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Second order equation

Second order linear differential equation:

ay ′′ + b y ′ + c y = f (t) (1)

Second order homogeneous linear differential equation:

ay ′′ + b y ′ + c y = 0

Natural type of solution: Of the form

exp(α t)
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Existence and uniqueness

General homogeneous linear equation:
ay ′′ + b y ′ + c y = 0 (2)

Initial condition:
y(t0) = Y0, y ′(t0) = Y1. (3)

Hypothesis:
a, b, c , t0,Y0,Y1 are real numbers.
a 6= 0.

Conclusion:
There exists a unique function y satisfying (2)-(3) on R.

Theorem 1.
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Solutions as a vector space

General homogeneous linear equation:
ay ′′ + b y ′ + c y = 0 (4)

Results:
1 The set of solutions to (4) is a

Vector space of dimension 2

2 If y1, y2 are two linearly independent solutions of (4)
↪→ The general solution can be written as

y = c1y1 + c2y2

Theorem 2.
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Criterion for independence

General homogeneous linear equation:
ay ′′ + b y ′ + c y = 0 (5)

Results:
1 Let y1, y2 be solutions of (5). Then

y1, y2 are linearly independent
⇐⇒

y1(τ)y ′2(τ)− y2(τ)y ′1(τ) 6= 0 for a given τ ∈ R.

2 The condition above can also be written as
y1, y2 are linearly independent

⇐⇒
W [y1, y2](τ) 6= 0 for a given τ ∈ R.

Theorem 3.

Samy T. Higher order Differential equations 8 / 85



Wronskian

Let
y1, y2 two differentiable functions

Then
W [y1, y2](t) =

∣∣∣∣∣y1(t) y2(t)
y ′1(t) y ′2(t)

∣∣∣∣∣

Definition 4.

Remark: With the expression of determinant we get

W [y1, y2](t) = y1(t)y ′2(t)− y2(t)y ′1(t)
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Example

Equation:
y ′′ + y ′ − 6y = 0

Exponential solutions: We find two solutions

y1 = e2x , y2 = e−3x

Wronskian:
W [y1, y2](x) = −5e−x 6= 0

Conclusion: General solution of the form

y = c1y1 + c2y2
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Auxiliary equation

Equation considered: for a, b, c ∈ R,

ay ′′ + by ′ + cy = 0. (6)

Auxiliary equation:

ar 2 + br + c = 0. (7)

Facts about the auxiliary equation:
Equation (7) admits two roots r1, r2
Those two roots can be repeated or complex valued

Proposition 5.
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Construction of solutions

Equation: Homogeneous with constant coefficients (6).

Roots of characteristic polynomial: r1, r2.

Rules to find solutions: separate 3 cases,
1 If r1, r2 ∈ R non repeated root,

y1 = exp (r1t) , y2 = exp (r2t) solutions to equation (6).

2 If r1 = α + ıβ and r2 = α− ıβ conjugate complex roots,
y1 = exp (αt) cos(βt), y2 = exp (αt) sin(βt)

solutions to equation (6).
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Construction of solutions (2)

Rules to find solutions (ctd): separate 3 cases,
3 If r ∈ R repeated root,

y1 = exp (r t) , y2 = t exp (r t) solutions to equation (6).

Remark:
1 All the solutions y1, y2 above are linearly independent
2 Solutions y1, y2 above are called fundamental solutions of (6)
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Example with simple roots
Equation considered:

y ′′ + 5y ′ + 6y = 0 y(0) = 2, y ′(0) = 3. (8)

Solution: given by

y = 9 exp(−2t)− 7 exp(−3t)

Graph of solution:
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Example with complex roots
Equation:

y ′′ + y ′ + 9.25y = 0. (9)

Characteristic equation:

r 2 + r + 9.25 = 0.

Roots of characteristic equation:

r1 = −1
2 + 3ı, r2 = −1

2 − 3ı

Real valued fundamental solutions:

y1 = e− t
2 cos(3t), y2 = e− t

2 sin(3t).
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Example with complex roots (2)
Initial value problem: equation (9) with

y(0) = 2, and y ′(0) = 8.

Solution:
y = e− t

2 [2 cos(3t) + 3 sin(3t)] .

Graph: decaying oscillations
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Example with double root

Equation:
y ′′ − y ′ + 0.25y = 0. (10)

Roots of characteristic equation:

r = 1
2

Fundamental solutions:

y1 = e t
2 , y2 = te t

2 .
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Example with double root (2)
Initial value problem: equation (10) with

y(0) = 2, and y ′(0) = 1
3 .

Solution:
y =

(
2− 2

3t
)
e t

2 .

Graph:
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Example with double root (3)

Modification of initial value: equation (10) with

y(0) = 2, and y ′(0) = 2.

Solution:
y = (2 + t) e t

2 .

Question:
Separation between increasing and decreasing behavior of y
↪→ according to value of y ′(0).
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Equation of order n

Linear differential equation of order n: in non standard form

an(x)y (n) + an−1(x) y (n−1) + · · ·+ a1(x) y ′ + a0(x) y = b(x)

Linear differential equation of order n: in standard form

y (n) + p1 y (n−1) + p2 y (n−2) + · · ·+ pn−1 y ′ + pn y = g(x) (11)
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Existence and uniqueness

General linear equation:
y (n) + p1 y (n−1) + p2 y (n−2) + · · ·+ pn−1 y ′ + pn y = g(x)

(12)Initial condition:
y(x0) = γ0, y ′(x0) = γ1, . . . , y (n−1)(x0) = γn−1.

(13)
Hypothesis:

x0 ∈ I , where I = (α, β).
p1, . . . , pn and g continuous on I .

Conclusion:
There exists a unique function y satisfying (12)-(13) on I .

Theorem 6.
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Example of maximal interval
Equation considered:

x(x − 1)y ′′′ − 3xy ′′ + 6x2y ′ − cos(x)y = (x + 5)1/2

y(−2) = 2, y ′(−2) = 1, y ′′(−2) = −1.

Equivalent form:

y ′′′ − 3x
x(x − 1)y

′′ + 6x2
x(x − 1)y

′ − cos(x)
x(x − 1) = (x + 5)1/2

x(x − 1) .

Application of Theorem 6:
p1, p2, p3 continuous on (−∞, 0) ∪ (0, 1) ∪ (1,∞)
g continuous on (−5, 0) ∪ (0, 1) ∪ (1,∞)
−2 ∈ (−5, 0)

We thus get unique solution on (−5, 0)
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Wronskian

Let
{f1, . . . , fk} be a family of functions in C k−1(I).

The Wronskian of these functions is defined by

W [f1, . . . , fk ](x) =

∣∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fk(x)
f ′1(x) f ′2(x) · · · f ′k(x)
... ... . . . ...

f (k−1)
1 (x) f (k−1)

2 (x) · · · f (k−1)
k (x)

∣∣∣∣∣∣∣∣∣∣

Definition 7.
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Homogeneous equations

General homogeneous linear equation:
y (n) + p1 y (n−1) + p2 y (n−2) + · · ·+ pn−1 y ′ + pn y = 0 (14)

Results:
1 The set of solutions of (14) is a

vect. space of dimension n
2 Let y1, . . . , yn be solutions of (14). Then

y1, . . . , yn are linearly independent
⇐⇒

W [y1, . . . , yn](x0) 6= 0 for a given x0 ∈ I .

Theorem 8.
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Example

Equation:
y ′′ + y ′ − 6y = 0

Exponential solutions: We find two solutions

y1 = e2x , y2 = e−3x

Wronskian:
W [y1, y2](x) = −5e−x 6= 0

Conclusion: General solution of the form

y = c1y1 + c2y2
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Another example of Wronskian

Equation:
(D − 1)(D − 2)(D + 3)y = 0

Exponential solutions: We find 3 solutions

y1 = ex , y2 = e2x , y3 = e−3x

Wronskian:
W [y1, y2, y3](x) = 20 6= 0

Conclusion: General solution of the form

y = c1y1 + c2y2 + c3y3
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Non homogeneous equation

General linear equation:
Ly = F (x). (15)

Hypothesis: We have found
y1, . . . , yn solutions of Ly = 0
A particular solution yp of Ly = F

Conclusion:
The general solution of equation (15) is

y = yp + c1 y1 + c2 y2 + · · ·+ cn yn

Theorem 9.
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Example
Equation:

y ′′ + y ′ − 6y = 8e5x (16)

General solution of the homogeneous system: We have seen that

y = c1e2x + c2e−3x

Particular solution: One can check that yp solves (16) with

yp(x) = 1
3e

5x

Conclusion:
General solution for the non homogenous system of the form

y = c1e2x + c2e−3x + 1
3e

5x
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Homogeneous equation with constant coefficients

Equation considered: for a0, . . . , an ∈ R,

any (n) + an−1y (n−1) · · ·+ a0y = 0. (17)

Auxiliary polynomial:

P(r) = anrn + an−1rn−1 + · · ·+ a1r + a0.

Facts about P:
1 P has n roots (real, complex or repeated) r1, . . . , rn.
2 P factorizes as: P(r) = an(r − r1) · · · (r − rn).
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Construction of solutions

Equation: Homogeneous with constant coefficients (17).

Roots of characteristic polynomial: r1, . . . , rn.

Rules to find solutions: separate 4 cases,
1 If rj ∈ R non repeated root,

exp (rjx) solution to equation (17).

2 If rj = a + ıb and rj+1 = a − ıb conjugate complex roots,

exp (ax) cos(bx), exp (ax) sin(bx) solutions to equation (17).
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Construction of solutions (2)
Rules to find solutions (ctd): separate 4 cases,

3 If rj ∈ R repeated root of order s,

exp (rjx) , x exp (rjx) , . . . , x s−1 exp (rjx)

are solutions to equation (17).
4 If rj = a ± ıb ∈ C repeated roots of order s,

exp(ax) cos(bx), x exp(ax) cos(bx), . . . , x s−1 exp(ax) cos(bx)
exp(ax) sin(bx), x exp(ax) sin(bx), . . . , x s−1 exp(ax) sin(bx)

are solutions to equation (17).

Remark: All the solutions above are linearly independent

Samy T. Higher order Differential equations 34 / 85



Example with complex roots

Equation:
y (3) + y ′′ + 3y ′ − 5y = 0

Auxiliary polynomial:

P(r) = r 3 + r 2 + 3r − 5 = (r − 1)(r 2 + 2r + 5)

Roots:
r = 1
r = −1 + 2ı
r = −1− 2ı
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Example with complex roots (2)

Roots:
r = 1
r = −1 + 2ı
r = −1− 2ı

General solution: of the form

y = c1ex + c2e−x cos(2x) + c3e−x sin(2x)
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Example with multiple roots

Equation:
D3(D − 2)2(D2 + 1)2y = 0

Auxiliary polynomial:

P(r) = r 3(r − 2)2(r 2 + 1)2

Roots:
r = 0, multiplicity 3
r = 2, multiplicity 2
r = ±ı, multiplicity 2
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Example with multiple roots (2)
Fundamental solutions:

y1 = 1
y2 = x
y3 = x2

y4 = e2x

y5 = xe2x

y6 = cos(x)
y7 = x cos(x)
y8 = sin(x)
y9 = x sin(x)

General solution:
y =

9∑
j=1

Cj yj
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Example with computations in C (1)
Equation:

y (4) + 4y = 0

Auxiliary polynomial:
P(r) = r 4 + 4

Roots:
r =
√
2ı

r = −
√
2ı

r =
√
−2ı

r = −
√
−2ı

Question:
How to express those roots in C?
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Example with computations in C (2)

Applying Euler’s formula: We get
√
2ı = 1 + ı,

√
−2ı = −1 + ı

Expression for the roots:

1± ı, −1± ı

General solution:

y = ex (c1 cos(x) + c2 sin(x)) + e−x (c3 cos(x) + c4 sin(x))
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Example with repeated roots in C (1)

Equation: (
D2 + 6D + 13

)2
y = 0

Samy T. Higher order Differential equations 41 / 85



Example with repeated roots in C (2)

Auxiliary polynomial:

P(r) =
(
r 2 + 6r + 13

)2
=
(
(r + 3)2 + 4

)2
Roots:

r = −3 + 2ı, multiplicity 2
r = −3− 2ı, multiplicity 2

General solution:

y = e−3x (c1 cos(2x) + c2 sin(2x)) + xe−3x (c3 cos(2x) + c4 sin(2x))
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Mass on a spring

Situation: Mass m a horizontal spring, and either
Initial displacement.
Initial velocity
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Mass on a spring dynamics

Forces: if y ≡ displacement from equilibrium position,
1 Spring: Fs = −ky .
2 Resistive or damping: Fd = −by ′.
3 Applied external force F (in this course we’ll take F = 0).

Remark:
Expressions for Fs and Fd are approximate.
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Equation for dynamics

Newton’s law:
my ′′ + by ′ + ky = 0. (18)

Solution: With initial condition y(0), y ′(0)
↪→ according to Theorem 9 there exists a unique solution to (18).
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Undamped free vibration

Particular situation in (18):

F = 0, and b = 0.

Resulting equation:
my ′′ + ky = 0

Standard form of the equation:

y ′′ + ω2y = 0, with ω =
(
k
m

)1/2

(19)
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Undamped free vibration (2)

General solution of (19):

y = c1 cos(ωt) + c2 sin(ωt), with ω =
(
k
m

)1/2

Other expression for solution:

y = A cos (ωt − φ) , where A =
(
c21 + c22

)1/2
, tan(φ) = c2

c1
.
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Undamped free vibration (3)
Vocabulary: we call

ω: natural frequency (does not depend on initial condition).
A: amplitude of motion (does depend on initial condition).
φ: phase.

Period of motion: T = 2π
(

m
k

)1/2
↪→ Larger mass vibrates more slowly.
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Hooke’s law

Hooke: England’s Leonardo
Scientist
Mathematician
Architect
Mechanical engineer
1st person to observe cells

Hooke’s law, first version: The true Theory of Elasticity or Springs,
and a particular Explication thereof in several Subjects in which it is
to be found: And the way of computing the velocity of Bodies moved
by them.

ceiiinosssttuv
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Hooke’s law (2)
Hooke’s law, first version:

ceiiinosssttuv

Hooke’s law, second version:

Ut tensio sic vis

Hooke’s law, translation:

As extension, so is force

Hooke’s law, modern translation:

Force is directly proportional to extension
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Example of undamped vibration (1)

Description of the experiment:
Mass m = 1

2 attached to a spring
By applying a force F = 100N , spring is stretched d = 2 meters
Initial position 1 m, initial velocity -5m/s

Problem:
Find an equation for the spring motion
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Example of undamped vibration (2)

Constant k : According to Hook’s law,

k = F
d = 50

Equation for the motion:

y ′′ + 100y = 0

General solution:

y = c1 cos(10t) + c2 sin(10t)
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Example of undamped vibration (3)
Initial value problem: With y(0) = 1 and y ′(0) = −5,

y = cos(10t)− 1
2 sin(10t)

Amplitude-phase form:

y =
√
5
2 cos (10t + 0.46) ,

where we have computed

0.46 = tan−1
(1
2

)
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Damped free vibrations

Equation:
my ′′ + by ′ + ky = 0.

Roots:

r1, r2 = b
2m

−1± (1− 4km
b2

)1/2


= − b
2m ±

(b2 − 4km)1/2

2m .

Remark:
R(r1), R(r2) < 0, thus exponentially decreasing amplitude
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Damped free vibrations (2)
3 cases:

1 If b2 − 4km > 0, then (overdamped case):

y = c1 exp (r1t) + c2 exp (r2t) .

2 If b2 − 4km = 0, then (critical damping):

y = [c1 + c2t] exp
(
− bt
2m

)
.

3 If b2 − 4km < 0, then (underdamped case):

y = [c1 cos(βt) + c2 sin(βt)] exp
(
− bt
2m

)
, (20)

where β = (4km−b2)1/2

2m > 0.
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Underdamped case
Case under consideration:
If b small, we have b2 − 4km < 0 =⇒ motion governed by (20).

Expression for y :

y = A exp
(
− bt
2m

)
cos (βt − φ) .
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Underdamped (2)

Quasi-period: when b2 − 4km < 0, given by T . We have

T = 2π
β

= 4πm
(4km − b2)1/2

Conclusion:
Small damping =⇒ smaller period for oscillations.
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Critical and over damping

Critically damped case: when b2 − 4km = 0
↪→ mass passes through equilibrium at most once.

Overdamped case: when b2 − 4km > 0
↪→ mass passes through equilibrium at most once.

Samy T. Higher order Differential equations 59 / 85



Outline

1 Introduction: second order linear equations
General theory
Equations with constant coefficients

2 General solutions of linear equations

3 Homogeneous equations with constant coefficients

4 Mechanical vibrations

5 Non homogeneous equations and undetermined coefficients
Undetermined coefficients
Variation of parameters

Samy T. Higher order Differential equations 60 / 85



Outline

1 Introduction: second order linear equations
General theory
Equations with constant coefficients

2 General solutions of linear equations

3 Homogeneous equations with constant coefficients

4 Mechanical vibrations

5 Non homogeneous equations and undetermined coefficients
Undetermined coefficients
Variation of parameters

Samy T. Higher order Differential equations 61 / 85



Solving non homogeneous equations (repeated)

General linear equation:
Ly = F (x). (21)

Hypothesis: We have found
y1, . . . , yn solutions of Ly = 0
A particular solution yp of Ly = F

Conclusion:
The general solution of equation (21) is

y = yp + c1 y1 + c2 y2 + · · ·+ cn yn

Theorem 10.
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Method of undetermined coefficients
Nonhomogeneous linear equation with constant coefficients:

any (n) + · · ·+ a0y = f (x).

Aim: Find a particular solution yp to the equation.

Table of possible guess: restricted to a limited number of cases,

Function f Guess
α exp(ax) A exp(ax)

α sin(ωx) + β cos(ωx) A sin(ωx) + B cos(ωx)
αnxn + · · ·+ α0 Anxn + · · ·+ A0

(αnxn + · · ·+ α0) exp(ax) (Anxn + · · ·+ A0) exp(ax)
(α sin(ωx) + β cos(ωx)) exp(ax) (A sin(ωx) + B cos(ωx)) exp(ax)
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Example of application
Equation:

y ′′ − 3y ′ − 4y = 2 sin(t) (22)

Guess for particular solution:

yp(t) = A sin(t) + B cos(t)

Equation for A,B: plugging into (22) we get

−5A + 3B = 2, and − 3A− 5B = 0.

Particular solution:

yp(t) = − 5
17 sin(t) + 3

17 cos(t)
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Example of application (2)

Homogeneous equation:

y ′′ − 3y ′ − 4y = 0

Solution of homogeneous equation:

y = c1e−t + c2e4t .

General solution of nonhomogeneous equation (22):

y = c1e−t + c2e4t − 5
17 sin(t) + 3

17 cos(t).
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Second example of application
Equation:

y ′′ − 3y ′ − 4y = −8et cos(2t) (23)

Guess for particular solution:

yp(t) = Aet cos(2t) + Bet sin(2t)

Equation for A,B: plugging into (23) we get

10A + 2B = 8, and 2A− 10B = 0.

Particular solution:

yp(t) = 10
13e

t cos(2t) + 2
13e

t sin(2t)
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Second example of application (2)

Homogeneous equation:

y ′′ − 3y ′ − 4y = 0

Solution of homogeneous equation:

y = c1e−t + c2e4t .

General solution of nonhomogeneous equation (23):

y = c1e−t + c2e4t + 10
13 cos(2t) + 2

13 sin(2t).
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Elaboration of the guess: real valued root

Equation:

any (n) + · · ·+ a0y = (γmxm + · · ·+ γ1x + γ0) erx

Situation:
Auxiliary Polynomial: P(r) = anrn + · · ·+ a0
r ∈ R root of P with multiplicity s

Particular solution: of the form

yp(x) = x s (Amxm + · · ·+ A1x + A0) erx .

Proposition 11.

Samy T. Higher order Differential equations 68 / 85



Elaboration of the guess: complex valued root

Equation:

any (n) + · · ·+ a0y = (γmxm + · · ·+ γ1x + γ0) eαx cos(βx)

Situation:
Auxiliary Polynomial: P(r) = anrn + · · ·+ a0
α + ıβ ∈ C root of P with multiplicity s

Particular solution: of the form

yp(x) = x s (Amxm + · · ·+ A1x + A0) eαx cos(βx)
+ x s (Bmxm + · · ·+ B1x + B0) eαx sin(βx).

Proposition 12.
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Elaboration of the guess: complex valued root (2)

Equation:

any (n) + · · ·+ a0y = (γmxm + · · ·+ γ1x + γ0) eαx sin(βx)

Situation:
Auxiliary Polynomial: P(r) = anrn + · · ·+ a0
α + ıβ ∈ C root of P with multiplicity s

Particular solution: of the form

yp(x) = x s (Amxm + · · ·+ A1x + A0) eαx cos(βx)
+ x s (Bmxm + · · ·+ B1x + B0) eαx sin(βx).

Proposition 13.
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Example of application

Equation:
y (3) − 3y (2) + 3y ′ − y = 4et .

Auxiliary polynomial:

P(r) = (r − 1)3 =⇒ s = 3.

Solution to homogeneous equation: for c1, c2, c3 ∈ R,

yc = c1et + c2tet + c3t2et .
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Example of application (2)

Guess for particular solution:

yp(t) = At3et

General solution:

y = c1et + c2tet + c3t2et + 2
3t

3et .
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Example with superposition

Equation:
y (3) − 4y ′ = t + 3 cos(t) + e−2t .

Characteristic polynomial:

P(r) = r(r − 2)(r + 2).

Solution to homogeneous equation: for c1, c2, c3 ∈ R,

yc = c1 + c2e2t + c3e−2t .
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Example with superposition (2)
Sub-equation 1:

y (3) − 4y ′ = t.

Guess for particular solution 1:

yp,1(t) = t(A1t + A0) =⇒ A1 = −1
8 , A0 = 0.

Sub-equation 2:
y (3) − 4y ′ = 3 cos(t).

Guess for particular solution 2:

yp,2(t) = B cos(t) + C sin(t) =⇒ B = 0, C = −3
5 .
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Example with superposition (3)

Sub-equation 3:
y (3) − 4y ′ = e−2t .

Guess for particular solution 3:

yp,3(t) = Dte−2t =⇒ D = 1
8 .

General solution:

y = c1 + c2e2t + c3e−2t − t2
8 −

3
5 sin(t) + t

8e
−2t .
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Outline

1 Introduction: second order linear equations
General theory
Equations with constant coefficients

2 General solutions of linear equations

3 Homogeneous equations with constant coefficients

4 Mechanical vibrations

5 Non homogeneous equations and undetermined coefficients
Undetermined coefficients
Variation of parameters
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Objective

Limitations of the undetermined coefficients method:
1 Only applies to equations with constant coefficients
2 Non homogeneous term f of a specific form (see table)

Aim in this section:
Assume we know fund. sol. for a 2nd order linear equation
General method to compute yp
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Variation of parameters method (2nd order)

Equation considered:

ay ′′ + by ′ + cy = f
Hypothesis:
We know two linearly independent solutions y1, y2 of

ay ′′ + by ′ + cy = 0.

Conclusion: A particular solution yp is given by

yp = u1y1 + u2y2,
where u1, u2 satisfy y1u′1 + y2u′2 = 0

y ′1u′1 + y ′2u′2 = f
a

Theorem 14.
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Variation of parameters: application

Equation:
y ′′ + y = sec(x), x > 0 (24)

Fundamental solutions of homogeneous equation:

y1(x) = cos(x), y2(x) = sin(x).

Basic form of yp:

yp(x) = u1(x) cos(x) + u2(x) x sin(x)

Samy T. Higher order Differential equations 79 / 85



Variation of parameters: application (2)
System for u′1, u′2:cos(x)u′1 + sin(x)u′2 = 0

− sin(x)u′1 + cos(x)u′2 = sec(x)

Solution to the system: By Cramer’s rule we get

u′1(x) = − sin(x) sec(x), u′2(x) = cos(x) sec(x) = 1,

Expression for u1, u2: A direct integration yields

u1(x) = ln (|cos(x)|) , u2(x) = x .
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Variation of parameters: application (3)

Expression for yp: We get

yp(x) = u1(x) cos(x) + u2(x) sin(x)
= cos(x) ln (|cos(x)|) + x sin(x)

General solution to (24):

y(x) = c1 cos(x) + c2 sin(x) + cos(x) ln (|cos(x)|) + x sin(x).
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Variation of parameters: 2nd application

Equation:
y ′′ + 4y ′ + 4y = e−2x ln(x), x > 0 (25)

Fundamental solutions of homogeneous equation:

y1(x) = e−2x , y2(x) = x e−2x .

Basic form of yp:

yp(x) = u1(x) e−2x + u2(x) x e−2x
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Variation of parameters: 2nd application (2)
System for u′1, u′2:e−2xu′1 + x e−2xu′2 = 0

−2e−2xu′1 + (1− 2x)e−2xu′2 = e−2x ln(x)

Solution to the system: By Cramer’s rule we get

u′1(x) = −x ln(x), u′2(x) = ln(x),

Expression for u1, u2: Integrating by parts we get

u1(x) = 1
4x

2 (1− 2 ln(x)) , u2(x) = x(ln(x)− 1),
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Variation of parameters: 2nd application (3)

Expression for yp: We get

yp(x) = u1(x) e−2x + u2(x) x e−2x

= 1
4x

2 (2 ln(x)− 3) e−2x

General solution to (25):

y(x) = e−2x
[
c1 + c2x + 1

4x
2 (2 ln(x)− 3)

]
.
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George Green

Some facts about Green:
Lifespan: 1793-1841, in England
Self taught in Math, originally a baker
Mathematician, Physicist
1st mathematical theory of
electromagnetism
Went to college when he was 40
Died 1 year later (alcoholism?)
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