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Malthusian growth

Hypothesis:
Rate of change proportional to value of population

Equation: for k ∈ R and P0 ≥ 0,

dP
dt = k P, P(0) = P0

Solution:
P = P0 exp(kt)
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Exponential growth (2)

Integral curves:

Limitation of model:
Cannot be valid for large time t.
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Logistic population model

Basic idea:
Growth rate decreases when population increases.

Model:
dP
dt = r

(
1− P

C

)
P, (1)

where
r ≡ reproduction rate
C ≡ carrying capacity
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Logistic model: qualitative study
Information from slope field:

Equilibrium at P = C
If P < C then t 7→ P increasing
If P > C then t 7→ P decreasing
Possibility of convexity analysis
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Logistic model: solution
First observation: Equation (1) is separable

Integration: Integrating on both sides of (1) we get

ln
(∣∣∣∣∣ P

C − P

∣∣∣∣∣
)

= rt + c1

which can be solved as:

P(t) = c2C
c2 + e−rt

Initial value problem: If P0 is given we obtain

P(t) = C P0

P0 + (C − P0)e−rt
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Information obtained from the resolution

Asymptotic behavior:
lim

t→∞
P(t) = C

Prediction: If
Logistic model is accurate
P0, r and C are known

Then we know the value of P at any time t
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Introduction

General form of autonomous equations:

dy
dt = f (y) (2)

Solving autonomous equations:
This is a special case of separable equation

Aim of the section:
1 Information on equation (2) with graphical methods
2 Applications to population growth models

Samy T. Mathematical models Differential equations 11 / 41



Logistic growth
Hypothesis:

Growth rate depends on population
Related equation: dy

dt = h(y)y

Specifications for h:
h(y) ' r > 0 for small values of y
y 7→ h(y) decreases for larger values of y
h(y) < 0 for large values of y

Possibility: h(y) = r − ay

Verhulst equation: for r ,K > 0

dy
dt = f (y), with f (y) = r

(
1− y

K

)
y (3)
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Logistic growth (2)

Vocabulary:
r : Intrinsic growth.
K : Saturation level or carrying capacity.
Solutions to f (y) = 0: critical points.

Equilibrium solutions:
Defined as y ≡ `, where ` critical point
Here 2 equilibrium: y = 0 and y = K
If we have:

I y(0) = 0 or y(0) = K
I y satisfies (3),

then y stays constant
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Logistic growth (3)
Graphical interpretation 1:

Draw y 7→ f (y).
Here f parabola, intercepts (0, 0) and (K , 0).
We have dy

dt > 0 if y ∈ (0,K )
We have dy

dt < 0 if y > K
Vocabulary: y -axis is called phase line
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Logistic growth (4)
Graphical interpretation 2: behavior of t 7→ y(t)

Draw line y = 0 and y = K
Other curves:

I Increasing if y < K
I Decreasing if y > K
I Flattens out as y → 0 or y → K

Curves do not intersect
Possibility of a convexity/concavity analysis (threshold K

2 )
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Logistic growth (5)

Stable and unstable equilibrium:
1 We have seen (phase diagram):

I y increases if y < K
I y decreases if y > K

Thus K stable equilibrium
2 We have seen (phase diagram):

I y increases as long as y > 0 (and y < K )
Thus 0 unstable equilibrium

Remark:
See also the notion of semi-stable equilibrium
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Logistic growth (6)
Solving the equation: Equation (3) can be written as[

1
y + 1/K

1− y/K

]
dy = r dt

Solution is given by:

y = y0K
y0 + (K − y0)e−rt

Equilibrium revisited: For all y0 > 0 we have:

lim
t→∞

y(t) = K .

Thus K stable equilibrium.
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Critical threshold example

Equation considered: for r ,T > 0

dy
dt = f (y), with f (y) = −r

(
1− y

T

)
y (4)

Critical points:

f (y) = 0 ⇐⇒ y = 0 or y = T

This corresponds to 2 equilibrium.
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Critical threshold example (2)
Graphical interpretation 1:

Here f parabola, intercepts (0, 0) and (T , 0).
We have dy

dt < 0 if y ∈ (0,T )
We have dy

dt > 0 if y > T

Conclusion for equilibrium:
T unstable equilibrium
0 stable equilibrium
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Critical threshold example (3)
Graphical interpretation 2: behavior of t 7→ y(t)

Draw line y = 0 and y = T
Other curves:

I Increasing if y > T
I Decreasing if y < T
I Flattens out as y → 0

Curves do not intersect
Possibility of a convexity/concavity analysis (threshold T

2 )
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Critical threshold example (4)

Solving the equation: Like for equation (3) we get

y(t) = y0T
y0 + (T − y0)ert (5)

Limiting behavior: according to (5),
1 If 0 < y0 < T , we have limt→∞ y(t) = 0.
2 If y0 > T , we have limt→t∗ y(t) =∞, where

t∗ = 1
r ln

(
y0

y0 − T

)

This behavior could not be inferred from graphic representation.
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A problem taken from Edward’s book (1)

Equation:
y ′ = y 2 − 5y + 4

Problem:

Classify the equilibrium points
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A problem taken from Edward’s book (2)

Recasting the equation:

y ′ = (y − 1)(y − 4)

Classifying the equilibriums: We have
1 stable equilibrium
4 unstable equilibrium
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Another problem taken from Edward’s book (1)

Equation:
y ′ = (y − 2)2

Problem:

Classify the equilibrium points
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Another problem taken from Edward’s book (2)

Recall:
y ′ = (y − 2)2

Classifying the equilibriums: We have
2 semi-stable equilibrium
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Euler

Euler: the best mathematician ever
Modern math notation
Series expansions
Number theory
Graph theory
More than 30,000 pages of math
Lived in Switzerland, Russia, Prussia
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Approximations of first order equations: why?

Generic first order equation: Of the form

dy
dt = f (t, y), y(t0) = y0 (6)

General facts about (6):
1 If f is continuous, equation can be solved in neighborhood of t0.
2 Solution y cannot be computed explicitly.

Conclusion:
We need approximations in order to understand behavior of y .
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Starting from direction fields
Equation considered:

dy
dt = 3− 2t − 0.5y (7)

Direction fields for (7):

Basic idea: Linking the tangent lines on the graph
↪→ we get an approximation of solution.
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Questions about approximation methods

Basic issues:
1 Method to link tangent lines.
2 Do we get an approximation of real solution?
3 Rate of convergence for approximation.
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First steps of approximation (1)

Equation considered: equation (6), that is

dy
dt = f (t, y), y(t0) = y0.
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First steps of approximation (2)

Approximation near t0:
Solution passes through (t0, y0)
Slope at (t0, y0) is f (t0, y0)
Consider t1 close to t0

Then linear approximation of y(t1) is given by:

y1 = y0 + f (t0, y0) (t1 − t0) .
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First steps of approximation (3)

Approximation near t1:
Solution passes through (t1, y(t1))
Problem: we don’t know the exact value of y(t1)
We approximate y(t1) by y1
Approximate slope at (t1, y1) is given by f (t1, y1)
Consider t2 close to t1

Then linear approximation of y(t2) is given by:

y2 = y1 + f (t1, y1) (t2 − t1) .
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Euler scheme

Equation considered: equation (6), that is

dy
dt = f (t, y), y(t0) = y0.

Hypothesis: constant step in time,

tn+1 − tn = h.

Notation: fn = f (tn, yn), ŷ = Euler’s approximation.
Conclusion: Recursive formula for Euler’s scheme,

yn+1 = yn + fn h
ŷ(t) = yn + fn (t − tn) , for t ∈ [t0 + nh, t0 + (n + 1)h)

Proposition 1.
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Example of Euler scheme (1)

Equation considered: back to equation (7), that is

dy
dt =

f (t,y)︷ ︸︸ ︷
3− 2t − 0.5y , y(0) = 1

Euler scheme:

With h = 0.2
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Example of Euler scheme (2)

Exact solution: we find

y = φ(t) = 14− 4t − 13 exp
(
− t
2

)
Euler scheme, step 1: with h = 0.2 we have

f0 = f (0, 1) = 2.5
ŷ(t) = 1 + 2.5t for t ∈ (0, 0.2)
y1 = 1.5
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Example of Euler scheme (3)
Euler scheme, step 2: with h = 0.2 we have

f1 = f (0.2, 1.5) = 1.85
ŷ(t) = 1.5 + 1.85(t − 0.2) for t ∈ (0.2, 0.4)
y2 = 1.87

Numerical results:

Remark: about 10% error at t = 1
↪→ Approximation not accurate enough, smaller h needed.
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Example of Euler scheme (3)

Numerical results with varying h:

Comments:
Error decreases with time step.
Error could possibly be of order h.

Samy T. Mathematical models Differential equations 38 / 41



Example of Euler scheme (4)

Graphical comparison for h = 0.2:

Remark: ŷ ≥ y
↪→ Due to the fact that y concave =⇒ tangent above graph

Samy T. Mathematical models Differential equations 39 / 41



Euler scheme for fast increasing solution

Equation considered:

dy
dt = 4− t + 2y , y(0) = 1 (8)

Exact solution: we find

y = φ(t) = −7
4 −

t
2 + 11

4 exp (2t)

Thus exponential growth for y .
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Euler scheme for fast increasing solution (2)
Numerical results with varying h:

Comments:
Error still decreases with h
Worse performance than for (7).

Explanation of difference:
For (7) all solutions converge to φ(t) = 14− 14t
↪→ successive errors are not propagating
For (8) solutions diverge exponentially
↪→ strong propagation of successive errors
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