Outline

- Differential equations and mathematical models
- Integrals as general and particular solutions
- Slope fields and solution curves
- 4 Separable equations and applications

Linear equations

- Substitution methods and exact equations
 - Homogeneous equations
 - Bernoulli equations
 - Exact differential equations
 - Reducible second order differential equations

Chapter review

General form of 1st order linear equation
General 1st ader diff eq
$$y' = f(t,y)$$

Linear eq: when f is linear in y
General form 1:
 $\frac{dy}{dt} + \frac{p(t)y}{L} = g(t)$
Linear in y

General form 2:

$$P(t)\frac{dy}{dt}+Q(t)y=G(t)$$

Remark:

2 forms are equivalent if $P(t) \neq 0$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Image: A matrix

æ

From fam 2 to fam 1 P(t) y' + Q(t) y = G(t) $y' + \frac{Q(t)}{P(t)}y = \frac{G(t)}{P(t)} \longrightarrow funl$ PLES g(t)

This can be done as long as Rmk $P(t) \neq 0$

when P(t) = 0, we get singularity i)nes

Example with direct integration

Equation:

$$\left(4+t^2\right)\frac{dy}{dt}+2t\,y=4t$$

Equivalent form:

$$\frac{d}{dt}\left[\left(4+t^2\right)y\right]=4t$$

General solution: For a constant $c \in \mathbb{R}$,

$$y=\frac{2t^2+c}{4+t^2}$$

э

Equation $(4+t^2) y' + 2t y = 4t$ f(t) g'(t) f'(t) g(t)

Note: $f'(t) = (4rt^2)' = 2t$

<u>Recall</u> (fg)' = f'g + fg'

Thus the equation can be written as

(fg)' = 4t $\iff ((4+t^2)y)' = 4t$

Integrate on both sides:

(4+t2)y =)(4t)dt = 2t2+c

General Jolution $(4+t^2)y = \int (4t)dt = 2t^2 + c$ $\Leftrightarrow y = \frac{2t^2 + c}{4t^2}, \text{ for } c \in \mathbb{R}$ Will this simple thick work for every linear eq? QI No (this relied on 2t = (4+t²)') Can we generalize the trick to almost any linear eq? QL s yes (integrating factor)

Method of integrating factor

General equation:

has to be fum 1

$$\frac{dy}{dt} + p(t)y = g(t)$$
(10)

mu

Recipe for the method:

- Consider equation (10)
- ② Multiply the equation by a function μ
- Try to choose μ such that equation (10) is reduced to:

$$\frac{d(\mu y)}{dt} = a(t) \tag{11}$$

Integrate directly equation (11)

Notation: If previous recipe works, μ is called integrating factor

Example of integrating factor (1)

Equation:

$$\frac{dy}{dt} + \frac{1}{2}y = \frac{1}{2}e^{t/3}$$

Image: A matrix

э

(12)

Equation $(y' + \frac{1}{2}y = \frac{1}{2}e^{\frac{t}{3}}) \times \mu$ I The linear eq is already under fam I $\mu y' + \mu' y = \frac{1}{2} e^{\tau/3} \mu \quad (\text{tack to simple})$ example) 3 Find μ s.t. $\mu' = \frac{1}{2} \mu$ (i) $\mu = \frac{1}{4} t^2 \implies \mu' = \frac{2t}{2} = \frac{t}{2} \longrightarrow NO$ (ii) $M = e^{t/2} \implies \mu' = \frac{1}{2} e^{t/2} = \frac{1}{2}\mu$ We choose $\mu = e^{t/2}$

= e⁵⁵6 3-Cta We have obtained $e^{t/2}y' + \frac{1}{2}e^{t/2}y = \frac{1}{2}e^{t/3}e^{t/2}$ $(e^{t/2}y)' = \frac{1}{2}e^{5t/6}$ (4) Integrate on both sides $e^{t/2}y = \frac{1}{2} \int e^{\frac{35}{6}} dt$ $e^{t/2}y = \frac{1}{2} \times \frac{6}{5} = e^{\frac{55}{6}} + c$ $\frac{3}{5}e^{5t/6}$ $\in \mathcal{E}^{t/2}y =$ +Cxe-t/2 y= 3 e^{5t/2} + c e^{-t/2} $=\frac{3}{5}e^{t/3} + ce^{-t/2}$ Y (=)

creneral volution $\frac{3}{5}e^{t/3} + ce^{-t/2}$ Y : what is the dominant term as Question

we have $e^{-E/2}$ ast ->~ $\frac{2}{5}e^{t/s}$ as t $\rightarrow \infty$ Thus

->~

Example of integrating factor (2)

Multiplication by μ :

$$\mu(t)rac{dy}{dt} + rac{1}{2}\,\mu(t)\,y = rac{1}{2}\,\mu(t)\,e^{t/3}$$

Integrating factor: Choose μ such that $\mu' = \frac{1}{2}\mu$, i.e $\mu(t) = e^{t/2}$

Solving the equation: We have, for $c \in \mathbb{R}$

(12)
$$\iff \frac{d\left(e^{t/2}y\right)}{dt} = \frac{1}{2}e^{\frac{5t}{6}}$$

 $\iff y(t) = \frac{3}{5}e^{\frac{t}{3}} + ce^{-\frac{t}{2}}$

Image: A matrix

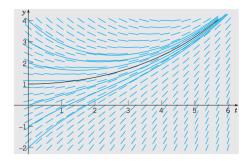
3

Example of integrating factor (3)

Solution for a given initial data: If we know y(0) = 1, then

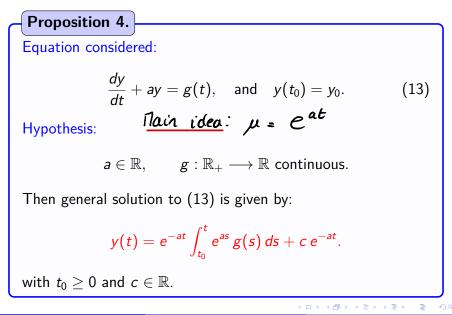
$$y(t) = \frac{3}{5} e^{\frac{t}{3}} + \frac{2}{5} e^{-\frac{t}{2}}$$

Direction fields and integral curves:



How did ue find u? μ volves $\mu' = \pm \mu$ $rightarrow \frac{d\mu}{\nu} = \frac{1}{z} dt$ (zparable) €> lnµ = t \leftarrow $\mu = e_{2}^{t}$

General case with constant coefficient



65 / 123

Example with exponential growth

Equation:

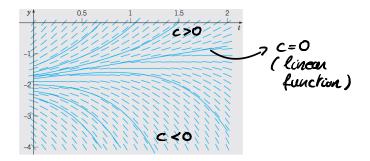
 $\frac{dy}{dt} - 2y = 4 - t$ a = -2 $\Rightarrow \mu = e^{-2t}$

3

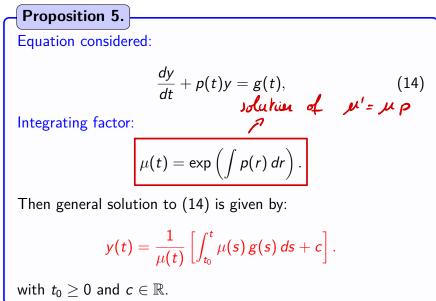
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Example with exponential growth (2) General solution: for $c \in \mathbb{R}$, $y(t) = -\frac{7}{4} + \frac{t}{2} + c e^{2t}$

Direction fields and integral curves:



General first order linear case



Example with unbounded p(1)

Equation considered:

$$t y' + 2y = 4t^2, \qquad y(1) = 2.$$
 (15)

Image: A matrix

э

 $ty' + 2y = 4t^2$ (fum 2) Equation

 $Eq \Rightarrow y' + \frac{2}{4}y = 4t$ (I)

Integrating facta: 2

 $= t^2$

 $\mu(t) = \exp\left(\int_{t}^{2} dt\right)$

= exp(2ln(t)(+c)) = exp(ln(t'))

 $Eq \Leftrightarrow (t^2 y)' = 4t x t^2 = 4t^3$ (3)

Integrate on both xdes (4)

 $t^2 y = \int 4t^3 dt = t^4 + c$

General solution Divide by t². We get

 $Y = \frac{t^4}{t^2} + \frac{c}{r^2}$

 $y = t^2 + \frac{c}{t^2}$

Initial condition y(1)=2. We get

 $2 = l^2 + \frac{c}{l^2}$ => C= /

Unique solution: Rmk: Here we singular get a singular solution at t=0This is due to aiginal eq $y' = \frac{2}{2}y + 4t$ $y = t^2 + \frac{1}{t^2}$

Example with unbounded p(2)

Equivalent form:

$$y' + \frac{2}{t}y = 4t,$$
 $y(1) = 2.$

Integrating factor:

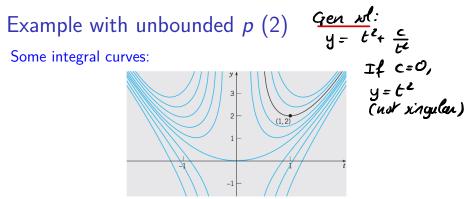
$$\mu(t) = t^2$$

Solution:

$$y(t) = t^2 + \frac{1}{t^2}$$
(16)

Image: A matrix

э



Comments:

- **(**) Example of solution which is not defined for all $t \ge 0$
- 2 Due to singularity of $t \mapsto \frac{1}{t}$
- **(3)** Integral curves for t < 0: not part of initial value problem
- According to value of y(1), different asymptotics as t
 ightarrow 0
- **(9)** Boundary between 2 behaviors: function $y(t) = t^2$

Example with no analytic solution (1)

Equation considered:

2y' + ty = 2.

Samy	

э

Image: A matrix

Equation 2y'+ty=2 () Fam 1: $(y' + \frac{1}{2}y = 1) \times e^{\frac{t}{4}}$ ② Integrating factor: $\mu = exp(J \frac{1}{2} dt)$ $= exp\left(\frac{t}{4}\right)$ 3 Equation becomes $(e^{t/4}y)' = e^{t/4}$ No know expression Integrate on 6th sides $e^{t^{2}/4} y = \int e^{t^{2}/4} dt \qquad p \text{ dation}$ $y = e^{-t^{2}/4} \left(\int_{0}^{t} e^{s^{2}/4} ds + c \right)$