MA262 - PRACTICE PROBLEMS FOR EXAM I - SPRING 2022 BASED ON OLD MA262 EXAMS WHICH CAN BE FOUND AT https://www.math.purdue.edu/academic/courses/oldexams.php?course=MA26200
This is a collection of problems from old exams, the textbook and some other exercises. We have been using a new textbook book since the fall 2020 and some old exam problems do not match the notation or the content.

1. Let $y(x)$ satisfy

$$
\begin{array}{r}
y^{\prime}+\frac{4}{x} y=12 x \\
y(1)=8
\end{array}
$$

Then $y(2)$ is equal to
A. $\frac{25}{4}$
B. $\frac{32}{9}$
C. $\frac{67}{8}$
D. $\frac{23}{2}$
E. $\frac{47}{8}$
2. Let $y(x)$ be the solution of

$$
\begin{aligned}
& \left(y^{2}+2 x+\cos x\right) d x+(2 x y+\sin y) d y=0 \\
& y(0)=\pi
\end{aligned}
$$

If we denote $y\left(\frac{\pi}{2}\right)=Y$, we can say that Y satisfies the following equation:
A. $\frac{\pi}{2} Y^{2}+\frac{\pi^{2}}{4}-\cos Y=0$.
B. $\frac{\pi}{2} Y^{3}+\frac{\pi^{2}}{4}-\cos Y=1$.
C. $\frac{\pi}{2} Y^{2}+\frac{\pi^{2}}{4}+\sin Y=0$.
D. $\frac{\pi}{2} Y^{2}-\frac{\pi^{2}}{4}+\sin Y=0$.
E. $\frac{\pi}{4} Y^{2}+\frac{\pi^{2}}{4}-(\cos Y)^{2}=0$.
3. Let $y(x)$ satisfy

$$
\begin{aligned}
& y^{\prime}(x)+\frac{2 x}{1+x^{2}} y=-2 x y^{2} \\
& y(0)=1
\end{aligned}
$$

Then $y(1)$ is equal to
A. $y(1)=\frac{1}{2+2 \ln 2}$
B. $y(1)=\frac{1}{1+\ln 2}$
C. $y(1)=2(\ln 2)+1$
D. $y(1)=2+(\ln 2)$
E. $y(1)=\frac{1}{3+\ln 2}$
4. The solution of the differential equation

$$
\frac{d y}{d x}=\frac{x^{3}+4 y^{3}}{3 x y^{2}}, x>0
$$

is defined implicitly by the following equation:
A. $x^{3}+y^{3}-C x y^{3}=0$
B. $(x+y)^{3}-C x=0$
C. $x^{3}+y^{3}-C x^{4}=0$
D. $x+y-C x^{2}=0$
E. $1+y^{3}-C x=0$
5. Let $y(x)$ satisfy the following second order differential equation

$$
\begin{gathered}
y y^{\prime \prime}=3\left(y^{\prime}\right)^{2}, \\
y(0)=1, \quad y^{\prime}(0)=1 .
\end{gathered}
$$

Then $y\left(\frac{3}{8}\right)$ is equal to
A. $y\left(\frac{3}{8}\right)=1$
B. $y\left(\frac{3}{8}\right)=2$
C. $y\left(\frac{3}{8}\right)=3$
D. $y\left(\frac{3}{8}\right)=4$
E. $y\left(\frac{3}{8}\right)=5$
6. Find the general solution of the equation $y^{\prime \prime}+64 y=0$.
A. $y(x)=\cos (4 x)+C$
B. $y(x)=\cos (4 x)+\sin x$
C. $y(x)=A \cos (4 x)+B \sin (4 x)$
D. $y(x)=A \cos (4 x)+B \sin (5 x)$
E. $y(x)=A \cos (3 x)+B \sin (4 x)+C \sin (2 x)$
7. Find the solution of the initial value problem

$$
\begin{gathered}
x y^{\prime}=y+\frac{5}{4}\left(x^{4} y\right)^{\frac{1}{5}} \\
y(1)=1
\end{gathered}
$$

A. $y(x)=x(1+\ln x)^{\frac{5}{4}}$
B. $y(x)=x^{2}(1+\ln x)^{\frac{3}{4}}$
C. $y(x)=x(1+x \ln x)^{\frac{1}{4}}$
D. $y(x)=x(1+3 \ln x)^{\frac{5}{4}}$
E. $y(x)=x(1+5 \ln x)^{\frac{5}{4}}$
8. An object with initial temperature 32 F is placed in a refrigerator whose temperature is a constant 0 F . An hour later the temperature of the object is 16 F . What will its temperature be four hours after it is placed in the refrigerator? Hint: Newton's law of cooling $\frac{d T}{d t}=-k\left(T-T_{m}\right)$.
A. 1
B. 2
C. 3
D. 4
E. 5
9. The population of a certain species obeys the equation

$$
\frac{d p}{d t}=10(200-p)(p-300)
$$

If the initial population is 100 , what will the approximate value of the population be after a long time?
A. 100
B. 200
C. 300
D. 150
E. The population will be extinct .
10. A tank originally contains 100 gal of water with a salt concentration of $\frac{1}{2} \mathrm{lb} /$ gal. A solution containing a salt concentration of $2 \mathrm{lb} / \mathrm{gal}$ enters at a rate of $2 \mathrm{gal} / \mathrm{min}$ and the well-stirred mixture is pumped out at the rate of $1 \mathrm{gal} / \mathrm{min}$. The amount of salt in the tank after 50 min is
A. 0 lb
B. $400-350 e^{\frac{1}{2}} \mathrm{lb}$
C. $e^{-2} \mathrm{lb}$
D. 100 lb
E. 200 lb
11. Consider the system

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=2 \\
2 x_{1}+3 x_{2}+2 x_{3}=5 \\
2 x_{1}+3 x_{2}+\left(k^{2}-2\right) x_{3}=k+7
\end{gathered}
$$

Determine all the values of the constant k for which the above system has no solutions.
A. $k=-2$
B. $k=2$
C. $k \neq-2$
D. $k \neq 2$
E. $k=3$
17. Solve the differential equation

$$
\left(2 x y+x^{3}\right) d x+\left(x^{2}+y^{3}+2\right) d y=0, \quad y(0)=2
$$

A. $x^{2} y+2 y=4$
B. $x^{4}+2 y=8$
C. $x^{2} y+\frac{1}{4} x^{4}+\frac{1}{4} y^{4}+2 y=8$
D. $x^{2} y+\frac{1}{4} x^{4}+\frac{1}{4} y^{4}=0$
E. $\frac{1}{4} x^{4}+\frac{1}{4} y^{4}=8$

1. If $x y^{\prime}-3 y=x^{3}$ and $y(1)=1$, then $y(e)=$
A. e^{4}
B. e^{-2}
C. $2 e^{-3}$
D. $2 e^{3}$
E. e^{3}
2. The general solution of

$$
\left(2 x^{2} y\right) y^{\prime}=-3 x^{2}-2 x y^{2}
$$

is:
A. $x^{2} y^{3}+y^{3}=C$
B. $x^{2} y^{2}+x^{3}=C$
C. $x^{2} y^{2}=C$
D. $x^{3} y^{2}+x^{2}=C$
E. $x^{2} y^{3}+x=C$
2. If the system

$$
\begin{array}{r}
3 x+y-5 z=a \\
2 x+2 y-3 z=b \\
x-y-2 z=c
\end{array}
$$

is consistent, what can we conclude about a, b and c ?
A. $c^{2}=a^{2}$
B. $a+b=6$
C. $c=3$
D. $c=a-b$
E. $c=a+b$
3. The general solution of $x y^{\prime}-y=x^{2} e^{x}$ is
A. $y=x e^{x}+c x$
B. $y=x^{2} e^{x}-x e^{x}+c x$
C. $y=x e^{x}-c x^{2}$
D. $y=x^{2} e^{x}+x e^{x}+c x$
E. None of the above
4. The solution of $\left(3 x^{2}+y\right) d x+(x+2 y) d y=0$ passing through the point $(1,1)$ is
A. $x^{2}+x y+y^{2}=3$
B. $x^{2}+x y+y^{3}=3$
C. $x^{2}+x+y^{2}=3$
D. $x^{3}+x y+y^{2}=3$
E. $x^{3}+x^{2} y+y^{3}=3$
2. If y is the solution of the initial value problem

$$
\frac{d y}{d x}=\frac{2 x(y-2)}{x^{2}+1}, \quad y(0)=4
$$

then $y(1)=$
A. 4
B. 6
C. 8
D. 10
E. 12
2. (8 points) For $x>0$, the solution to the equation

$$
\left(\frac{2 y}{x}+2 x\right)+(2 \ln (x)-3) y^{\prime}=0
$$

is given implicitly by
A. $y(2 \ln (x)-3)+x^{2}=c$
B. $y(2 \ln (x)+3)-3 x^{2}=c$
C. $\ln (x)-x^{3}-3 y+c=0$
D. $y\left(\frac{2}{x}+\frac{3}{2}\right)+x^{2}+c=0$
E. $\frac{1}{x}+x^{2}-y^{2}+c=0$
10. For which value of c does the following system have infinitely many solutions?

$$
\left\{\begin{aligned}
3 x-2 y+5 z & =1 \\
2 y+z & =1 \\
-3 x+6 y+c z & =1
\end{aligned}\right.
$$

A. -3
B. -1
C. $1 / 2$
D. $5 / 2$
E. 2

