Outline

- Differential equations and mathematical models
- 2 Integrals as general and particular solutions
- Slope fields and solution curves
 - 4 Separable equations and applications
- 5 Linear equations
- 6 Substitution methods and exact equations
 - Homogeneous equations
 - Bernoulli equations
 - Exact differential equations
 - Reducible second order differential equations
 - Chapter review

Equation y' = f(t, y)

Ex: y'= 3y - 5t

Question Before computing anything about y do ve know that the solution exits?

Existence and uniqueness result

Visual version of Thin I f and $\frac{21}{3y}$ me continuous R, s.t. on R unique solution on (to-h, to+h) Conclusion:

Example of existence and uniqueness (1)

< □ > < 凸

Basic facts about continuity in R² (i) Polynomials are continuous $Ex : f(x,y) = xy^5 - 27x^8y^3$ (ci) Exp, sin, trig functions are continuous $E_{x:} f(x,y) = exp(x^2y^2 - y^8)$ $f(x,y) = cos(x^4 - yx^2)$ (iii) If P,Q are plynomials, then $f = \frac{\gamma}{Q}$ continuous if $Q \neq 0$ $E_{X}: f(x,y) = \frac{x y^{5} - x^{8} y}{(y-1)^{2}}$ continuous if y = 1

Equation $y' = 3x y'^3$ y(0) = aContinuity of f f is a product of continuous function => f continuous on R² Continuity of if In ader to compute if, we freeze x and if we differentiate wry. $\begin{aligned} f(x,y) &= 3x \ y''_{3} \implies \frac{\partial f}{\partial y} = 3x \ x \ \frac{1}{3} \ y^{-2/3} \\ &= x \ y^{-2/3} = \frac{x}{y^{2/3}} \end{aligned}$ $\frac{\partial f}{\partial y}$ is continuous if $y \neq 0$

y(o) = ay'= 3xy'3

Rectangle R which does not now the dangeous negin (if $a \neq 0$) $A \vee$ $(0, \alpha)$ Dangerous region if a = 0, unique xlution on Conclusion: (-h,h)If $\alpha = 0$, we cannot conclude

Example of existence and uniqueness (2)

Application of Theorem 1: we have

$$f(x,y) = 3x y^{1/3}, \qquad \frac{\partial f}{\partial y}(x,y) = x y^{-2/3}$$

Therefore if $a \neq 0$:

• There exists rectangle *R* such that

- f and $\frac{\partial f}{\partial v}$ continuous on R
- According to Theorem 1 there is unique solution on interval (-h, h), with h > 0

Second example of existence and uniqueness (1)

Equation considered:

$$y' = \frac{3x^2 + 4x + 2}{2(y - 1)}$$
, and $y(0) = -1$.

-		
~	2 2221	
	anny	

 $\frac{Eq:}{2(y-1)} \frac{f(x,y)}{f(y)} = -1$ Then f is continuous if y=1 Theorem $\frac{JL}{Jy} = -\frac{3x^2+4x+2}{2(y-1)^2}$ is continuous if $y \neq 1$ Dangerous line y=1 R, not crossing the dangerous line (0,-1) initial condition centque slution on (-h, h) (onclusion:

<u>Rmk</u> we have $y = 1 - ((x+2)(x+2))^{2}$ >0 if Domain of def for $y: (-2, \infty)$ Thm I was only giving interval of def =(-h,h)

Second example of existence and uniqueness (2)

Application of Theorem 1: we have

$$f(x,y) = \frac{3x^2 + 4x + 2}{2(y-1)}, \qquad \frac{\partial f}{\partial y}(x,y) = -\frac{3x^2 + 4x + 2}{2(y-1)^2}$$

Therefore:

- There exists rectangle R such that
 - ▶ (0, -1) ∈ R
 - f and $\frac{\partial f}{\partial v}$ continuous on R
- According to Theorem 1 there is unique solution on interval (-h, h), with h > 0

Second example of existence and uniqueness (3)

Comparison with explicit solution: We will see that

$$y = 1 - ((x+2)(x^2+2))^{1/2}$$

Interval of definition: $x \in (-2, \infty)$ \hookrightarrow much larger than predicted by Theorem 1

Changing initial condition: consider y(0) = 1, on line y = 1. Then:

- Theorem 1: nothing about possible solutions
- Oirect integration:
 - We find $y = 1 \pm (x^3 + 2x^2 + 2x)^{1/2}$
 - 2 possible solutions defined for x > 0

Second example of existence and uniqueness (3)

Interval of definition on integral curves:

Comments:

• Interval of definition delimited by vertical tangents

Samu	
Janny	

Example with non-uniqueness (1) Equation considered:

$$y' = y^{1/3},$$
 and $y(0) = 0.$

Application of Theorem 1: $f(y) = y^{1/3}$. Hence,

- $f : \mathbb{R} \to \mathbb{R}$ continuous on \mathbb{R} , differentiable on \mathbb{R}^*
- Theorem 1: gives existence, not uniqueness

Solving the problem: Separable equation, thus

- General solution: for $c \in \mathbb{R}$, $y = \left[\frac{2}{3}(t+c)\right]^{3/2}$
- With initial condition y(0) = 0,

$$y = \left(\frac{2t}{3}\right)^{3/2}$$

Example with non-uniqueness (2) 3 solutions to the equation:

$$\phi_1(t) = \left(rac{2t}{3}
ight)^{3/2}, \quad \phi_2(t) = -\left(rac{2t}{3}
ight)^{3/2}, \quad \psi(t) = 0.$$

Family of solutions: For any $t_0 \ge 0$,

$$\chi(t) = \chi_{t_0}(t) = \begin{cases} 0 & \text{for } 0 \le t < t_0 \ \pm \left(\frac{2(t-t_0)}{3}\right)^{3/2} & \text{for } t \ge t_0 \end{cases}$$

Integral curves:

Slope field for a gravity equation (1)

Gravity equation with friction

$$\frac{dv}{dt} = 9.8 - \frac{v}{5}$$
(4)
Idea: If the value of σ is known, then
the value of σ' is also known
Ex: If $\sigma = 20$, then $\sigma' = 9.8 - \frac{20}{5} = 5.8$

э

< □ > < 同 >

slope=5.8 Slope = 5.8 Shape of U V=20

Next step: Draw many of these point-slopes, in adden to see how the solution behaves

Conclusions from the graph (i) Special value : if we start from US.T

 $U' = 9.8 - \frac{U}{5} = 0 \implies U = 49$ then v'=0 fuever => flat une

(ii) If U < 49, then $U' = 9.8 - \frac{U}{5} > 0$ => U increasing

 $\lim_{t \to \infty} \sigma(t) = 40 \quad (equilibrium)$ (a)

Slope field for a gravity equation (2)

Meaning of the graph:

 \hookrightarrow Values of $\frac{dv}{dt}$ according to values of v

Slope field for a gravity equation (3)

What can be seen on the graph:

- Critical value: $v_c = 49 \text{ms}^{-1}$, solution to $9.8 \frac{v}{5} = 0$
- If $v < v_c$: positive slope
- If $v > v_c$: negative slope

э