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Spring example

Physical setting: Interacting springs

Equation:

m1
d2x1
dt2 = k2(x2 − x1)− k1x1 + F1(t)

m2
d2x2
dt2 = −k2(x2 − x1)− k3x2 + F2(t)
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Second order equation as first order system (1)

Equation:
y ′′ + 0.125y ′ + y = 0

Aim:

Write this equation as a system of differential equations
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Second order equation as first order system (2)

Equation:
y ′′ + 0.125y ′ + y = 0

Change of variable: set

x1 = y , x2 = y ′

New equation:

x ′1 = x2
x ′2 = −x1 − 0.125x2
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First order system as second order equation (1)

System:

x ′ = −2y

y ′ = 1
2x

Aim:

Write this system as a second order differential equation
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First order system as second order equation (2)

Differentiating x : We get

x ′′ = −2y ′ = −x , thus x” + x = 0

General solution for x :

x(t) = A cos(t) + B sin(t) = C cos(t − ϕ)

General solution for y :

y(t) = −1
2x
′(t) = C

2 sin(t − ϕ)
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First order system as second order equation (3)
General solution

x(t) = C cos(t − ϕ)

y(t) = C
2 sin(t − ϕ)
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Another example of first order system (1)

System:

x ′ = y
y ′ = 2x + y

Aim:

Write this system as a second order differential equation
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Another example of first order system (2)

Differentiating x : We get

x ′′ = y ′ = 2x + y = x ′ + 2x , thus x”− x ′ − 2x = 0

General solution for x :

x(t) = A e−t + B e2t

General solution for y :

y(t) = x ′(t) = −A e−t + 2B e2t
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Another example of first order system (3)
General solution

x(t) = A e−t + B e2t

y(t) = −A e−t + 2B e2t
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Definitions
First order linear system: Of the form

x ′1(t) = a11(t)x1(t) +a12(t)x2(t) + · · · +a1n(t)xn(t) +f1(t)
x ′2(t) = a21(t)x1(t) +a22(t)x2(t) + · · · +a2n(t)xn(t) +f2(t)
... ...

x ′n(t) = an1(t)x1(t) +an2(t)x2(t) + · · · +ann(t)xn(t) +fn(t)

Homogeneous system: When

f1 = f2 = · · · = fn = 0

Nonhomogeneous system: When there exists j such that

fj 6= 0
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Initial value

For the system above an initial condition is given by

x1(t0) = x1,0, . . . , xn(t0) = xn,0

Definition 1.

Example of system:
x ′1 = x1 +2x2
x ′2 = 2x1 −2x2

Initial condition:
x1(0) = 1, x2(0) = 0
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Example of initial value

Form of the general solution: We will see that

x1(t) = c1 e−3t + c2 e2t , and x2(t) = −2c1 e−3t + 1
2c2 e

2t

System for c1, c2:
c1 +c2 = 1
−4c1 +c2 = 0

Unique solution of the initial value problem:

x1(t) = 1
5 e−3t + 4

5 e2t , and x2(t) = −2
5 e−3t + 2

5 e2t
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Matrix notation
First order linear system: Of the form

x ′1(t) = a11(t)x1(t) +a12(t)x2(t) + · · · +a1n(t)xn(t) +f1(t)
x ′2(t) = a21(t)x1(t) +a22(t)x2(t) + · · · +a2n(t)xn(t) +f2(t)
... ...

x ′n(t) = an1(t)x1(t) +an2(t)x2(t) + · · · +ann(t)xn(t) +fn(t)

Related matrices:

A(t) =


a11(t) a12(t) a13(t) . . . a1n(t)
a21(t) a22(t) a23(t) . . . a2n(t)

... ... ... . . . ...
an1(t) an2(t) an3(t) . . . ann(t)

 and f(t) =


f1(t)
f2(t)
...

fn(t)
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Matrix notation (2)
Vector of unknown: We set

x(t) =


x1(t)
x2(t)
...

xn(t)

 , and x′(t) =


x ′1(t)
x ′2(t)
...

x ′n(t)


Vector form of the linear system:

x′(t) = A(t) x(t) + f(t)

Initial data:
x(t0) = x0
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Some vector space notions

Space Vn(I): For an interval I we set

Vn(I) = {y : I → Rn} .

Then Vn(I) is a vector space.

Wronskian: Let
x1(t), . . . , xn(t) vectors in Vn(I)

The Wronskian of those vectors is

W [x1, . . . , xn](t) = det ([x1(t), . . . , xn(t)])
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Wronskian and independence

Let
x1(t), . . . , xn(t) vectors in Vn(I).
Assume that W [x1, . . . , xn](t0) 6= 0 for a given t0 ∈ I

Then

{x1, . . . , xn} is linearly independent.

Theorem 2.
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Example of Wronskian
Vector function:

x1(t) =
[
et

2et

]
, and x2(t) =

[
3 sin(t)
cos(t)

]

Wronskian: We have

W [x1, x2](t) =
∣∣∣∣∣ et 3 sin(t)
2et cos(t)

∣∣∣∣∣ = et (cos(t)− 6 sin(t))

Linear independence: We have

W [x1, x2](0) = 1 6= 0.

Therefore {x1, x2} is linearly independent
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JÃşzef Maria Hoene-Wroński

Wronski: A philosopher-mathematician
Born in Poland (1776)
Lived mostly in France
Hero of the Polish army
when defeated by the Russians
Mathematician
Wronskian is his main contribution
Philosophical system based on math
Ousted from the observatory
because of his philosophical views
Died in poverty, aged 76

Samy T. Systems Differential equations 22 / 93



Homogeneous equation

Consider the system

x′(t) = A(t) x(t), x(t) ∈ Rn, A(t) ∈ Mn,n.

Hypothesis:
The mapping t 7→ A(t) is continuous

Then the following holds true:
1 The general solution set is a vector space of dimension n
2 The system with initial data x(t0) = x0

admits a unique solution

Theorem 3.

Samy T. Systems Differential equations 23 / 93



Fundamental solutions

Consider
The system x′(t) = A(t) x(t)
A set {x1, . . . , xn} of n linearly independent
solutions of the system

Then:
1 The set

{x1, . . . , xn}

is called fundamental solution set of the system
2 The matrix

X(t) = [x1, . . . , xn]

is called fundamental matrix of the system

Definition 4.
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Wronskian and fundamental solutions

Consider
The system x′(t) = A(t) x(t) on an interval I
A set {x1, . . . , xn} of n solutions of the system
t0 ∈ I

Then:
1 If W [x1, . . . , xn](t0) 6= 0 then {x1, . . . , xn}

is a fundamental solution set of the system
2 The general solution of the system can be written as

x(t) = c1x1(t) + · · ·+ cnxn(t)

Theorem 5.
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Example of application

System under consideration:

x′ = Ax, with A =
[
1 2
−2 1

]
(1)

Solutions:

x1(t) =
[
−et cos(2t)
et sin(2t)

]
, and x2(t) =

[
et sin(2t)
et cos(2t)

]

Remark:
One can check that x1 and x2 solve (1)
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Example of application (2)
Wronskian computation:

W [x1, x2](t) =
∣∣∣∣∣−et cos(2t) et sin(2t)
et sin(2t) et cos(2t)

∣∣∣∣∣ = −e2t

Conclusion: Since W [x1, x2](t) 6= 0 for all t ∈ R,

{x1, x2} is a fundamental solution set

General form of the solution to (1):

x(t) =
[
et (−c1 cos(2t) + c2 sin(2t))
et (c1 sin(2t) + c2 cos(2t))

]
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Aim

General objective: Solve homogeneous systems of the form

x′(t) = Ax(t),

with
x(t) ∈ Rn, A ∈ Mn,n.

Methodology:
Based on eigenvalues/eigenvectors decomposition of A
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Solutions and eigenvectors

Consider the system with constant matrix

x′(t) = Ax(t), x(t) ∈ Rn, A ∈ Mn,n. (2)
Hypothesis:

A admits n lin. independ. eigen. uk with eigenval. λk

Conclusion:
1 The following are linearly independent solutions to (2):

xk(t) = eλk tuk

2 The general solution of (2) is of the form

x(t) = c1 eλ1tu1 + · · ·+ cn eλntun

Theorem 6.
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Example with real eigenvalues

Equation:

x′ =
[
1 1
4 1

]
x

Eigenvalue decomposition:

λ1 = 3, u1 =
[
1
2

]
; λ2 = −1, u2 =

[
1
−2

]
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Example with real eigenvalues (2)

Fundamental solutions:

x1(t) =
[
1
2

]
e3t , x2(t) =

[
1
−2

]
e−t .

Wronskian:

W [x1, x2](t) =
∣∣∣∣∣ e3t e−t

2e3t −2e−t

∣∣∣∣∣ = −4e2t 6= 0.

Conclusion: x1 and x2 are linearly independent
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Example with real eigenvalues (3)

General solution:

x(t) = c1
[
1
2

]
e3t + c2

[
1
−2

]
e−t .
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Compartmental analysis (1)
Situation:

Three brine tanks, volume V1,V2,V3
Fresh water flows into tank 1, rate r
Mixed water flows from tank 2 into tank 3, rate r
Mixed water flows out of tank 3, rate r

Aim: Compute quantity of salt in each tank i
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Compartmental analysis (2)

Notation: Set
ki = r

Vi

Equations:
x ′1 = −k1x1
x ′2 = k1x1 −k2x2
x ′3 = k2x2 −k3x3
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Compartmental analysis (3)

Specific values for the volumes: Take

V1 = 20, V2 = 40, V3 = 50

Specific values for the rate: Take

r = 10

Initial value: Assume

x1(0) = 15, x2(0) = 0, x3(0) = 0
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Compartmental analysis (4)

System under consideration:

x′ = Ax, with A =

−0.5 0 0
0.5 −0.25 0
0 0.25 −0.2

 (3)

General solution:

x(t) = c1

 3
−6
5

 e−t/2 + c2

 0
1
−5

 e−t/4 + c3

 0
0
1

 e−t/5.
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Compartmental analysis (5)

Initial value: With x1(0) = 15, x2(0) = 0, x3(0) = 0, we get

3c1 = 15
−6c1 +c2 = 0
5c1 −5c2 +c3 = 0

Values for the constants:

c1 = 5, c2 = 30, c3 = 125
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Compartmental analysis (6)
Particular solution:

x(t) =

 15
−30
25

 e−t/2 +

 0
−30
30

 e−t/4 +

 0
0

125

 e−t/5.
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Method for complex eigenvalues

Consider the system with constant matrix

x′(t) = Ax(t), x(t) ∈ Rn, A ∈ Mn,n. (4)

Hypothesis: We have complex eigenvalues/eigenvectors

λ = α± ıβ and u = a± ıb.

Conclusion: We have 2 real valued independent solutions to (4)

x1(t) = eαt (cos(βt)a− sin(βt)b)
x2(t) = eαt (sin(βt)a + cos(βt)b) .

Theorem 7.
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Example with complex eigenvalues

Equation:

x′ =
(
−1

2 1
−1 −1

2

)
x

Eigenvalue decomposition:

λ1 = −1
2 + ı, u1 =

[
1
ı

]
; λ2 = −1

2 − ı, u2 =
[

1
−ı

]
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Example with complex eigenvalues (2)

Fundamental solutions:

x1(t) =
[

cos(t)
− sin(t)

]
e− 1

2 t

x2(t) =
[

sin(t)
cos(t)

]
e− 1

2 t .

Remark: Only λ1,u1 are used in order to compute x1 and x2
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Example of matrix with repeated root
Matrix:

A =
(

1 −1
1 3

)

Characteristic polynomial:

PA(r) = det(A− r Id) = (r − 2)2

Eigenvalues and eigenvectors:

r = 2, v1 =
(

1
−1

)

Remark: r = 2 is a double eigenvalue, with 1 eigenvector only.
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Generalized eigenvectors with multiplicity 2

System: x′ = Ax, with A ∈ R2,2 and det(A) 6= 0

Situation:
A has a double eigenvalue r
Unique eigenvector v (up to constant factor)

Recipe to find generalized eigenvectors:
1 Find v2 such that (A− r Id)2v2 = 0, but not parallel to v
2 Compute v1 = (A− r Id)v2
3 Then v1, v2 are generalized eigenvectors
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Solving systems with multiplicity 2

Situation:
We consider the system x′ = Ax
A has a double eigenvalue r
Generalized eigenvectors v1, v2

Corresponding fundamental solutions: We get

x1(t) = v1ert

x2(t) = (v1t + v2) ert
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Example with multiplicity 2 (1)
Equation:

x′ =
(

1 −1
1 3

)
x

Eigenvalues and eigenvector:

r = 2 (multiplicity 2), v =
(

1
−1

)

Square of a matrix: We have

A− 2 Id =
[
−1 −1
1 1

]
, (A− 2Id)2 = 0
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Example with multiplicity 2 (2)

Applying the recipe to find the generalized eigenvectors: We choose

v2 =
[
1
0

]
, v1 = (A− 2Id) v2 =

[
−1
1

]

General solution:

x = c1
(
−1
1

)
e2t + c2

(
−1
1

)
te2t + c2

(
1
0

)
e2t
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Example with multiplicity 2 (3)
Asymptotic behavior: As t →∞

x(t)→∞
limt→∞

x2(t)
x1(t) = −1, thus slope ' −1

x(t) does not approach the asymptote

Graph in the x1x2 plane:
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Generalized eigenvectors with multiplicity 3

Situation:
A has a triple eigenvalue r
Unique eigenvector v (up to constant factor)

Recipe to find generalized eigenvectors:
1 Find v3 such that (A− r Id)3v3 = 0, not parallel to v
2 Compute v2 = (A− r Id)v3
3 Compute v1 = (A− r Id)v2
4 Then v1, v2, v3 are generalized eigenvectors
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Solving systems with multiplicity 3

Situation:
We consider the system x′ = Ax
A has a triple eigenvalue r
Generalized eigenvectors v1, v2, v3

Corresponding fundamental solutions: We get

x1(t) = v1ert

x2(t) = (v1t + v2) ert

x3(t) =
(1
2v1t

2 + v2t + v3
)
ert
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Example with multiplicity 3 (1)

Equation:

x′ =

 0 1 2
−5 −3 −7
1 0 0

 x
Aim:

Expression of the general solution to this system

Samy T. Systems Differential equations 54 / 93



Example with multiplicity 3 (2)

Eigenvalues and eigenvector:

r = −1 (multiplicity 3), v =

 1
1
−1
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Example with multiplicity 3 (3)

Third power computation: We find

(A + Id)3 = 0

Value for v3: We take

v3 =

10
0
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Example with multiplicity 3 (4)

Value for v2: We compute

v2 = (A + Id)v3 =

 1 1 2
−5 −2 −7
1 0 1


10
0


We get

v2 =

 1
−5
1
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Example with multiplicity 3 (5)

Checking value for v1: We compute

v1 = (A + Id)v2 =

 1 1 2
−5 −2 −7
1 0 1


 1
−5
1


We get

v1 =

−2−2
2

 = −2 v
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Example with multiplicity 3 (6)

Fundamental solutions: Recall that

x1(t) = v1e−t

x2(t) = (v1t + v2) e−t

x3(t) =
(1
2v1t

2 + v2t + v3
)
e−t

Summarizing values of v1, v2, v3: We have found

v1 =

−2−2
2

 , v2 =

 1
−5
1

 , v3 =

10
0
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Example with multiplicity 3 (7)

Fundamental solutions in our case: We find

x1(t) =

−2−2
2

 e−t

x2(t) =

−2t + 1
−2t − 5
2t + 1

 e−t

x3(t) =

−t
2 + t + 1
−t2 − 5t
t2 + t

 e−t

Samy T. Systems Differential equations 60 / 93



Outline

1 First order systems and applications

2 Matrices and linear systems

3 The eigenvalue method for linear systems
Distinct eigenvalues
Complex eigenvalues

4 Multiple eigenvalue solutions

5 A gallery of solution curves of linear systems
Real eigenvalues
Complex eigenvalues

Samy T. Systems Differential equations 61 / 93



Aim

Brief summary of what we have seen:
System x′ = Ax
λ eigenvalue with eigenvector v

Then a solution to the system is

x(t) = v eλt

Next step:
Geometric interpretations of the eigenvalue decomposition
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Summary in a 2-d situation

System: x′(t) = Ax(t), with A ∈ M2

Then we have 3 cases:
1 2 distinct real eigenvalues: General solution of the form

x = c1v1eλ1t + c2v2eλ2t

2 2 distinct complex eigenvalues: General solution

x = c1eαt (cos(βt)a− sin(βt)b) + c2eαt (sin(βt)a + cos(βt)b)

3 Repeated eigenvalue: General solution of the form

x = c1v1eλt + c2 (v1t + v2) eλt

Theorem 8.
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Signs for the eigenvalues

Real distinct eigenvalues: We will distinguish 5 cases
Nonzero of opposite sign: λ1 < 0 < λ2

Both negative: λ1 < λ2 < 0
Both positive: 0 < λ2 < λ1

One zero, one negative: λ1 < λ2 = 0
One zero, one positive: 0 = λ2 < λ1

Repeated eigenvalue: We will distinguish 3 cases
Positive: λ1 = λ2 > 0
Negative: λ1 = λ2 < 0
Zero: λ1 = λ2 = 0
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Saddle points: λ1 < 0 < λ2 (1)
Equation:

x′ =
[
4 1
6 −1

]
x

Eigenvalue decomposition:

λ1 = −2, v1 =
[
−1
6

]
; λ2 = 5, v2 =

[
1
1

]

General solution:

x = c1
[
−1
6

]
e−2t + c2

[
1
1

]
e5t
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Saddle points: λ1 < 0 < λ2 (2)
General solution: x = c1

[
−1
6

]
e−2t + c2

[
1
1

]
e5t

Geometric information:
As t →∞, v2 is the asymptotic direction
Quadrant in which x is located: according to c1, c2
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Sinks: λ1 < λ2 < 0 (1)
Equation:

x′ =
[
−8 3
2 −13

]
x

Eigenvalue decomposition:

λ1 = −14, v1 =
[
−1
2

]
; λ2 = −7, v2 =

[
3
1

]

General solution:

x = c1
[
−1
2

]
e−14t + c2

[
3
1

]
e−7t
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Sinks: λ1 < λ2 < 0 (2)
General solution: x = c1

[
−1
2

]
e−14t + c2

[
3
1

]
e−7t

Geometric information:
As t →∞, x(t)→ 0
If c2 6= 0, as t →∞ x′ is closer to the direction of v2
Quadrant in which x is located: according to c1, c2
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Sources: 0 < λ2 < λ1 (1)
Equation:

x′ =
[

8 −3
−2 13

]
x

Eigenvalue decomposition:

λ2 = 7, v2 =
[
3
1

]
; λ1 = 14, v1 =

[
−1
2

]

General solution:

x = c1
[
−1
2

]
e14t + c2

[
3
1

]
e7t
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Sources: 0 < λ2 < λ1 (2)
General solution: x = c1

[
−1
2

]
e14t + c2

[
3
1

]
e7t

Geometric information:
As t →∞, x(t)→∞
If c2 6= 0, as t → −∞ x′ is closer to the direction of v2
Quadrant in which x is located: according to c1, c2
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Line solutions: λ1 < λ2 = 0 (1)
Equation:

x′ =
[
−36 −6

6 1

]
x

Eigenvalue decomposition:

λ1 = −35, v1 =
[

6
−1

]
; λ2 = 0, v2 =

[
1
−6

]

General solution:

x = c1
[

6
−1

]
e−35t + c2

[
1
−6

]
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Line solutions: λ1 < λ2 = 0 (2)
General solution: x = c1

[
6
−1

]
e−35t + c2

[
1
−6

]

Geometric information:
As t →∞, x(t)→ c2v2
The solution converges to a constant vector as t →∞
Quadrant in which x is located: according to c1, c2
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Line solutions: 0 = λ2 < λ1 (1)
Equation:

x′ =
[

36 6
−6 −1

]
x

Eigenvalue decomposition:

λ1 = 35, v1 =
[

6
−1

]
; λ2 = 0, v2 =

[
1
−6

]

General solution:

x = c1
[

6
−1

]
e35t + c2

[
1
−6

]
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Line solutions: 0 = λ2 < λ1 (2)
General solution: x = c1

[
6
−1

]
e35t + c2

[
1
−6

]

Geometric information:
As t →∞, x(t)→ c2v2
The solution converges to a constant vector as t → −∞
As t →∞, solutions are flowing away from v2
↪→ in the direction of v1
Quadrant in which x is located: according to c1, c2
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Repeated eigenvalue with 2 eigenvectors (1)

Equation:

x′ =
[
2 0
0 2

]
x

Eigenvalue decomposition: Double eigenvalue,

λ = 2, v1 =
[
1
0

]
, v2 =

[
0
1

]

General solution:
x =

[
c1
c2

]
e2t
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Repeated eigenvalue with 2 eigenvectors (2)
General solution: x =

[
c1
c2

]
e2t

Geometric information:
Solutions are rays
As t →∞, solutions are flowing away from 0
↪→ in the direction of (c1, c2)
Quadrant in which x is located: according to c1, c2
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Repeated eigenvalue with 1 eigenvector (1)
Equation:

x′ =
[
1 −3
3 7

]
x

Eigenvalue decomposition: Double eigenvalue λ = 4,

Eigenvector v1 =
[
−3
3

]
, Generalized eigenvector v2 =

[
1
0

]

General solution:

x = c1
[
−3
3

]
e4t + c2

[
−3t + 1

3t

]
e4t
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Repeated eigenvalue with 1 eigenvector (2)
General solution: x = c1

[
−3
3

]
e4t + c2

[
−3t + 1

3t

]
e4t

Geometric information:
limt→−∞ x(t) = 0, along the direction of v1
As t →∞, solutions are flowing away from 0
↪→ along the direction of v1
Half plane in which x is located: according to c2
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Repeated eigenvalue with 1 eigenvector (3)

Another geometric information:
For all curves, the tangent at 0 is v1

Terminology:

This case is called improper nodal source

Samy T. Systems Differential equations 80 / 93



Repeated 0 eigenvalue with 1 eigenvector (1)
Equation:

x′ =
[

2 4
−1 −2

]
x

Eigenvalue decomposition: Double eigenvalue λ = 0,

Eigenvector v1 =
[

2
−1

]
, Generalized eigenvector v2 =

[
1
0

]

General solution:

x = c1
[

2
−1

]
+ c2

[
2t + 1
−t

]
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Repeated 0 eigenvalue with 1 eigenvector (2)

General solution: x = c1
[

2
−1

]
+ c2

[
2t + 1
−t

]

Geometric information:
x line parallel to v1
Starting point for t = 0: c1v1 + c2v2

Samy T. Systems Differential equations 82 / 93



Outline

1 First order systems and applications

2 Matrices and linear systems

3 The eigenvalue method for linear systems
Distinct eigenvalues
Complex eigenvalues

4 Multiple eigenvalue solutions

5 A gallery of solution curves of linear systems
Real eigenvalues
Complex eigenvalues

Samy T. Systems Differential equations 83 / 93



3 main situations

Cases to be distinguished for λ1:
Pure imaginary:
λ1 = ıq with q 6= 0
Complex with negative real part:
λ1 = p + ıq with p < 0 and q 6= 0
Complex with positive real part:
λ1 = p + ıq with p > 0 and q 6= 0

Note:
We also have λ2 = λ̄1
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Elliptic solutions: λ1 = ıq (1)
Equation:

x′ =
[
6 −17
8 −6

]
x, x(0) =

[
4
2

]

Eigenvalue decomposition:

λ1 = 10ı, v1 =
[
3
4

]
+ ı

[
5
0

]

General solution:

x = c1
([

3
4

]
cos(10t)−

[
5
0

]
sin(10t)

)

+c2
([

5
0

]
cos(10t) +

[
3
4

]
sin(10t)

)
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Elliptic solutions: λ1 = ıq (2)

Initial value: We take
x(0) =

[
4
2

]

Computing c1, c2: We get

c1 = c2 = 1
2

Unique solution:

x(t) =
[
4 cos(10t)− sin(10t)
2 cos(10t) + 2 sin(10t)

]
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Elliptic solutions: λ1 = ıq (3)
Unique solution: x =

[
4 cos(10t)− sin(10t)
2 cos(10t) + 2 sin(10t)

]

Geometric information:
Solution located on an ellipse
Goes counterclockwise like the previous ellipse
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Spiral solutions: λ1 = p + ıq, with p < 0 (1)
Equation:

x′ =
[
5 −17
8 −7

]
x, x(0) =

[
4
2

]

Eigenvalue decomposition:

λ1 = −1 + 10ı, v1 =
[
3
4

]
+ ı

[
5
0

]

General solution:

x = c1e−t
([

3
4

]
cos(10t)−

[
5
0

]
sin(10t)

)

+c2e−t
([

5
0

]
cos(10t) +

[
3
4

]
sin(10t)

)
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Spiral solutions: λ1 = p + ıq, with p < 0 (2)

Initial value: We take
x(0) =

[
4
2

]

Computing c1, c2: We get

c1 = c2 = 1
2

Unique solution:

x(t) =
[
e−t (4 cos(10t)− sin(10t))
e−t (2 cos(10t) + 2 sin(10t))

]
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Spiral solutions: λ1 = p + ıq, with p < 0 (3)
Unique solution: x =

[
e−t (4 cos(10t)− sin(10t))
e−t (2 cos(10t) + 2 sin(10t))

]

Geometric information:
Solution located on an "ellipse" reeling in as t →∞
Goes counterclockwise: x′(0) = 10(−1, 2)T
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Spiral solutions: λ1 = p + ıq, with p > 0 (1)
Equation:

x′ =
[
−5 17
−8 7

]
x, x(0) =

[
4
2

]

Eigenvalue decomposition:

λ1 = 1 + 10ı, v1 =
[
3
4

]
+ ı

[
5
0

]

General solution:

x = c1et
([

3
4

]
cos(10t)−

[
5
0

]
sin(10t)

)

+c2et
([

5
0

]
cos(10t) +

[
3
4

]
sin(10t)

)

Samy T. Systems Differential equations 91 / 93



Spiral solutions: λ1 = p + ıq, with p > 0 (2)

Initial value: We take
x(0) =

[
4
2

]

Computing c1, c2: We get

c1 = c2 = 1
2

Unique solution:

x(t) =
[
et (4 cos(10t)− sin(10t))
et (2 cos(10t) + 2 sin(10t))

]
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Spiral solutions: λ1 = p + ıq, with p > 0 (3)
Unique solution: x =

[
et (4 cos(10t)− sin(10t))
et (2 cos(10t) + 2 sin(10t))

]

Geometric information:
Solution located on an "ellipse" spiraling away as t →∞
Goes clockwise (ellipse has been inverted)
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