MA 262-DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA

REVIEW PROBLEMS - MIDTERM 2 - SPRING 19

Problem 1. Let A and B be defined by

$$
A=\left[\begin{array}{ccc}
0 & 2 & -1 \\
-2 & 0 & 1 \\
-1 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & -2 & 0 \\
1 & 2 & 1 \\
3 & 1 & 1
\end{array}\right]
$$

Compute $\operatorname{det}\left(A^{-1} B^{2}\right)$.
Problem 2. Consider the following vectors in \mathbb{R}^{3} :

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
z
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
0 \\
2 \\
1
\end{array}\right] .
$$

Find the values of z such that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ forms a basis of \mathbb{R}^{3}.
Problem 3. Let D be the subspace of \mathbb{R}^{3} defined by

$$
D=\left\{\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) ; \mathbf{x}_{1}-3 \mathbf{x}_{2}+6 \mathbf{x}_{3}=0\right\}
$$

Find the dimension of D.

Problem 4. For the matrix A defined by

$$
A=\left[\begin{array}{ccc}
0 & 2 & -1 \\
-2 & 0 & 1 \\
-1 & 0 & 1
\end{array}\right]
$$

compute the sum of the eigenvalues.
Problem 5. Let M be the following matrix:

$$
M=\left[\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right]
$$

Find the eigenvalue related to the eigenvector

$$
\mathbf{v}=\left[\begin{array}{c}
-1+\imath \\
1
\end{array}\right]
$$

Problem 6. Solve the initial value problem

$$
y^{\prime \prime}-y^{\prime}-2 y=0, \quad y(0)=2, y^{\prime}(0)=0
$$

Problem 7. Find the general form of the trial solution for the following problem:

$$
y^{\prime \prime}-2 y^{\prime}+2 y=e^{x} \cos (x)-3 e^{2 x}
$$

Problem 8. Consider the equation

$$
y^{\prime \prime}-3 y^{\prime}+2 y=t^{-1} e^{3 t}
$$

We wish to find y_{p} thanks to the variation of parameter method. Compute the expression for u_{1}^{\prime} in this context.

Problem 9. For the following equation:

$$
y^{\prime \prime}-\frac{1}{t} y^{\prime}+\frac{1}{t^{2}} y=0
$$

a fundamental solution is $y_{1}(t)=t$. We wish to find the general solution under the form $t v$. Find the differential equation for v.

Problem 10. A mass-spring system is governed by the equation

$$
y^{\prime \prime}+b y^{\prime}+2 y=0
$$

According to the values of b, determine if the system is periodic, overdamped, underdamped or critically damped.

