = 0 (22)

Remark: equation (22) neither linear nor separable

Additional function: Set φ(x , y) = x2 + xy 2. Then:

∂φ

∂x = 2x + y 2, and ∂φ

∂y = xy .
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Example of exact equation (2)
Expression of (22) in terms of φ: we have

(22) ⇐⇒ ∂φ

∂x + ∂φ

∂y
dy
dx = 0

Solving the equation: We assume y = y(x). Then

(22) ⇐⇒ dφ
dx (x , y) = 0 ⇐⇒ φ(x , y) = c ,

for a constant c ∈ R.

Conclusion: equation solved under implicit form

x2 + xy 2 = c .
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Recall: separable equations

Equation considered:

M(x) dx + N(y) dy = 0. (23)

Antiderivatives: let H1,H2 such that

H ′1(x) = M(x) and H ′2(y) = N(y).

Then general solution to (23) is given by:

H1(x) + H2(y) = c ,

with c ∈ R.

Proposition 9.
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General exact equation

Equation considered:

M(x , y) dx + N(x , y) dy = 0. (24)

Hypothesis: there exists φ : R2 → R such that

∂φ

∂x = M(x , y) and ∂φ

∂y = N(x , y).

Conclusion: general solution to (24) is given by:

φ(x , y) = c , with c ∈ R,

provided this relation defines y = y(x) implicitely.

Proposition 10.
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Criterion for exact equations
Notation: For f : R2 → R, set fx = ∂f

∂x and fy = ∂f
∂y

Let:
R = {(x , y); α < x < β, and γ < y < δ}.
M, N , My , Nx continuous on R .

Then there exists φ such that:

φx = M, and φy = N on R ,

if and only if M and N satisfy:

My = Nx on R

Theorem 11.

Samy T. First order Differential equations 105 / 124



Computation of function φ

Aim: If My = Nx , find φ such that φx = M and φy = N .

Recipe in order to get φ:
1 Write φ as antiderivative of M with respect to x :

φ(x , y) = a(x , y) + h(y), where a(x , y) =
∫

M(x , y) dx

2 Get an equation for h by differentiating with respect to y :

h′(y) = N(x , y)− ay(x , y)

3 Finally we get:
φ(x , y) = a(x , y) + h(y).
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Computation of φ: example (1)

Equation considered:

y cos(x) + 2xey︸ ︷︷ ︸
M

+
(
sin(x) + x2ey − 1

)
︸ ︷︷ ︸

N

y ′ = 0. (25)
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Computation of φ: example (2)

Step 1: verify that My = Nx on R2.

Step 2: compute φ according to recipe. We find

φ(x , y) = y sin(x) + x2ey − y

Solution to equation (25):

y sin(x) + x2ey − y = c .
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Computation of φ: counter-example

Equation considered:

3xy + y 2︸ ︷︷ ︸
M

+
(
x2 + xy

)
︸ ︷︷ ︸

N

y ′ = 0. (26)

Step 1: verify that My 6= Nx .

Step 2: compute φ according to recipe. We find

h′(y) = −x2
2 − xy −→ still depends on x !

Conclusion: Condition My = Nx necessary.
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Solving an exact equation: example
Equation considered:

2x − y︸ ︷︷ ︸
M

+ (2y − x)︸ ︷︷ ︸
N

y ′ = 0, y(1) = 3. (27)

Step 1: verify that My = Nx on R2.

Step 2: compute φ according to recipe. We find

φ(x , y) = x2 − xy + y 2.

Solution to equation (27): recalling y(1) = 3, we get

x2 − xy + y 2 = 7.
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Solving an exact equation: example (2)
Expressing y in terms of x : we get

y = x
2 ±

(
7− 3x2

4

)1/2

.

Recalling y(1) = 3, we end up with:

y = x
2 +

(
7− 3x2

4

)1/2

.

Interval of definition:

x ∈
−2

√
7
4 ; 2

√
7
4

 ' (−3.05 ; 3.05)
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Objective

General 2nd order differential equation:

d2y
dx2 = F

(
x , y , dydx

)

Aim: See cases of 2nd order differential equations
↪→ which can be solved with 1st order techniques
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2nd order eq. with missing dependent variable

Case 1: Equation of the form

d2y
dx2 = F

(
x , dydx

)

Method for case 1: the function v = y ′ solves

dv
dx = F (x , v) .

Then compute y =
∫
v(x) dx .
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Example (1)

Equation:
d2y
dx2 = 1

x

(
dy
dx + x2 cos(x)

)
, x > 0.
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Example (2)
Change of variable: v = y ′ solves the linear equation

v ′ − x−1v = x cos(x)

Integrating factor:

I(x) = exp
(
−
∫

x−1 dx
)

= x−1

Solving for v :
v = x sin(x) + cx

Solving for y :

y =
∫

v = −x cos(x) + sin(x) + c1x2 + c2
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2nd order eq. with missing independent variable
Case 2: Equation of the form

d2y
dx2 = F

(
y , dydx

)

Method for case 2: We set v = dy
dx . Then observe that

d2y
dx2 = dv

dx = dv
dy

dy
dx = v dv

dy

Thus v solves the 1st order equation

v dv
dy = F (y , v).
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Example(1)

Equation:
d2y
dx2 = − 2

1− y

(
dy
dx

)2

.
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Example (2)

Change of variable: v = y ′ solves the 1st order separable equation

v dv
dy = − 2

1− y v
2

Solving for v :
v(y) = c1(1− y)2
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Example (3)

Separable equation for y :

dy
dx = c1(1− y)2

Solving for y :
y = c1x + (c2 − 1)

c1x + c2
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Review table

Type Standard form Technique
Separable p(y)y ′ = q(x) Separate variables

and integrate
Linear y ′ + p(x)y = q(x) Integrating factor µ = e

∫
p(x)dx

Homog. y ′ = f (x , y) where Set y = xv
f (tx , ty) = f (x , y) v solves separable equation

Bernoulli y ′ + p(x)y = q(x)yn Divide by yn, set u = y 1−n

u solves linear equation
Exact M dx + N dy =0 Solution φ(x , y) = c , where φ

with My = Nx integral of M and N
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Example (1)

Equation:
dy
dx = −8x5 + 3y 4

4xy 3

Samy T. First order Differential equations 123 / 124



Example (2)

Type of method:
Not separable, not homogeneous, not linear
Bernoulli, under the form

y ′ + 3
4x y = −2x4y−3

Not exact under the form(
8x5 + 3y 4

)
︸ ︷︷ ︸

M

dx + 4xy 3︸ ︷︷ ︸
N

dy
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