Higher order differential equations

Samy Tindel
Purdue University

Differential equations and linear algebra - MA 262

Taken from Differential equations and linear algebra Edwards, Penney, Calvis

Outline

(1) Introduction: second order linear equations

- General theory
- Equations with constant coefficients
(2) General solutions of linear equations
(3) Homogeneous equations with constant coefficients
(4) Mechanical vibrations
(5) Non homogeneous equations and undetermined coefficients
- Undetermined coefficients
- Variation of parameters

Outline

(1) Introduction: second order linear equations

- General theory
- Equations with constant coefficients
(2) General solutions of linear equations
(3) Homogeneous equations with constant coefficients
(4) Mechanical vibrations
(5) Non homogeneous equations and undetermined coefficients
- Undetermined coefficients
- Variation of parameters

Outline

(1) Introduction: second order linear equations

- General theory
- Equations with constant coefficients
(2) General solutions of linear equations
(3) Homogeneous equations with constant coefficients
(4) Mechanical vibrations
(5) Non homogeneous equations and undetermined coefficients
- Undetermined coefficients
- Variation of parameters

Second order equation

Second order linear differential equation:

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=f(t) \tag{1}
\end{equation*}
$$

Second order homogeneous linear differential equation:

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Natural type of solution: Of the form

$$
\exp (\alpha t)
$$

Existence and uniqueness

Theorem 1.

General homogeneous linear equation:

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{2}
\end{equation*}
$$

Initial condition:

$$
\begin{equation*}
y\left(t_{0}\right)=Y_{0}, \quad y^{\prime}\left(t_{0}\right)=Y_{1} . \tag{3}
\end{equation*}
$$

Hypothesis:

- $a, b, c, t_{0}, Y_{0}, Y_{1}$ are real numbers.
- $a \neq 0$.

Conclusion:
There exists a unique function y satisfying (2)-(3) on \mathbb{R}.

Solutions as a vector space

Theorem 2.
General homogeneous linear equation:

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{4}
\end{equation*}
$$

Results:
(1) The set of solutions to (4) is a

$$
\text { Vector space of dimension } 2
$$

(2) If y_{1}, y_{2} are two linearly independent solutions of (4) \hookrightarrow The general solution can be written as

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Criterion for independence

Theorem 3.

General homogeneous linear equation:

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{5}
\end{equation*}
$$

Results:
(1) Let y_{1}, y_{2} be solutions of (5). Then
y_{1}, y_{2} are linearly independent

$$
y_{1}(\tau) y_{2}^{\prime}(\tau)-y_{2}(\tau) y_{1}^{\prime}(\tau) \neq 0 \text { for a given } \tau \in \mathbb{R} .
$$

(2) The condition above can also be written as
y_{1}, y_{2} are linearly independent

$$
W\left[y_{1}, y_{2}\right](\tau) \neq 0 \text { for a given } \tau \in \mathbb{R} .
$$

Wronskian

Definition 4.

Let

- y_{1}, y_{2} two differentiable functions

Then

$$
W\left[y_{1}, y_{2}\right](t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|
$$

Remark: With the expression of determinant we get

$$
W\left[y_{1}, y_{2}\right](t)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)
$$

Example

Equation:

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

Exponential solutions: We find two solutions

$$
y_{1}=e^{2 x}, \quad y_{2}=e^{-3 x}
$$

Wronskian:

$$
W\left[y_{1}, y_{2}\right](x)=-5 e^{-x} \neq 0
$$

Conclusion: General solution of the form

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Outline

(1) Introduction: second order linear equations

- General theory
- Equations with constant coefficients
(2) General solutions of linear equations
(3) Homogeneous equations with constant coefficients
(4) Mechanical vibrations
(5) Non homogeneous equations and undetermined coefficients
- Undetermined coefficients
- Variation of parameters

Auxiliary equation

Proposition 5.

Equation considered: for $a, b, c \in \mathbb{R}$,

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{6}
\end{equation*}
$$

Auxiliary equation:

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{7}
\end{equation*}
$$

Facts about the auxiliary equation:

- Equation (7) admits two roots r_{1}, r_{2}
- Those two roots can be repeated or complex valued

Construction of solutions

Equation: Homogeneous with constant coefficients (6).
Roots of characteristic polynomial: r_{1}, r_{2}.
Rules to find solutions: separate 3 cases,
(1) If $r_{1}, r_{2} \in \mathbb{R}$ non repeated root,

$$
y_{1}=\exp \left(r_{1} t\right), y_{2}=\exp \left(r_{2} t\right) \quad \text { solutions to equation (6). }
$$

(2) If $r_{1}=\alpha+\imath \beta$ and $r_{2}=\alpha-\imath \beta$ conjugate complex roots,

$$
\begin{gathered}
y_{1}=\exp (\alpha t) \cos (\beta t), \quad y_{2}=\exp (\alpha t) \sin (\beta t) \\
\text { solutions to equation (6). }
\end{gathered}
$$

Construction of solutions (2)

Rules to find solutions (ctd): separate 3 cases,
(0) If $r \in \mathbb{R}$ repeated root,

$$
y_{1}=\exp (r t), y_{2}=t \exp (r t) \quad \text { solutions to equation (6). }
$$

Remark:
(1) All the solutions y_{1}, y_{2} above are linearly independent
(2) Solutions y_{1}, y_{2} above are called fundamental solutions of (6)

Example with simple roots

Equation considered:

$$
\begin{equation*}
y^{\prime \prime}+5 y^{\prime}+6 y=0 \quad y(0)=2, \quad y^{\prime}(0)=3 . \tag{8}
\end{equation*}
$$

Solution: given by

$$
y=9 \exp (-2 t)-7 \exp (-3 t)
$$

Graph of solution:

Example with complex roots

Equation:

$$
\begin{equation*}
y^{\prime \prime}+y^{\prime}+9.25 y=0 \tag{9}
\end{equation*}
$$

Characteristic equation:

$$
r^{2}+r+9.25=0
$$

Roots of characteristic equation:

$$
r_{1}=-\frac{1}{2}+3 \imath, \quad r_{2}=-\frac{1}{2}-3 \imath
$$

Real valued fundamental solutions:

$$
y_{1}=e^{-\frac{t}{2}} \cos (3 t), \quad y_{2}=e^{-\frac{t}{2}} \sin (3 t)
$$

Example with complex roots (2)

Initial value problem: equation (9) with

$$
y(0)=2, \quad \text { and } \quad y^{\prime}(0)=8 .
$$

Solution:

$$
y=e^{-\frac{t}{2}}[2 \cos (3 t)+3 \sin (3 t)]
$$

Graph: decaying oscillations

Example with double root

Equation:

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}+0.25 y=0 \tag{10}
\end{equation*}
$$

Roots of characteristic equation:

$$
r=\frac{1}{2}
$$

Fundamental solutions:

$$
y_{1}=e^{\frac{t}{2}}, \quad y_{2}=t e^{\frac{t}{2}}
$$

Example with double root (2)

 Initial value problem: equation (10) with$$
y(0)=2, \quad \text { and } \quad y^{\prime}(0)=\frac{1}{3} .
$$

Solution:

$$
y=\left(2-\frac{2}{3} t\right) e^{\frac{t}{2}} .
$$

Graph:

Example with double root (3)

Modification of initial value: equation (10) with

$$
y(0)=2, \quad \text { and } \quad y^{\prime}(0)=2 .
$$

Solution:

$$
y=(2+t) e^{\frac{t}{2}} .
$$

Question:
Separation between increasing and decreasing behavior of y \hookrightarrow according to value of $y^{\prime}(0)$.

Outline

(1) Introduction: second order linear equations

- General theory
- Equations with constant coefficients
(2) General solutions of linear equations
(3) Homogeneous equations with constant coefficients

4) Mechanical vibrations
(5) Non homogeneous equations and undetermined coefficients

- Undetermined coefficients
- Variation of parameters

Equation of order n

Linear differential equation of order n : in non standard form

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=b(x)
$$

Linear differential equation of order n : in standard form

$$
\begin{equation*}
y^{(n)}+p_{1} y^{(n-1)}+p_{2} y^{(n-2)}+\cdots+p_{n-1} y^{\prime}+p_{n} y=g(x) \tag{11}
\end{equation*}
$$

Existence and uniqueness

Theorem 6.

General linear equation:

$$
\begin{equation*}
y^{(n)}+p_{1} y^{(n-1)}+p_{2} y^{(n-2)}+\cdots+p_{n-1} y^{\prime}+p_{n} y=g(x) \tag{12}
\end{equation*}
$$

Initial condition:

$$
\begin{equation*}
y\left(x_{0}\right)=\gamma_{0}, \quad y^{\prime}\left(x_{0}\right)=\gamma_{1}, \quad \cdots \quad, \quad y^{(n-1)}\left(x_{0}\right)=\gamma_{n-1} . \tag{13}
\end{equation*}
$$

Hypothesis:

- $x_{0} \in I$, where $I=(\alpha, \beta)$.
- p_{1}, \ldots, p_{n} and g continuous on I.

Conclusion:
There exists a unique function y satisfying (12)-(13) on I.

Example of maximal interval

Equation considered:

$$
\begin{aligned}
& x(x-1) y^{\prime \prime \prime}-3 x y^{\prime \prime}+6 x^{2} y^{\prime}-\cos (x) y=(x+5)^{1 / 2} \\
& y(-2)=2, \quad y^{\prime}(-2)=1, \quad y^{\prime \prime}(-2)=-1
\end{aligned}
$$

Equivalent form:

$$
y^{\prime \prime \prime}-\frac{3 x}{x(x-1)} y^{\prime \prime}+\frac{6 x^{2}}{x(x-1)} y^{\prime}-\frac{\cos (x)}{x(x-1)}=\frac{(x+5)^{1 / 2}}{x(x-1)}
$$

Application of Theorem 6:

- p_{1}, p_{2}, p_{3} continuous on $(-\infty, 0) \cup(0,1) \cup(1, \infty)$
- g continuous on $(-5,0) \cup(0,1) \cup(1, \infty)$
- $-2 \in(-5,0)$

We thus get unique solution on $(-5,0)$

Wronskian

Definition 7.

Let

- $\left\{f_{1}, \ldots, f_{k}\right\}$ be a family of functions in $C^{k-1}(I)$.

The Wronskian of these functions is defined by

$$
W\left[f_{1}, \ldots, f_{k}\right](x)=\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \cdots & f_{k}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \cdots & f_{k}^{\prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(k-1)}(x) & f_{2}^{(k-1)}(x) & \cdots & f_{k}^{(k-1)}(x)
\end{array}\right|
$$

Homogeneous equations

Theorem 8.

General homogeneous linear equation:

$$
\begin{equation*}
y^{(n)}+p_{1} y^{(n-1)}+p_{2} y^{(n-2)}+\cdots+p_{n-1} y^{\prime}+p_{n} y=0 \tag{14}
\end{equation*}
$$

Results:
(1) The set of solutions of (14) is a vect. space of dimension n
(2) Let y_{1}, \ldots, y_{n} be solutions of (14). Then y_{1}, \ldots, y_{n} are linearly independent $W\left[y_{1}, \ldots, y_{n}\right]\left(x_{0}\right) \neq 0$ for a given $x_{0} \in I$.

Example

Equation:

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

Exponential solutions: We find two solutions

$$
y_{1}=e^{2 x}, \quad y_{2}=e^{-3 x}
$$

Wronskian:

$$
W\left[y_{1}, y_{2}\right](x)=-5 e^{-x} \neq 0
$$

Conclusion: General solution of the form

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Another example of Wronskian

Equation:

$$
(D-1)(D-2)(D+3) y=0
$$

Exponential solutions: We find 3 solutions

$$
y_{1}=e^{x}, \quad y_{2}=e^{2 x}, \quad y_{3}=e^{-3 x}
$$

Wronskian:

$$
W\left[y_{1}, y_{2}, y_{3}\right](x)=20 \neq 0
$$

Conclusion: General solution of the form

$$
y=c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}
$$

Non homogeneous equation

Theorem 9.

General linear equation:

$$
\begin{equation*}
L y=F(x) \tag{15}
\end{equation*}
$$

Hypothesis: We have found

- y_{1}, \ldots, y_{n} solutions of $L y=0$
- A particular solution y_{p} of $L y=F$

Conclusion:
The general solution of equation (15) is

$$
y=y_{p}+c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}
$$

Example

Equation:

$$
\begin{equation*}
y^{\prime \prime}+y^{\prime}-6 y=8 e^{5 x} \tag{16}
\end{equation*}
$$

General solution of the homogeneous system: We have seen that

$$
y=c_{1} e^{2 x}+c_{2} e^{-3 x}
$$

Particular solution: One can check that y_{p} solves (16) with

$$
y_{p}(x)=\frac{1}{3} e^{5 x}
$$

Conclusion:
General solution for the non homogenous system of the form

$$
y=c_{1} e^{2 x}+c_{2} e^{-3 x}+\frac{1}{3} e^{5 x}
$$

Outline

(1) Introduction: second order linear equations

- General theory
- Equations with constant coefficients
(2) General solutions of linear equations
(3) Homogeneous equations with constant coefficients
(4) Mechanical vibrations
(5) Non homogeneous equations and undetermined coefficients
- Undetermined coefficients
- Variation of parameters

Homogeneous equation with constant coefficients

Equation considered: for $a_{0}, \ldots, a_{n} \in \mathbb{R}$,

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)} \cdots+a_{0} y=0 \tag{17}
\end{equation*}
$$

Auxiliary polynomial:

$$
P(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}
$$

Facts about P :
(1) P has n roots (real, complex or repeated) r_{1}, \ldots, r_{n}.
(2) P factorizes as: $P(r)=a_{n}\left(r-r_{1}\right) \cdots\left(r-r_{n}\right)$.

Construction of solutions

Equation: Homogeneous with constant coefficients (17).
Roots of characteristic polynomial: r_{1}, \ldots, r_{n}.
Rules to find solutions: separate 4 cases,
(1) If $r_{j} \in \mathbb{R}$ non repeated root,

$$
\exp \left(r_{j} x\right) \quad \text { solution to equation (17). }
$$

(2) If $r_{j}=a+\imath b$ and $r_{j+1}=a-\imath b$ conjugate complex roots, $\exp (a x) \cos (b x), \exp (a x) \sin (b x)$ solutions to equation (17).

Construction of solutions (2)

Rules to find solutions (ctd): separate 4 cases,
(0) If $r_{j} \in \mathbb{R}$ repeated root of order s,

$$
\exp \left(r_{j} x\right), x \exp \left(r_{j} x\right), \ldots, x^{s-1} \exp \left(r_{j} x\right)
$$

are solutions to equation (17).
(1) If $r_{j}=a \pm \imath b \in \mathbb{C}$ repeated roots of order s,

$$
\begin{aligned}
& \exp (a x) \cos (b x), x \exp (a x) \cos (b x), \ldots, x^{s-1} \exp (a x) \cos (b x) \\
& \exp (a x) \sin (b x), x \exp (a x) \sin (b x), \ldots, x^{s-1} \exp (a x) \sin (b x)
\end{aligned}
$$

are solutions to equation (17).
Remark: All the solutions above are linearly independent

Example with complex roots

Equation:

$$
y^{(3)}+y^{\prime \prime}+3 y^{\prime}-5 y=0
$$

Auxiliary polynomial:

$$
P(r)=r^{3}+r^{2}+3 r-5=(r-1)\left(r^{2}+2 r+5\right)
$$

Roots:

- $r=1$
- $r=-1+2 \imath$
- $r=-1-2 \imath$

Example with complex roots (2)

Roots:

- $r=1$
- $r=-1+2 \imath$
- $r=-1-2 \imath$

General solution: of the form

$$
y=c_{1} e^{x}+c_{2} e^{-x} \cos (2 x)+c_{3} e^{-x} \sin (2 x)
$$

Example with multiple roots

Equation:

$$
D^{3}(D-2)^{2}\left(D^{2}+1\right)^{2} y=0
$$

Auxiliary polynomial:

$$
P(r)=r^{3}(r-2)^{2}\left(r^{2}+1\right)^{2}
$$

Roots:

- $r=0$, multiplicity 3
- $r=2$, multiplicity 2
- $r= \pm \imath$, multiplicity 2

Example with multiple roots (2)

Fundamental solutions:

- $y_{1}=1$
- $y_{2}=x$
- $y_{3}=x^{2}$
- $y_{4}=e^{2 x}$
- $y_{5}=x e^{2 x}$
- $y_{6}=\cos (x)$
- $y_{7}=x \cos (x)$
- $y_{8}=\sin (x)$
- $y_{9}=x \sin (x)$

General solution:

$$
y=\sum_{j=1}^{9} C_{j} y_{j}
$$

Example with computations in $\mathbb{C}(1)$

Equation:

$$
y^{(4)}+4 y=0
$$

Auxiliary polynomial:

$$
P(r)=r^{4}+4
$$

Roots:

- $r=\sqrt{2 \imath}$
- $r=-\sqrt{2 \imath}$
- $r=\sqrt{-2 \imath}$
- $r=-\sqrt{-2 \imath}$

Question:
How to express those roots in \mathbb{C} ?

Example with computations in $\mathbb{C}(2)$

Applying Euler's formula: We get

$$
\sqrt{2 \imath}=1+\imath, \quad \sqrt{-2 \imath}=-1+\imath
$$

Expression for the roots:

$$
1 \pm \imath, \quad-1 \pm \imath
$$

General solution:

$$
y=e^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+e^{-x}\left(c_{3} \cos (x)+c_{4} \sin (x)\right)
$$

Example with repeated roots in $\mathbb{C}(1)$

Equation:

$$
\left(D^{2}+6 D+13\right)^{2} y=0
$$

Example with repeated roots in $\mathbb{C}(2)$

Auxiliary polynomial:

$$
P(r)=\left(r^{2}+6 r+13\right)^{2}=\left((r+3)^{2}+4\right)^{2}
$$

Roots:

- $r=-3+2 \imath$, multiplicity 2
- $r=-3-2 \imath$, multiplicity 2

General solution:

$$
y=e^{-3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+x e^{-3 x}\left(c_{3} \cos (2 x)+c_{4} \sin (2 x)\right)
$$

Outline

(1) Introduction: second order linear equations

- General theory
- Equations with constant coefficients
(2) General solutions of linear equations
(3) Homogeneous equations with constant coefficients

4 Mechanical vibrations
(5) Non homogeneous equations and undetermined coefficients

- Undetermined coefficients
- Variation of parameters

Mass on a spring

Situation: Mass m a horizontal spring, and either

- Initial displacement.
- Initial velocity

Mass on a spring dynamics

Forces: if $y \equiv$ displacement from equilibrium position,
(1) Spring: $F_{s}=-k y$.
(2) Resistive or damping: $F_{d}=-b y^{\prime}$.
(3) Applied external force F (in this course we'll take $F=0$).

Remark:
Expressions for F_{s} and F_{d} are approximate.

Equation for dynamics

Newton's law:

$$
\begin{equation*}
m y^{\prime \prime}+b y^{\prime}+k y=0 \tag{18}
\end{equation*}
$$

Solution: With initial condition $y(0), y^{\prime}(0)$
\hookrightarrow according to Theorem 9 there exists a unique solution to (18).

Undamped free vibration

Particular situation in (18):

$$
F=0, \quad \text { and } \quad b=0
$$

Resulting equation:

$$
m y^{\prime \prime}+k y=0
$$

Standard form of the equation:

$$
\begin{equation*}
y^{\prime \prime}+\omega^{2} y=0, \quad \text { with } \quad \omega=\left(\frac{k}{m}\right)^{1 / 2} \tag{19}
\end{equation*}
$$

Undamped free vibration (2)

General solution of (19):

$$
y=c_{1} \cos (\omega t)+c_{2} \sin (\omega t), \quad \text { with } \quad \omega=\left(\frac{k}{m}\right)^{1 / 2}
$$

Other expression for solution:

$$
y=A \cos (\omega t-\phi), \quad \text { where } \quad A=\left(c_{1}^{2}+c_{2}^{2}\right)^{1 / 2}, \quad \tan (\phi)=\frac{c_{2}}{c_{1}} .
$$

Undamped free vibration (3)

Vocabulary: we call

- ω : natural frequency (does not depend on initial condition).
- A: amplitude of motion (does depend on initial condition).
- ϕ : phase.

Period of motion: $T=2 \pi\left(\frac{m}{k}\right)^{1 / 2}$
\hookrightarrow Larger mass vibrates more slowly.

Hooke's law

Hooke: England's Leonardo

- Scientist
- Mathematician
- Architect
- Mechanical engineer
- 1st person to observe cells

Hooke's law, first version: The true Theory of Elasticity or Springs, and a particular Explication thereof in several Subjects in which it is to be found: And the way of computing the velocity of Bodies moved by them.
ceiiinosssttuv

Hooke's law (2)

Hooke's law, first version:

ceiiinosssttuv

Hooke's law, second version:

Ut tensio sic vis

Hooke's law, translation:
As extension, so is force
Hooke's law, modern translation:
Force is directly proportional to extension

Example of undamped vibration (1)

Description of the experiment:

- Mass $m=\frac{1}{2}$ attached to a spring
- By applying a force $F=100 \mathrm{~N}$, spring is stretched $d=2$ meters
- Initial position 1 m , initial velocity $-5 \mathrm{~m} / \mathrm{s}$

Problem:
Find an equation for the spring motion

Example of undamped vibration (2)

Constant k: According to Hook's law,

$$
k=\frac{F}{d}=50
$$

Equation for the motion:

$$
y^{\prime \prime}+100 y=0
$$

General solution:

$$
y=c_{1} \cos (10 t)+c_{2} \sin (10 t)
$$

Example of undamped vibration (3)

Initial value problem: With $y(0)=1$ and $y^{\prime}(0)=-5$,

$$
y=\cos (10 t)-\frac{1}{2} \sin (10 t)
$$

Amplitude-phase form:

$$
y=\frac{\sqrt{5}}{2} \cos (10 t+0.46)
$$

where we have computed

$$
0.46=\tan ^{-1}\left(\frac{1}{2}\right)
$$

Damped free vibrations

Equation:

$$
m y^{\prime \prime}+b y^{\prime}+k y=0
$$

Roots:

$$
\begin{aligned}
r_{1}, r_{2} & =\frac{b}{2 m}\left[-1 \pm\left(1-\frac{4 k m}{b^{2}}\right)^{1 / 2}\right] \\
& =-\frac{b}{2 m} \pm \frac{\left(b^{2}-4 k m\right)^{1 / 2}}{2 m}
\end{aligned}
$$

Remark:
$\mathcal{R}\left(r_{1}\right), \mathcal{R}\left(r_{2}\right)<0$, thus exponentially decreasing amplitude

Damped free vibrations (2)

3 cases:
(1) If $b^{2}-4 k m>0$, then (overdamped case):

$$
y=c_{1} \exp \left(r_{1} t\right)+c_{2} \exp \left(r_{2} t\right)
$$

(2) If $b^{2}-4 k m=0$, then (critical damping):

$$
y=\left[c_{1}+c_{2} t\right] \exp \left(-\frac{b t}{2 m}\right)
$$

(3) If $b^{2}-4 k m<0$, then (underdamped case):

$$
\begin{equation*}
y=\left[c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right] \exp \left(-\frac{b t}{2 m}\right) \tag{20}
\end{equation*}
$$

where $\beta=\frac{\left(4 k m-b^{2}\right)^{1 / 2}}{2 m}>0$.

Underdamped case

Case under consideration:
If b small, we have $b^{2}-4 k m<0 \Longrightarrow$ motion governed by (20).
Expression for y :

$$
y=A \exp \left(-\frac{b t}{2 m}\right) \cos (\beta t-\phi)
$$

Underdamped (2)

Quasi-period: when $b^{2}-4 k m<0$, given by T. We have

$$
T=\frac{2 \pi}{\beta}=\frac{4 \pi m}{\left(4 k m-b^{2}\right)^{1 / 2}}
$$

Conclusion:
Small damping \Longrightarrow smaller period for oscillations.

Critical and over damping

Critically damped case: when $b^{2}-4 k m=0$
\hookrightarrow mass passes through equilibrium at most once.

Overdamped case: when $b^{2}-4 k m>0$
\hookrightarrow mass passes through equilibrium at most once.

Outline

(1) Introduction: second order linear equations

- General theory
- Equations with constant coefficients
(2) General solutions of linear equations
(3) Homogeneous equations with constant coefficients
(4) Mechanical vibrations
(5) Non homogeneous equations and undetermined coefficients
- Undetermined coefficients
- Variation of parameters

Outline

(1) Introduction: second order linear equations

- General theory
- Equations with constant coefficients
(2) General solutions of linear equations
(3) Homogeneous equations with constant coefficients
(4) Mechanical vibrations
(5) Non homogeneous equations and undetermined coefficients
- Undetermined coefficients
- Variation of parameters

Solving non homogeneous equations (repeated)

Theorem 10.

General linear equation:

$$
\begin{equation*}
L y=F(x) \tag{21}
\end{equation*}
$$

Hypothesis: We have found

- y_{1}, \ldots, y_{n} solutions of $L y=0$
- A particular solution y_{p} of $L y=F$

Conclusion:
The general solution of equation (21) is

$$
y=y_{p}+c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}
$$

Method of undetermined coefficients

Nonhomogeneous linear equation with constant coefficients:

$$
a_{n} y^{(n)}+\cdots+a_{0} y=f(x)
$$

Aim: Find a particular solution y_{p} to the equation.
Table of possible guess: restricted to a limited number of cases,

Function f	Guess
$\alpha \exp (a x)$	$A \exp (a x)$
$\alpha \sin (\omega x)+\beta \cos (\omega x)$	$A \sin (\omega x)+B \cos (\omega x)$
$\alpha_{n} x^{n}+\cdots+\alpha_{0}$	$A_{n} x^{n}+\cdots+A_{0}$
$\left(\alpha_{n} x^{n}+\cdots+\alpha_{0}\right) \exp (a x)$	$\left(A_{n} x^{n}+\cdots+A_{0}\right) \exp (a x)$
$(\alpha \sin (\omega x)+\beta \cos (\omega x)) \exp (a x)$	$(A \sin (\omega x)+B \cos (\omega x)) \exp (a x)$

Example of application

Equation:

$$
\begin{equation*}
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin (t) \tag{22}
\end{equation*}
$$

Guess for particular solution:

$$
y_{p}(t)=A \sin (t)+B \cos (t)
$$

Equation for A, B : plugging into (22) we get

$$
-5 A+3 B=2, \quad \text { and } \quad-3 A-5 B=0
$$

Particular solution:

$$
y_{p}(t)=-\frac{5}{17} \sin (t)+\frac{3}{17} \cos (t)
$$

Example of application (2)

Homogeneous equation:

$$
y^{\prime \prime}-3 y^{\prime}-4 y=0
$$

Solution of homogeneous equation:

$$
y=c_{1} e^{-t}+c_{2} e^{4 t}
$$

General solution of nonhomogeneous equation (22):

$$
y=c_{1} e^{-t}+c_{2} e^{4 t}-\frac{5}{17} \sin (t)+\frac{3}{17} \cos (t)
$$

Second example of application

Equation:

$$
\begin{equation*}
y^{\prime \prime}-3 y^{\prime}-4 y=-8 e^{t} \cos (2 t) \tag{23}
\end{equation*}
$$

Guess for particular solution:

$$
y_{p}(t)=A e^{t} \cos (2 t)+B e^{t} \sin (2 t)
$$

Equation for A, B : plugging into (23) we get

$$
10 A+2 B=8, \quad \text { and } \quad 2 A-10 B=0
$$

Particular solution:

$$
y_{p}(t)=\frac{10}{13} e^{t} \cos (2 t)+\frac{2}{13} e^{t} \sin (2 t)
$$

Second example of application (2)

Homogeneous equation:

$$
y^{\prime \prime}-3 y^{\prime}-4 y=0
$$

Solution of homogeneous equation:

$$
y=c_{1} e^{-t}+c_{2} e^{4 t}
$$

General solution of nonhomogeneous equation (23):

$$
y=c_{1} e^{-t}+c_{2} e^{4 t}+\frac{10}{13} \cos (2 t)+\frac{2}{13} \sin (2 t)
$$

Elaboration of the guess: real valued root

Proposition 11.

Equation:

$$
a_{n} y^{(n)}+\cdots+a_{0} y=\left(\gamma_{m} x^{m}+\cdots+\gamma_{1} x+\gamma_{0}\right) e^{r x}
$$

Situation:

- Auxiliary Polynomial: $P(r)=a_{n} r^{n}+\cdots+a_{0}$
- $r \in \mathbb{R}$ root of P with multiplicity s

Particular solution: of the form

$$
y_{p}(x)=x^{s}\left(A_{m} x^{m}+\cdots+A_{1} x+A_{0}\right) e^{r x}
$$

Elaboration of the guess: complex valued root

Proposition 12.

Equation:
$a_{n} y^{(n)}+\cdots+a_{0} y=\left(\gamma_{m} x^{m}+\cdots+\gamma_{1} x+\gamma_{0}\right) e^{\alpha x} \cos (\beta x)$
Situation:

- Auxiliary Polynomial: $P(r)=a_{n} r^{n}+\cdots+a_{0}$
- $\alpha+\imath \beta \in \mathbb{C}$ root of P with multiplicity s

Particular solution: of the form

$$
\begin{aligned}
y_{p}(x) & =x^{s}\left(A_{m} x^{m}+\cdots+A_{1} x+A_{0}\right) e^{\alpha x} \cos (\beta x) \\
& +x^{s}\left(B_{m} x^{m}+\cdots+B_{1} x+B_{0}\right) e^{\alpha x} \sin (\beta x) .
\end{aligned}
$$

Elaboration of the guess: complex valued root (2)

Proposition 13.

Equation:

$$
a_{n} y^{(n)}+\cdots+a_{0} y=\left(\gamma_{m} x^{m}+\cdots+\gamma_{1} x+\gamma_{0}\right) e^{\alpha x} \sin (\beta x)
$$

Situation:

- Auxiliary Polynomial: $P(r)=a_{n} r^{n}+\cdots+a_{0}$
- $\alpha+\imath \beta \in \mathbb{C}$ root of P with multiplicity s

Particular solution: of the form

$$
\begin{aligned}
y_{p}(x) & =x^{s}\left(A_{m} x^{m}+\cdots+A_{1} x+A_{0}\right) e^{\alpha x} \cos (\beta x) \\
& +x^{s}\left(B_{m} x^{m}+\cdots+B_{1} x+B_{0}\right) e^{\alpha x} \sin (\beta x) .
\end{aligned}
$$

Example of application

Equation:

$$
y^{(3)}-3 y^{(2)}+3 y^{\prime}-y=4 e^{t}
$$

Auxiliary polynomial:

$$
P(r)=(r-1)^{3} \quad \Longrightarrow \quad s=3
$$

Solution to homogeneous equation: for $c_{1}, c_{2}, c_{3} \in \mathbb{R}$,

$$
y_{c}=c_{1} e^{t}+c_{2} t e^{t}+c_{3} t^{2} e^{t}
$$

Example of application (2)

Guess for particular solution:

$$
y_{p}(t)=A t^{3} e^{t}
$$

General solution:

$$
y=c_{1} e^{t}+c_{2} t e^{t}+c_{3} t^{2} e^{t}+\frac{2}{3} t^{3} e^{t}
$$

Example with superposition

Equation:

$$
y^{(3)}-4 y^{\prime}=t+3 \cos (t)+e^{-2 t}
$$

Characteristic polynomial:

$$
P(r)=r(r-2)(r+2)
$$

Solution to homogeneous equation: for $c_{1}, c_{2}, c_{3} \in \mathbb{R}$,

$$
y_{c}=c_{1}+c_{2} e^{2 t}+c_{3} e^{-2 t}
$$

Example with superposition (2)

Sub-equation 1:

$$
y^{(3)}-4 y^{\prime}=t .
$$

Guess for particular solution 1:

$$
y_{p, 1}(t)=t\left(A_{1} t+A_{0}\right) \quad \Longrightarrow \quad A_{1}=-\frac{1}{8}, A_{0}=0
$$

Sub-equation 2:

$$
y^{(3)}-4 y^{\prime}=3 \cos (t) .
$$

Guess for particular solution 2:

$$
y_{p, 2}(t)=B \cos (t)+C \sin (t) \quad \Longrightarrow \quad B=0, C=-\frac{3}{5} .
$$

Example with superposition (3)

Sub-equation 3:

$$
y^{(3)}-4 y^{\prime}=e^{-2 t}
$$

Guess for particular solution 3:

$$
y_{p, 3}(t)=D t e^{-2 t} \quad \Longrightarrow \quad D=\frac{1}{8}
$$

General solution:

$$
y=c_{1}+c_{2} e^{2 t}+c_{3} e^{-2 t}-\frac{t^{2}}{8}-\frac{3}{5} \sin (t)+\frac{t}{8} e^{-2 t}
$$

Outline

(1) Introduction: second order linear equations

- General theory
- Equations with constant coefficients
(2) General solutions of linear equations
(3) Homogeneous equations with constant coefficients
(4) Mechanical vibrations
(5) Non homogeneous equations and undetermined coefficients
- Undetermined coefficients
- Variation of parameters

Objective

Limitations of the undetermined coefficients method:
(1) Only applies to equations with constant coefficients
(2) Non homogeneous term f of a specific form (see table)

Aim in this section:

- Assume we know fund. sol. for a 2 nd order linear equation
- General method to compute y_{p}

Variation of parameters method (2nd order)

Theorem 14.

Equation considered:

$$
a y^{\prime \prime}+b y^{\prime}+c y=f
$$

Hypothesis:
We know two linearly independent solutions y_{1}, y_{2} of

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

Conclusion: A particular solution y_{p} is given by

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2},
$$

where u_{1}, u_{2} satisfy

$$
\left\{\begin{array}{l}
y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0 \\
y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=\frac{f}{a}
\end{array}\right.
$$

Variation of parameters: application

Equation:

$$
\begin{equation*}
y^{\prime \prime}+y=\sec (x), \quad x>0 \tag{24}
\end{equation*}
$$

Fundamental solutions of homogeneous equation:

$$
y_{1}(x)=\cos (x), \quad y_{2}(x)=\sin (x)
$$

Basic form of y_{p} :

$$
y_{p}(x)=u_{1}(x) \cos (x)+u_{2}(x) x \sin (x)
$$

Variation of parameters: application (2)

System for $u_{1}^{\prime}, u_{2}^{\prime}$:

$$
\begin{cases}\cos (x) u_{1}^{\prime}+\sin (x) u_{2}^{\prime} & =0 \\ -\sin (x) u_{1}^{\prime}+\cos (x) u_{2}^{\prime} & =\sec (x)\end{cases}
$$

Solution to the system: By Cramer's rule we get

$$
u_{1}^{\prime}(x)=-\sin (x) \sec (x), \quad u_{2}^{\prime}(x)=\cos (x) \sec (x)=1
$$

Expression for u_{1}, u_{2} : A direct integration yields

$$
u_{1}(x)=\ln (|\cos (x)|), \quad u_{2}(x)=x
$$

Variation of parameters: application (3)

Expression for y_{p} : We get

$$
\begin{aligned}
y_{p}(x) & =u_{1}(x) \cos (x)+u_{2}(x) \sin (x) \\
& =\cos (x) \ln (|\cos (x)|)+x \sin (x)
\end{aligned}
$$

General solution to (24):

$$
y(x)=c_{1} \cos (x)+c_{2} \sin (x)+\cos (x) \ln (|\cos (x)|)+x \sin (x)
$$

Variation of parameters: 2nd application

Equation:

$$
\begin{equation*}
y^{\prime \prime}+4 y^{\prime}+4 y=e^{-2 x} \ln (x), \quad x>0 \tag{25}
\end{equation*}
$$

Fundamental solutions of homogeneous equation:

$$
y_{1}(x)=e^{-2 x}, \quad y_{2}(x)=x e^{-2 x}
$$

Basic form of y_{p} :

$$
y_{p}(x)=u_{1}(x) e^{-2 x}+u_{2}(x) x e^{-2 x}
$$

Variation of parameters: 2nd application (2)

System for $u_{1}^{\prime}, u_{2}^{\prime}$:

$$
\begin{cases}e^{-2 x} u_{1}^{\prime}+x e^{-2 x} u_{2}^{\prime} & =0 \\ -2 e^{-2 x} u_{1}^{\prime}+(1-2 x) e^{-2 x} u_{2}^{\prime} & =e^{-2 x} \ln (x)\end{cases}
$$

Solution to the system: By Cramer's rule we get

$$
u_{1}^{\prime}(x)=-x \ln (x), \quad u_{2}^{\prime}(x)=\ln (x)
$$

Expression for u_{1}, u_{2} : Integrating by parts we get

$$
u_{1}(x)=\frac{1}{4} x^{2}(1-2 \ln (x)), \quad u_{2}(x)=x(\ln (x)-1)
$$

Variation of parameters: 2nd application (3)

Expression for y_{p} : We get

$$
\begin{aligned}
y_{p}(x) & =u_{1}(x) e^{-2 x}+u_{2}(x) x e^{-2 x} \\
& =\frac{1}{4} x^{2}(2 \ln (x)-3) e^{-2 x}
\end{aligned}
$$

General solution to (25):

$$
y(x)=e^{-2 x}\left[c_{1}+c_{2} x+\frac{1}{4} x^{2}(2 \ln (x)-3)\right] .
$$

George Green

Some facts about Green:

- Lifespan: 1793-1841, in England
- Self taught in Math, originally a baker
- Mathematician, Physicist
- 1st mathematical theory of electromagnetism
- Went to college when he was 40

- Died 1 year later (alcoholism?)

