Systems of linear differential equations

Samy Tindel
Purdue University

Differential equations and linear algebra - MA 262

Taken from Differential equations and linear algebra Edwards, Penney, Calvis

Outline

(1) First order systems and applications
(2) Matrices and linear systems
(3) The eigenvalue method for linear systems

- Distinct eigenvalues
- Complex eigenvalues

44 Multiple eigenvalue solutions
(5) A gallery of solution curves of linear systems

- Real eigenvalues
- Complex eigenvalues

Outline

(1) First order systems and applications
(2) Matrices and linear systems
(3) The eigenvalue method for linear systems

- Distinct eigenvalues
- Complex eigenvalues

4 Multiple eigenvalue solutions
(5) A gallery of solution curves of linear systems

- Real eigenvalues
- Complex eigenvalues

Spring example

Physical setting: Interacting springs

Equation:

$$
\begin{aligned}
& m_{1} \frac{d^{2} x_{1}}{d t^{2}}=k_{2}\left(x_{2}-x_{1}\right)-k_{1} x_{1}+F_{1}(t) \\
& m_{2} \frac{d^{2} x_{2}}{d t^{2}}=-k_{2}\left(x_{2}-x_{1}\right)-k_{3} x_{2}+F_{2}(t)
\end{aligned}
$$

Second order equation as first order system (1)

Equation:

$$
y^{\prime \prime}+0.125 y^{\prime}+y=0
$$

Aim:
Write this equation as a system of differential equations

Second order equation as first order system (2)

Equation:

$$
y^{\prime \prime}+0.125 y^{\prime}+y=0
$$

Change of variable: set

$$
x_{1}=y, \quad x_{2}=y^{\prime}
$$

New equation:

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =-x_{1}-0.125 x_{2}
\end{aligned}
$$

First order system as second order equation (1)

System:

$$
\begin{aligned}
x^{\prime} & =-2 y \\
y^{\prime} & =\frac{1}{2} x
\end{aligned}
$$

Aim:
Write this system as a second order differential equation

First order system as second order equation (2)

Differentiating x : We get

$$
x^{\prime \prime}=-2 y^{\prime}=-x, \quad \text { thus } \quad x^{\prime \prime}+x=0
$$

General solution for x :

$$
x(t)=A \cos (t)+B \sin (t)=C \cos (t-\varphi)
$$

General solution for y :

$$
y(t)=-\frac{1}{2} x^{\prime}(t)=\frac{C}{2} \sin (t-\varphi)
$$

First order system as second order equation (3)

 General solution$$
\begin{aligned}
x(t) & =C \cos (t-\varphi) \\
y(t) & =\frac{C}{2} \sin (t-\varphi)
\end{aligned}
$$

Another example of first order system (1)

System:

$$
\begin{aligned}
& x^{\prime}=y \\
& y^{\prime}=2 x+y
\end{aligned}
$$

Aim:
Write this system as a second order differential equation

Another example of first order system (2)

Differentiating x : We get

$$
x^{\prime \prime}=y^{\prime}=2 x+y=x^{\prime}+2 x, \quad \text { thus } \quad x^{\prime \prime}-x^{\prime}-2 x=0
$$

General solution for x :

$$
x(t)=A e^{-t}+B e^{2 t}
$$

General solution for y :

$$
y(t)=x^{\prime}(t)=-A e^{-t}+2 B e^{2 t}
$$

Another example of first order system (3)

General solution

$$
\begin{aligned}
& x(t)=A e^{-t}+B e^{2 t} \\
& y(t)=-A e^{-t}+2 B e^{2 t}
\end{aligned}
$$

Definitions

First order linear system: Of the form

$$
\begin{array}{cccccc}
x_{1}^{\prime}(t) & =a_{11}(t) x_{1}(t) & +a_{12}(t) x_{2}(t) & +\cdots & +a_{1 n}(t) x_{n}(t) & +f_{1}(t) \\
x_{2}^{\prime}(t) & =a_{21}(t) x_{1}(t) & +a_{22}(t) x_{2}(t) & +\cdots & +a_{2 n}(t) x_{n}(t) & +f_{2}(t) \\
\vdots & & & & & \vdots \\
x_{n}^{\prime}(t) & =a_{n 1}(t) x_{1}(t) & +a_{n 2}(t) x_{2}(t) & +\cdots & +a_{n n}(t) x_{n}(t) & +f_{n}(t)
\end{array}
$$

Homogeneous system: When

$$
f_{1}=f_{2}=\cdots=f_{n}=0
$$

Nonhomogeneous system: When there exists j such that

$$
f_{j} \neq 0
$$

Initial value

Definition 1.

For the system above an initial condition is given by

$$
x_{1}\left(t_{0}\right)=x_{1,0}, \ldots, x_{n}\left(t_{0}\right)=x_{n, 0}
$$

Example of system:

$$
\begin{array}{lll}
x_{1}^{\prime} & =x_{1} & +2 x_{2} \\
x_{2}^{\prime} & =2 x_{1} & -2 x_{2}
\end{array}
$$

Initial condition:

$$
x_{1}(0)=1, \quad x_{2}(0)=0
$$

Example of initial value

Form of the general solution: We will see that

$$
x_{1}(t)=c_{1} e^{-3 t}+c_{2} e^{2 t}, \quad \text { and } \quad x_{2}(t)=-2 c_{1} e^{-3 t}+\frac{1}{2} c_{2} e^{2 t}
$$

System for c_{1}, c_{2} :

$$
\begin{array}{cll}
c_{1} & +c_{2} & =1 \\
-4 c_{1} & +c_{2} & =0
\end{array}
$$

Unique solution of the initial value problem:

$$
x_{1}(t)=\frac{1}{5} e^{-3 t}+\frac{4}{5} e^{2 t}, \quad \text { and } \quad x_{2}(t)=-\frac{2}{5} e^{-3 t}+\frac{2}{5} e^{2 t}
$$

Outline

(1) First order systems and applications
(2) Matrices and linear systems
(3) The eigenvalue method for linear systems

- Distinct eigenvalues
- Complex eigenvalues
(4) Multiple eigenvalue solutions
(5) A gallery of solution curves of linear systems
- Real eigenvalues
- Complex eigenvalues

Matrix notation

First order linear system: Of the form

$$
\begin{array}{cccccc}
x_{1}^{\prime}(t) & =a_{11}(t) x_{1}(t) & +a_{12}(t) x_{2}(t) & +\cdots & +a_{1 n}(t) x_{n}(t) & +f_{1}(t) \\
x_{2}^{\prime}(t) & =a_{21}(t) x_{1}(t) & +a_{22}(t) x_{2}(t) & +\cdots & +a_{2 n}(t) x_{n}(t) & +f_{2}(t) \\
\vdots & & & & & \vdots \\
x_{n}^{\prime}(t) & =a_{n 1}(t) x_{1}(t) & +a_{n 2}(t) x_{2}(t) & +\cdots & +a_{n n}(t) x_{n}(t) & +f_{n}(t)
\end{array}
$$

Related matrices:
$\mathbf{A}(t)=\left[\begin{array}{ccccc}a_{11}(t) & a_{12}(t) & a_{13}(t) & \ldots & a_{1 n}(t) \\ a_{21}(t) & a_{22}(t) & a_{23}(t) & \ldots & a_{2 n}(t) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n 1}(t) & a_{n 2}(t) & a_{n 3}(t) & \ldots & a_{n n}(t)\end{array}\right] \quad$ and $\quad \mathbf{f}(t)=\left[\begin{array}{c}f_{1}(t) \\ f_{2}(t) \\ \vdots \\ f_{n}(t)\end{array}\right]$

Matrix notation (2)

Vector of unknown: We set

$$
\mathbf{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right], \quad \text { and } \quad \mathbf{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right]
$$

Vector form of the linear system:

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{f}(t)
$$

Initial data:

$$
\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
$$

Some vector space notions

Space $V_{n}(I)$: For an interval I we set

$$
V_{n}(I)=\left\{y: I \rightarrow \mathbb{R}^{n}\right\}
$$

Then $V_{n}(I)$ is a vector space.
Wronskian: Let

- $\mathbf{x}_{1}(t), \ldots, \mathbf{x}_{n}(t)$ vectors in $V_{n}(I)$

The Wronskian of those vectors is

$$
W\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right](t)=\operatorname{det}\left(\left[\mathbf{x}_{1}(t), \ldots, \mathbf{x}_{n}(t)\right]\right)
$$

Wronskian and independence

Theorem 2.
Let

- $\mathbf{x}_{1}(t), \ldots, \mathbf{x}_{n}(t)$ vectors in $V_{n}(I)$.
- Assume that $W\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right]\left(t_{0}\right) \neq 0$ for a given $t_{0} \in I$

Then

$$
\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \text { is linearly independent. }
$$

Example of Wronskian

Vector function:

$$
\mathbf{x}_{1}(t)=\left[\begin{array}{c}
e^{t} \\
2 e^{t}
\end{array}\right], \quad \text { and } \quad \mathbf{x}_{2}(t)=\left[\begin{array}{c}
3 \sin (t) \\
\cos (t)
\end{array}\right]
$$

Wronskian: We have

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\left|\begin{array}{cc}
e^{t} & 3 \sin (t) \\
2 e^{t} & \cos (t)
\end{array}\right|=e^{t}(\cos (t)-6 \sin (t))
$$

Linear independence: We have

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](0)=1 \neq 0
$$

Therefore $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is linearly independent

JÃșzef Maria Hoene-Wroński

Wronski: A philosopher-mathematician

- Born in Poland (1776)
- Lived mostly in France
- Hero of the Polish army when defeated by the Russians
- Mathematician Wronskian is his main contribution
- Philosophical system based on math
- Ousted from the observatory
 because of his philosophical views
- Died in poverty, aged 76

Homogeneous equation

Theorem 3.

Consider the system

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t), \quad \mathbf{x}(t) \in \mathbb{R}^{n}, A(t) \in M_{n, n} .
$$

Hypothesis:
The mapping $t \mapsto A(t)$ is continuous
Then the following holds true:
(1) The general solution set is a vector space of dimension n
(2) The system with initial data $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$ admits a unique solution

Fundamental solutions

Definition 4.

Consider

- The system $\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)$
- A set $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ of n linearly independent solutions of the system
Then:
(1) The set

$$
\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}
$$

is called fundamental solution set of the system
(2) The matrix

$$
\mathbf{X}(t)=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right]
$$

is called fundamental matrix of the system

Wronskian and fundamental solutions

Theorem 5.

Consider

- The system $\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)$ on an interval /
- A set $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ of n solutions of the system
- $t_{0} \in I$

Then:
(1) If $W\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right]\left(t_{0}\right) \neq 0$ then $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is a fundamental solution set of the system
(2) The general solution of the system can be written as

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)
$$

Example of application

System under consideration:

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \text { with } \quad A=\left[\begin{array}{cc}
1 & 2 \tag{1}\\
-2 & 1
\end{array}\right]
$$

Solutions:

$$
\mathbf{x}_{1}(t)=\left[\begin{array}{c}
-e^{t} \cos (2 t) \\
e^{t} \sin (2 t)
\end{array}\right], \quad \text { and } \quad \mathbf{x}_{2}(t)=\left[\begin{array}{c}
e^{t} \sin (2 t) \\
e^{t} \cos (2 t)
\end{array}\right]
$$

Remark:
One can check that \mathbf{x}_{1} and \mathbf{x}_{2} solve (1)

Example of application (2)

Wronskian computation:

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\left|\begin{array}{cc}
-e^{t} \cos (2 t) & e^{t} \sin (2 t) \\
e^{t} \sin (2 t) & e^{t} \cos (2 t)
\end{array}\right|=-e^{2 t}
$$

Conclusion: Since $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0$ for all $t \in \mathbb{R}$,

$$
\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\} \text { is a fundamental solution set }
$$

General form of the solution to (1):

$$
\mathbf{x}(t)=\left[\begin{array}{c}
e^{t}\left(-c_{1} \cos (2 t)+c_{2} \sin (2 t)\right) \\
e^{t}\left(c_{1} \sin (2 t)+c_{2} \cos (2 t)\right)
\end{array}\right]
$$

Outline

(1) First order systems and applications
(2) Matrices and linear systems
(3) The eigenvalue method for linear systems

- Distinct eigenvalues
- Complex eigenvalues
(4) Multiple eigenvalue solutions
(5) A gallery of solution curves of linear systems
- Real eigenvalues
- Complex eigenvalues

Aim

General objective: Solve homogeneous systems of the form

$$
\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)
$$

with

$$
\mathbf{x}(t) \in \mathbb{R}^{n}, \quad \mathbf{A} \in M_{n, n} .
$$

Methodology:
Based on eigenvalues/eigenvectors decomposition of \mathbf{A}

Solutions and eigenvectors

Theorem 6.
Consider the system with constant matrix

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t), \quad \mathbf{x}(t) \in \mathbb{R}^{n}, \mathbf{A} \in M_{n, n} \tag{2}
\end{equation*}
$$

Hypothesis:

- A admits n lin. independ. eigen. \mathbf{u}_{k} with eigenval. λ_{k} Conclusion:
(1) The following are linearly independent solutions to (2):

$$
\mathbf{x}_{k}(t)=e^{\lambda_{k} t} \mathbf{u}_{k}
$$

(2) The general solution of (2) is of the form

$$
\mathbf{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{u}_{1}+\cdots+c_{n} e^{\lambda_{n} t} \mathbf{u}_{n}
$$

Outline

(1) First order systems and applications
(2) Matrices and linear systems
(3) The eigenvalue method for linear systems

- Distinct eigenvalues
- Complex eigenvalues

4 Multiple eigenvalue solutions
(5) A gallery of solution curves of linear systems

- Real eigenvalues
- Complex eigenvalues

Example with real eigenvalues

Equation:

$$
x^{\prime}=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right] x
$$

Eigenvalue decomposition:

$$
\lambda_{1}=3, \quad \mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] ; \quad \lambda_{2}=-1, \quad \mathbf{u}_{2}=\left[\begin{array}{r}
1 \\
-2
\end{array}\right]
$$

Example with real eigenvalues (2)

Fundamental solutions:

$$
\mathbf{x}_{1}(t)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] e^{3 t}, \quad \mathbf{x}_{2}(t)=\left[\begin{array}{r}
1 \\
-2
\end{array}\right] e^{-t}
$$

Wronskian:

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\left|\begin{array}{rr}
e^{3 t} & e^{-t} \\
2 e^{3 t} & -2 e^{-t}
\end{array}\right|=-4 e^{2 t} \neq 0
$$

Conclusion: \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent

Example with real eigenvalues (3)

General solution:

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{r}
1 \\
-2
\end{array}\right] e^{-t} .
$$

Compartmental analysis (1)

Situation:

- Three brine tanks, volume V_{1}, V_{2}, V_{3}
- Fresh water flows into tank 1 , rate r
- Mixed water flows from tank 2 into tank 3, rate r
- Mixed water flows out of tank 3, rate r

Aim: Compute quantity of salt in each tank i

Compartmental analysis (2)

Notation: Set

$$
k_{i}=\frac{r}{V_{i}}
$$

Equations:

$$
\begin{aligned}
& x_{1}^{\prime}=-k_{1} x_{1} \\
& x_{2}^{\prime}=k_{1} x_{1} \\
& x_{3}^{\prime}=
\end{aligned}
$$

Compartmental analysis (3)

Specific values for the volumes: Take

$$
V_{1}=20, \quad V_{2}=40, \quad V_{3}=50
$$

Specific values for the rate: Take

$$
r=10
$$

Initial value: Assume

$$
x_{1}(0)=15, \quad x_{2}(0)=0, \quad x_{3}(0)=0
$$

Compartmental analysis (4)

System under consideration:

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \text { with } \quad A=\left[\begin{array}{ccc}
-0.5 & 0 & 0 \tag{3}\\
0.5 & -0.25 & 0 \\
0 & 0.25 & -0.2
\end{array}\right]
$$

General solution:

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{r}
3 \\
-6 \\
5
\end{array}\right] e^{-t / 2}+c_{2}\left[\begin{array}{r}
0 \\
1 \\
-5
\end{array}\right] e^{-t / 4}+c_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{-t / 5}
$$

Compartmental analysis (5)

Initial value: With $x_{1}(0)=15, x_{2}(0)=0, x_{3}(0)=0$, we get

$$
\begin{array}{cl}
3 c_{1} & = \\
-6 c_{1}+c_{2} & =0 \\
5 c_{1}-5 c_{2}+c_{3} & =0
\end{array}
$$

Values for the constants:

$$
c_{1}=5, \quad c_{2}=30, \quad c_{3}=125
$$

Compartmental analysis (6)

Particular solution:

$$
\mathbf{x}(t)=\left[\begin{array}{r}
15 \\
-30 \\
25
\end{array}\right] e^{-t / 2}+\left[\begin{array}{r}
0 \\
-30 \\
30
\end{array}\right] e^{-t / 4}+\left[\begin{array}{r}
0 \\
0 \\
125
\end{array}\right] e^{-t / 5} .
$$

Outline

(1) First order systems and applications
(2) Matrices and linear systems
(3) The eigenvalue method for linear systems

- Distinct eigenvalues
- Complex eigenvalues
(4) Multiple eigenvalue solutions
(5) A gallery of solution curves of linear systems
- Real eigenvalues
- Complex eigenvalues

Method for complex eigenvalues

Theorem 7.

Consider the system with constant matrix

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t), \quad \mathbf{x}(t) \in \mathbb{R}^{n}, \mathbf{A} \in M_{n, n} \tag{4}
\end{equation*}
$$

Hypothesis: We have complex eigenvalues/eigenvectors

$$
\lambda=\alpha \pm \imath \beta \quad \text { and } \quad \mathbf{u}=\mathbf{a} \pm \imath \mathbf{b} .
$$

Conclusion: We have 2 real valued independent solutions to (4)

$$
\begin{aligned}
& \mathbf{x}_{1}(t)=e^{\alpha t}(\cos (\beta t) \mathbf{a}-\sin (\beta t) \mathbf{b}) \\
& \mathbf{x}_{2}(t)=e^{\alpha t}(\sin (\beta t) \mathbf{a}+\cos (\beta t) \mathbf{b}) .
\end{aligned}
$$

Example with complex eigenvalues

Equation:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{rr}
-\frac{1}{2} & 1 \\
-1 & -\frac{1}{2}
\end{array}\right) \mathbf{x}
$$

Eigenvalue decomposition:

$$
\lambda_{1}=-\frac{1}{2}+\imath, \quad \mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
\imath
\end{array}\right] ; \quad \lambda_{2}=-\frac{1}{2}-\imath, \quad \mathbf{u}_{2}=\left[\begin{array}{r}
1 \\
-\imath
\end{array}\right]
$$

Example with complex eigenvalues (2)

Fundamental solutions:

$$
\begin{aligned}
& \mathbf{x}_{1}(t)=\left[\begin{array}{r}
\cos (t) \\
-\sin (t)
\end{array}\right] e^{-\frac{1}{2} t} \\
& \mathbf{x}_{2}(t)=\left[\begin{array}{r}
\sin (t) \\
\cos (t)
\end{array}\right] e^{-\frac{1}{2} t}
\end{aligned}
$$

Remark: Only $\lambda_{1}, \mathbf{u}_{1}$ are used in order to compute \mathbf{x}_{1} and \mathbf{x}_{2}

Outline

(1) First order systems and applications
(2) Matrices and linear systems
(3) The eigenvalue method for linear systems

- Distinct eigenvalues
- Complex eigenvalues

4 Multiple eigenvalue solutions
(5) A gallery of solution curves of linear systems

- Real eigenvalues
- Complex eigenvalues

Example of matrix with repeated root

Matrix:

$$
\mathbf{A}=\left(\begin{array}{rr}
1 & -1 \\
1 & 3
\end{array}\right)
$$

Characteristic polynomial:

$$
P_{\mathbf{A}}(r)=\operatorname{det}(\mathbf{A}-r \text { Id })=(r-2)^{2}
$$

Eigenvalues and eigenvectors:

$$
r=2, \quad \mathbf{v}_{1}=\binom{1}{-1}
$$

Remark: $r=2$ is a double eigenvalue, with 1 eigenvector only.

Generalized eigenvectors with multiplicity 2

System: $\mathbf{x}^{\prime}=\mathbf{A x}$, with $\mathbf{A} \in \mathbb{R}^{2,2}$ and $\operatorname{det}(\mathbf{A}) \neq 0$
Situation:

- A has a double eigenvalue r
- Unique eigenvector v (up to constant factor)

Recipe to find generalized eigenvectors:
(1) Find \mathbf{v}_{2} such that $(\mathbf{A}-r I d)^{2} \mathbf{v}_{2}=\mathbf{0}$, but not parallel to \mathbf{v}
(2) Compute $\mathbf{v}_{1}=(\mathbf{A}-r$ Id $) \mathbf{v}_{2}$
(Then $\mathbf{v}_{1}, \mathbf{v}_{2}$ are generalized eigenvectors

Solving systems with multiplicity 2

Situation:

- We consider the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$
- A has a double eigenvalue r
- Generalized eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$

Corresponding fundamental solutions: We get

$$
\begin{aligned}
& \mathbf{x}_{1}(t)=\mathbf{v}_{1} e^{r t} \\
& \mathbf{x}_{2}(t)=\left(\mathbf{v}_{1} t+\mathbf{v}_{2}\right) e^{r t}
\end{aligned}
$$

Example with multiplicity 2 (1)

Equation:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{rr}
1 & -1 \\
1 & 3
\end{array}\right) \mathbf{x}
$$

Eigenvalues and eigenvector:

$$
r=2 \quad(\text { multiplicity } 2), \quad \mathbf{v}=\binom{1}{-1}
$$

Square of a matrix: We have

$$
\mathbf{A}-2 \mathrm{ld}=\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right], \quad(\mathbf{A}-2 \mathrm{ld})^{2}=\mathbf{0}
$$

Example with multiplicity 2 (2)

Applying the recipe to find the generalized eigenvectors: We choose

$$
\mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{v}_{1}=(\mathbf{A}-2 \mid \mathrm{l}) \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

General solution:

$$
\mathbf{x}=c_{1}\binom{-1}{1} e^{2 t}+c_{2}\binom{-1}{1} t e^{2 t}+c_{2}\binom{1}{0} e^{2 t}
$$

Example with multiplicity 2 (3)

Asymptotic behavior: As $t \rightarrow \infty$

- $\mathbf{x}(t) \rightarrow \infty$
- $\lim _{t \rightarrow \infty} \frac{x_{2}(t)}{x_{1}(t)}=-1$, thus slope $\simeq-1$
- $\mathbf{x}(t)$ does not approach the asymptote

Graph in the $x_{1} x_{2}$ plane:

Generalized eigenvectors with multiplicity 3

Situation:

- A has a triple eigenvalue r
- Unique eigenvector v (up to constant factor)

Recipe to find generalized eigenvectors:
(1) Find \mathbf{v}_{3} such that $(\mathbf{A}-r \mathrm{ld})^{3} \mathbf{v}_{3}=\mathbf{0}$, not parallel to \mathbf{v}
(2) Compute $\mathbf{v}_{2}=(\mathbf{A}-r I d) \mathbf{v}_{3}$
(3) Compute $\mathbf{v}_{1}=(\mathbf{A}-r l d) \mathbf{v}_{2}$
(- Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are generalized eigenvectors

Solving systems with multiplicity 3

Situation:

- We consider the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$
- A has a triple eigenvalue r
- Generalized eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$

Corresponding fundamental solutions: We get

$$
\begin{aligned}
& \mathbf{x}_{1}(t)=\mathbf{v}_{1} e^{r t} \\
& \mathbf{x}_{2}(t)=\left(\mathbf{v}_{1} t+\mathbf{v}_{2}\right) e^{r t} \\
& \mathbf{x}_{3}(t)=\left(\frac{1}{2} \mathbf{v}_{1} t^{2}+\mathbf{v}_{2} t+\mathbf{v}_{3}\right) e^{r t}
\end{aligned}
$$

Example with multiplicity 3 (1)

Equation:

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ccc}
0 & 1 & 2 \\
-5 & -3 & -7 \\
1 & 0 & 0
\end{array}\right] \mathbf{x}
$$

Aim:
Expression of the general solution to this system

Example with multiplicity 3 (2)

Eigenvalues and eigenvector:

$$
r=-1 \quad(\text { multiplicity } 3), \quad \mathbf{v}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

Example with multiplicity 3 (3)

Third power computation: We find

$$
(A+\mathrm{ld})^{3}=\mathbf{0}
$$

Value for \mathbf{v}_{3} : We take

$$
\mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Example with multiplicity 3 (4)

Value for \mathbf{v}_{2} : We compute

$$
\mathbf{v}_{2}=(A+\mathrm{ld}) \mathbf{v}_{3}=\left[\begin{array}{ccc}
1 & 1 & 2 \\
-5 & -2 & -7 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

We get

$$
\mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-5 \\
1
\end{array}\right]
$$

Example with multiplicity 3 (5)

Checking value for \mathbf{v}_{1} : We compute

$$
\mathbf{v}_{1}=(A+\mathrm{ld}) \mathbf{v}_{2}=\left[\begin{array}{ccc}
1 & 1 & 2 \\
-5 & -2 & -7 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-5 \\
1
\end{array}\right]
$$

We get

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-2 \\
-2 \\
2
\end{array}\right]=-2 \mathbf{v}
$$

Example with multiplicity 3 (6)

Fundamental solutions: Recall that

$$
\begin{aligned}
& \mathbf{x}_{1}(t)=\mathbf{v}_{1} e^{-t} \\
& \mathbf{x}_{2}(t)=\left(\mathbf{v}_{1} t+\mathbf{v}_{2}\right) e^{-t} \\
& \mathbf{x}_{3}(t)=\left(\frac{1}{2} \mathbf{v}_{1} t^{2}+\mathbf{v}_{2} t+\mathbf{v}_{3}\right) e^{-t}
\end{aligned}
$$

Summarizing values of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$: We have found

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-2 \\
-2 \\
2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-5 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Example with multiplicity 3 (7)

Fundamental solutions in our case: We find

$$
\begin{aligned}
& \mathbf{x}_{1}(t)=\left[\begin{array}{c}
-2 \\
-2 \\
2
\end{array}\right] e^{-t} \\
& \mathbf{x}_{2}(t)=\left[\begin{array}{c}
-2 t+1 \\
-2 t-5 \\
2 t+1
\end{array}\right] e^{-t} \\
& \mathbf{x}_{3}(t)=\left[\begin{array}{c}
-t^{2}+t+1 \\
-t^{2}-5 t \\
t^{2}+t
\end{array}\right] e^{-t}
\end{aligned}
$$

Outline

(1) First order systems and applications
(2) Matrices and linear systems
(3) The eigenvalue method for linear systems

- Distinct eigenvalues
- Complex eigenvalues
(4) Multiple eigenvalue solutions
(5) A gallery of solution curves of linear systems
- Real eigenvalues
- Complex eigenvalues

Aim

Brief summary of what we have seen:

- System $\mathbf{x}^{\prime}=\mathbf{A x}$
- λ eigenvalue with eigenvector \mathbf{v}

Then a solution to the system is

$$
\mathbf{x}(t)=\mathbf{v} e^{\lambda t}
$$

Next step:
Geometric interpretations of the eigenvalue decomposition

Summary in a 2-d situation

Theorem 8.

System: $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)$, with $\mathbf{A} \in M_{2}$
Then we have 3 cases:
(1) 2 distinct real eigenvalues: General solution of the form

$$
\mathbf{x}=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}
$$

(2) 2 distinct complex eigenvalues: General solution

$$
\mathbf{x}=c_{1} e^{\alpha t}(\cos (\beta t) \mathbf{a}-\sin (\beta t) \mathbf{b})+c_{2} e^{\alpha t}(\sin (\beta t) \mathbf{a}+\cos (\beta t) \mathbf{b})
$$

(3) Repeated eigenvalue: General solution of the form

$$
\mathbf{x}=c_{1} \mathbf{v}_{1} e^{\lambda t}+c_{2}\left(\mathbf{v}_{1} t+\mathbf{v}_{2}\right) e^{\lambda t}
$$

Outline

(1) First order systems and applications
(2) Matrices and linear systems
(3) The eigenvalue method for linear systems

- Distinct eigenvalues
- Complex eigenvalues
(4) Multiple eigenvalue solutions
(5) A gallery of solution curves of linear systems
- Real eigenvalues
- Complex eigenvalues

Signs for the eigenvalues

Real distinct eigenvalues: We will distinguish 5 cases

- Nonzero of opposite sign: $\lambda_{1}<0<\lambda_{2}$
- Both negative: $\lambda_{1}<\lambda_{2}<0$
- Both positive: $0<\lambda_{2}<\lambda_{1}$
- One zero, one negative: $\lambda_{1}<\lambda_{2}=0$
- One zero, one positive: $0=\lambda_{2}<\lambda_{1}$

Repeated eigenvalue: We will distinguish 3 cases

- Positive: $\lambda_{1}=\lambda_{2}>0$
- Negative: $\lambda_{1}=\lambda_{2}<0$
- Zero: $\lambda_{1}=\lambda_{2}=0$

Saddle points: $\lambda_{1}<0<\lambda_{2}$ (1)

Equation:

$$
x^{\prime}=\left[\begin{array}{rr}
4 & 1 \\
6 & -1
\end{array}\right] \mathbf{x}
$$

Eigenvalue decomposition:

$$
\lambda_{1}=-2, \quad \mathbf{v}_{1}=\left[\begin{array}{r}
-1 \\
6
\end{array}\right] ; \quad \lambda_{2}=5, \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

General solution:

$$
\mathbf{x}=c_{1}\left[\begin{array}{r}
-1 \\
6
\end{array}\right] e^{-2 t}+c_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{5 t}
$$

Saddle points: $\lambda_{1}<0<\lambda_{2}$ (2)

General solution: $\mathbf{x}=c_{1}\left[\begin{array}{r}-1 \\ 6\end{array}\right] e^{-2 t}+c_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{5 t}$
Geometric information:

- As $t \rightarrow \infty, \mathbf{v}_{2}$ is the asymptotic direction
- Quadrant in which \mathbf{x} is located: according to c_{1}, c_{2}

Sinks: $\lambda_{1}<\lambda_{2}<0$ (1)

Equation:

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
-8 & 3 \\
2 & -13
\end{array}\right] \mathbf{x}
$$

Eigenvalue decomposition:

$$
\lambda_{1}=-14, \quad \mathbf{v}_{1}=\left[\begin{array}{r}
-1 \\
2
\end{array}\right] ; \quad \lambda_{2}=-7, \quad \mathbf{v}_{2}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

General solution:

$$
\mathbf{x}=c_{1}\left[\begin{array}{r}
-1 \\
2
\end{array}\right] e^{-14 t}+c_{2}\left[\begin{array}{l}
3 \\
1
\end{array}\right] e^{-7 t}
$$

Sinks: $\lambda_{1}<\lambda_{2}<0$ (2)

General solution: $\mathbf{x}=c_{1}\left[\begin{array}{r}-1 \\ 2\end{array}\right] e^{-14 t}+c_{2}\left[\begin{array}{l}3 \\ 1\end{array}\right] e^{-7 t}$
Geometric information:

- As $t \rightarrow \infty, \mathbf{x}(t) \rightarrow \mathbf{0}$
- If $c_{2} \neq 0$, as $t \rightarrow \infty \mathbf{x}^{\prime}$ is closer to the direction of \mathbf{v}_{2}
- Quadrant in which \mathbf{x} is located: according to c_{1}, c_{2}

Sources: $0<\lambda_{2}<\lambda_{1}$ (1)

Equation:

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
8 & -3 \\
-2 & 13
\end{array}\right] \mathbf{x}
$$

Eigenvalue decomposition:

$$
\lambda_{2}=7, \quad \mathbf{v}_{2}=\left[\begin{array}{l}
3 \\
1
\end{array}\right] ; \quad \lambda_{1}=14, \quad \mathbf{v}_{1}=\left[\begin{array}{r}
-1 \\
2
\end{array}\right]
$$

General solution:

$$
\mathbf{x}=c_{1}\left[\begin{array}{r}
-1 \\
2
\end{array}\right] e^{14 t}+c_{2}\left[\begin{array}{l}
3 \\
1
\end{array}\right] e^{7 t}
$$

Sources: $0<\lambda_{2}<\lambda_{1}$ (2)

General solution: $\mathbf{x}=c_{1}\left[\begin{array}{r}-1 \\ 2\end{array}\right] e^{14 t}+c_{2}\left[\begin{array}{l}3 \\ 1\end{array}\right] e^{7 t}$
Geometric information:

- As $t \rightarrow \infty, \mathbf{x}(t) \rightarrow \infty$
- If $c_{2} \neq 0$, as $t \rightarrow-\infty \mathbf{x}^{\prime}$ is closer to the direction of \mathbf{v}_{2}
- Quadrant in which \mathbf{x} is located: according to c_{1}, c_{2}

Line solutions: $\lambda_{1}<\lambda_{2}=0$ (1)

Equation:

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
-36 & -6 \\
6 & 1
\end{array}\right] \mathbf{x}
$$

Eigenvalue decomposition:

$$
\lambda_{1}=-35, \quad \mathbf{v}_{1}=\left[\begin{array}{r}
6 \\
-1
\end{array}\right] ; \quad \lambda_{2}=0, \quad \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
-6
\end{array}\right]
$$

General solution:

$$
\mathbf{x}=c_{1}\left[\begin{array}{r}
6 \\
-1
\end{array}\right] e^{-35 t}+c_{2}\left[\begin{array}{r}
1 \\
-6
\end{array}\right]
$$

Line solutions: $\lambda_{1}<\lambda_{2}=0$ (2)

General solution: $\mathbf{x}=c_{1}\left[\begin{array}{r}6 \\ -1\end{array}\right] e^{-35 t}+c_{2}\left[\begin{array}{r}1 \\ -6\end{array}\right]$
Geometric information:

- As $t \rightarrow \infty, \mathbf{x}(t) \rightarrow c_{2} \mathbf{v}_{2}$
- The solution converges to a constant vector as $t \rightarrow \infty$
- Quadrant in which \mathbf{x} is located: according to c_{1}, c_{2}

Line solutions: $0=\lambda_{2}<\lambda_{1}(1)$

Equation:

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
36 & 6 \\
-6 & -1
\end{array}\right] \mathbf{x}
$$

Eigenvalue decomposition:

$$
\lambda_{1}=35, \quad \mathbf{v}_{1}=\left[\begin{array}{r}
6 \\
-1
\end{array}\right] ; \quad \lambda_{2}=0, \quad \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
-6
\end{array}\right]
$$

General solution:

$$
\mathbf{x}=c_{1}\left[\begin{array}{r}
6 \\
-1
\end{array}\right] e^{35 t}+c_{2}\left[\begin{array}{r}
1 \\
-6
\end{array}\right]
$$

Line solutions: $0=\lambda_{2}<\lambda_{1}$ (2)

General solution: $\mathbf{x}=c_{1}\left[\begin{array}{r}6 \\ -1\end{array}\right] e^{35 t}+c_{2}\left[\begin{array}{r}1 \\ -6\end{array}\right]$
Geometric information:

- As $t \rightarrow \infty, \mathbf{x}(t) \rightarrow c_{2} \mathbf{v}_{2}$
- The solution converges to a constant vector as $t \rightarrow-\infty$
- As $t \rightarrow \infty$, solutions are flowing away from \mathbf{v}_{2} \hookrightarrow in the direction of \mathbf{v}_{1}
- Quadrant in which \mathbf{x} is located: according to c_{1}, c_{2}

Repeated eigenvalue with 2 eigenvectors (1)

Equation:

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \mathbf{x}
$$

Eigenvalue decomposition: Double eigenvalue,

$$
\lambda=2, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

General solution:

$$
\mathbf{x}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] e^{2 t}
$$

Repeated eigenvalue with 2 eigenvectors (2)

General solution: $\mathbf{x}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right] e^{2 t}$
Geometric information:

- Solutions are rays
- As $t \rightarrow \infty$, solutions are flowing away from 0 \hookrightarrow in the direction of $\left(c_{1}, c_{2}\right)$
- Quadrant in which \mathbf{x} is located: according to c_{1}, c_{2}

Repeated eigenvalue with 1 eigenvector (1)

Equation:

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
1 & -3 \\
3 & 7
\end{array}\right] \mathbf{x}
$$

Eigenvalue decomposition: Double eigenvalue $\lambda=4$,
Eigenvector $\mathbf{v}_{1}=\left[\begin{array}{r}-3 \\ 3\end{array}\right], \quad$ Generalized eigenvector $\mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

General solution:

$$
\mathbf{x}=c_{1}\left[\begin{array}{r}
-3 \\
3
\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{r}
-3 t+1 \\
3 t
\end{array}\right] e^{4 t}
$$

Repeated eigenvalue with 1 eigenvector (2)

General solution: $\mathbf{x}=c_{1}\left[\begin{array}{r}-3 \\ 3\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{r}-3 t+1 \\ 3 t\end{array}\right] e^{4 t}$
Geometric information:

- $\lim _{t \rightarrow-\infty} x(t)=0$, along the direction of \mathbf{v}_{1}
- As $t \rightarrow \infty$, solutions are flowing away from 0
\hookrightarrow along the direction of \mathbf{v}_{1}
- Half plane in which \mathbf{x} is located: according to c_{2}

Repeated eigenvalue with 1 eigenvector (3)

Another geometric information:

- For all curves, the tangent at 0 is \mathbf{v}_{1}

Terminology:
This case is called improper nodal source

Repeated 0 eigenvalue with 1 eigenvector (1)

Equation:

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
2 & 4 \\
-1 & -2
\end{array}\right] \mathbf{x}
$$

Eigenvalue decomposition: Double eigenvalue $\lambda=0$,

$$
\text { Eigenvector } \mathbf{v}_{1}=\left[\begin{array}{r}
2 \\
-1
\end{array}\right], \quad \text { Generalized eigenvector } \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

General solution:

$$
\mathbf{x}=c_{1}\left[\begin{array}{r}
2 \\
-1
\end{array}\right]+c_{2}\left[\begin{array}{r}
2 t+1 \\
-t
\end{array}\right]
$$

Repeated 0 eigenvalue with 1 eigenvector (2)

General solution: $\mathbf{x}=c_{1}\left[\begin{array}{r}2 \\ -1\end{array}\right]+c_{2}\left[\begin{array}{r}2 t+1 \\ -t\end{array}\right]$
Geometric information:

- \mathbf{x} line parallel to \mathbf{v}_{1}
- Starting point for $t=0: c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$

Outline

(1) First order systems and applications
(2) Matrices and linear systems
(3) The eigenvalue method for linear systems

- Distinct eigenvalues
- Complex eigenvalues
(4) Multiple eigenvalue solutions
(5) A gallery of solution curves of linear systems
- Real eigenvalues
- Complex eigenvalues

3 main situations

Cases to be distinguished for λ_{1} :

- Pure imaginary: $\lambda_{1}=\imath q$ with $q \neq 0$
- Complex with negative real part: $\lambda_{1}=p+\imath q$ with $p<0$ and $q \neq 0$
- Complex with positive real part:

$$
\lambda_{1}=p+\imath q \text { with } p>0 \text { and } q \neq 0
$$

Note:
We also have $\lambda_{2}=\bar{\lambda}_{1}$

Elliptic solutions: $\lambda_{1}=\imath q(1)$

Equation:

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
6 & -17 \\
8 & -6
\end{array}\right] \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

Eigenvalue decomposition:

$$
\lambda_{1}=10 \imath, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
3 \\
4
\end{array}\right]+\imath\left[\begin{array}{l}
5 \\
0
\end{array}\right]
$$

General solution:

$$
\begin{aligned}
\mathbf{x}= & c_{1}\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right] \cos (10 t)-\left[\begin{array}{l}
5 \\
0
\end{array}\right] \sin (10 t)\right) \\
& +c_{2}\left(\left[\begin{array}{l}
5 \\
0
\end{array}\right] \cos (10 t)+\left[\begin{array}{l}
3 \\
4
\end{array}\right] \sin (10 t)\right)
\end{aligned}
$$

Elliptic solutions: $\lambda_{1}=\imath q(2)$

Initial value: We take

$$
\mathbf{x}(0)=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

Computing c_{1}, c_{2} : We get

$$
c_{1}=c_{2}=\frac{1}{2}
$$

Unique solution:

$$
\mathbf{x}(t)=\left[\begin{array}{c}
4 \cos (10 t)-\sin (10 t) \\
2 \cos (10 t)+2 \sin (10 t)
\end{array}\right]
$$

Elliptic solutions: $\lambda_{1}=\imath q$ (3)

Unique solution: $\mathbf{x}=\left[\begin{array}{c}4 \cos (10 t)-\sin (10 t) \\ 2 \cos (10 t)+2 \sin (10 t)\end{array}\right]$
Geometric information:

- Solution located on an ellipse
- Goes counterclockwise like the previous ellipse

Spiral solutions: $\lambda_{1}=p+\imath q$, with $p<0$ (1)

 Equation:$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
5 & -17 \\
8 & -7
\end{array}\right] \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

Eigenvalue decomposition:

$$
\lambda_{1}=-1+10 \imath, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
3 \\
4
\end{array}\right]+\imath\left[\begin{array}{l}
5 \\
0
\end{array}\right]
$$

General solution:

$$
\begin{aligned}
\mathbf{x}= & c_{1} e^{-t}\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right] \cos (10 t)-\left[\begin{array}{l}
5 \\
0
\end{array}\right] \sin (10 t)\right) \\
& +c_{2} e^{-t}\left(\left[\begin{array}{l}
5 \\
0
\end{array}\right] \cos (10 t)+\left[\begin{array}{l}
3 \\
4
\end{array}\right] \sin (10 t)\right)
\end{aligned}
$$

Spiral solutions: $\lambda_{1}=p+\imath q$, with $p<0$ (2)

Initial value: We take

$$
\mathbf{x}(0)=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

Computing c_{1}, c_{2} : We get

$$
c_{1}=c_{2}=\frac{1}{2}
$$

Unique solution:

$$
\mathbf{x}(t)=\left[\begin{array}{c}
e^{-t}(4 \cos (10 t)-\sin (10 t)) \\
e^{-t}(2 \cos (10 t)+2 \sin (10 t))
\end{array}\right]
$$

Spiral solutions: $\lambda_{1}=p+\imath q$, with $p<0$ (3)

Unique solution: $\mathbf{x}=\left[\begin{array}{c}e^{-t}(4 \cos (10 t)-\sin (10 t)) \\ e^{-t}(2 \cos (10 t)+2 \sin (10 t))\end{array}\right]$
Geometric information:

- Solution located on an "ellipse" reeling in as $t \rightarrow \infty$
- Goes counterclockwise: $\mathbf{x}^{\prime}(0)=10(-1,2)^{T}$

Spiral solutions: $\lambda_{1}=p+\imath q$, with $p>0(1)$

 Equation:$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
-5 & 17 \\
-8 & 7
\end{array}\right] \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

Eigenvalue decomposition:

$$
\lambda_{1}=1+10 \imath, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
3 \\
4
\end{array}\right]+\imath\left[\begin{array}{l}
5 \\
0
\end{array}\right]
$$

General solution:

$$
\begin{aligned}
\mathbf{x}= & c_{1} e^{t}\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right] \cos (10 t)-\left[\begin{array}{l}
5 \\
0
\end{array}\right] \sin (10 t)\right) \\
& +c_{2} e^{t}\left(\left[\begin{array}{l}
5 \\
0
\end{array}\right] \cos (10 t)+\left[\begin{array}{l}
3 \\
4
\end{array}\right] \sin (10 t)\right)
\end{aligned}
$$

Spiral solutions: $\lambda_{1}=p+\imath q$, with $p>0$ (2)

Initial value: We take

$$
\mathbf{x}(0)=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

Computing c_{1}, c_{2} : We get

$$
c_{1}=c_{2}=\frac{1}{2}
$$

Unique solution:

$$
\mathbf{x}(t)=\left[\begin{array}{c}
e^{t}(4 \cos (10 t)-\sin (10 t)) \\
e^{t}(2 \cos (10 t)+2 \sin (10 t))
\end{array}\right]
$$

Spiral solutions: $\lambda_{1}=p+\imath q$, with $p>0$ (3)

Unique solution: $\mathbf{x}=\left[\begin{array}{c}e^{t}(4 \cos (10 t)-\sin (10 t)) \\ e^{t}(2 \cos (10 t)+2 \sin (10 t))\end{array}\right]$
Geometric information:

- Solution located on an "ellipse" spiraling away as $t \rightarrow \infty$
- Goes clockwise (ellipse has been inverted)

