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Vectors in R3

Fact: A tuple

u =

u1u2
u3


can be geometrically interpreted as a vector

Illustration of an addition:
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Some operations on vectors in R3

Algebraic operations:
1 x = x
(st)x = s(t x)
r(x + y) = r x + r y
(s + t)x = s x + t x

Generalization:
1 Solutions of differential equations exhibit the same kind of

structure
2 We need a more abstract concept

↪→ Vector spaces
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Vector space definition

The space R3 is such that
An addition and scalar multiplication are defined on R3

Those operations satisfy conditions 1–10 below
The space R3 is an example of vector space.

Proposition 1.
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Conditions 1 to 5
1 Closure under addition:

If u, v ∈ R3, then u + v ∈ R3

2 Commutativity of addition: For all u, v ∈ R3,

u + v = v + u

3 Associativity of addition: For all u, v,w ∈ R3,

(u + v) + w = u + (v + w)

4 Existence of a zero vector: There exists 0 ∈ R3 such that
v + 0 = v

5 Existence of additive inverses in R3:
For all v ∈ R3, there exists −v ∈ R3 such that

v + (−v) = 0
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Conditions 6 to 10

6 Closure under scalar multiplication:
If u ∈ R3 and k ∈ R, then k u ∈ R3

7 Distributivity 1:
r(u + v) = r u + r v

8 Distributivity 2:
(r + s)v = r v + s v

9 Associativity of scalar multiplication:

(rs)v = r(s v)

10 Unit property: For all v ∈ R3, we have 1 v = v
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Linear dependence of 2 vectors

Let v1, v2 be two vectors in R3. Then
1 If there exist c1, c2 not all zero such that

c1v1 + c2v2 = 0,

we say that {v1, v2} are linearly dependent
2 If we have

c1v1 + c2v2 = 0 =⇒ c1 = c2 = 0,

we say that {v1, v2} are linearly independent

Definition 2.
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Example of linear dependence/independence

Example of linear dependence: The vectors

u = (3,−2) and v = (−6, 4)

are linearly dependent

Example of linear independence: The vectors

u = (3,−2) and v = (5,−7)

are linearly independent
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Linear dependence of 3 vectors

Let v1, v2, v3 be 3 vectors in R3. Then
1 If there exist c1, c2, c3 not all zero such that

c1v1 + c2v2 + c3v3 = 0,

we say that {v1, v2, v3} are linearly dependent
2 If we have

c1v1 + c2v2 + c3v3 = 0 =⇒ c1 = c2 = c3 = 0,

we say that {v1, v2, v3} are linearly independent

Definition 3.
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Example of linear dependence/independence

Example of linear dependence: The vectors

u = (1, 2,−3), v = (3, 1,−2) and w = (5,−5, 6)

are linearly dependent, with

4u− 3v + w = 0

Example of linear independence: The vectors

u = (1, 2,−3), v = (3, 1,−2) and w = (5,−5, 0)

are linearly independent
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Criterion for linear dependence of 3 vectors

Let
v1, v2, v3

be 3 vectors in R3.

Then {v1, v2, v3} are linearly independent iff

det(v1, v2, v3) 6= 0

Proposition 4.
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Linear dependence with determinants

Example of linear dependence: The vectors

u = (1, 2,−3), v = (3, 1,−2) and w = (5,−5, 6)

are such that
det(v1, v2, v3) = 0

Example of linear independence: The vectors

u = (1, 2,−3), v = (3, 1,−2) and w = (5,−5, 0)

are such that
det(v1, v2, v3) = 30 6= 0
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Vectors in Rn

Fact: A tuple in Rn

u =


u1
u2
...
un


can be geometrically interpreted as a vector

Illustration of an addition:
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Some operations on vectors in Rn

Algebraic operations:
1 x = x
(st)x = s(t x)
r(x + y) = r x + r y
(s + t)x = s x + t x

Generalization:
1 Solutions of differential equations exhibit the same kind of

structure
2 We need a more abstract concept

↪→ Vector spaces
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Vector space definition

The space Rn is such that
An addition and scalar multiplication are defined on Rn

Those operations satisfy conditions 1–10 below
The space Rn is an example of vector space.

Proposition 5.
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Conditions 1 to 5
1 Closure under addition:

If u, v ∈ Rn, then u + v ∈ Rn

2 Commutativity of addition: For all u, v ∈ Rn,

u + v = v + u

3 Associativity of addition: For all u, v,w ∈ Rn,

(u + v) + w = u + (v + w)

4 Existence of a zero vector: There exists 0 ∈ Rn such that
v + 0 = v

5 Existence of additive inverses in Rn:
For all v ∈ Rn, there exists −v ∈ Rn such that

v + (−v) = 0
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Conditions 6 to 10

6 Closure under scalar multiplication:
If u ∈ Rn and k ∈ R, then k u ∈ Rn

7 Distributivity 1:
r(u + v) = r u + r v

8 Distributivity 2:
(r + s)v = r v + s v

9 Associativity of scalar multiplication:

(rs)v = r(s v)

10 Unit property: For all v ∈ Rn, we have 1 v = v
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Examples of vector spaces

Examples:
Scalar vector spaces: R or C
Vectors as usual: Rn or Cn

2× 2 matrices (check assumptions 1–10)

Notations for most common vector spaces:
Mm×n(R) ≡ vector space of m × n real matrices
Mn(R) ≡ vector space of square n × n real matrices
Pn ≡ space of polynomials of degree at most n (check)
C(I) ≡ continuous functions on an interval I
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Subspace

Let S such that
S is a nonempty subset of a vector space V

Then
S is a subspace

⇐⇒
0 ∈ S, S is closed under addition and scalar multiplication

Definition 6.
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Example of subspace (1)

Homogeneous linear system:
In R3, the set S of solutions of system (1) is a subspace.

x1 +2x2 −x3 = 0
2x1 +5x2 −4x3 = 0 (1)
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Example of subspace (2)
Proof: The row-echelon form of the system (1) is[

1 0 3 0
0 1 −2 0

]
Thus the set of solutions is

S =
{
x ∈ R3; x = (−3r , 2r , r), where r ∈ R

}
.

One then proves stability by + and scalar ×
Geometric interpretation: S is a line (intersection of 2 planes) in R3
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Counter-example of subspace (1)

Line which does not pass through 0: The set

S =
{
x ∈ R2; x = (r ,−3r + 1), where r ∈ R

}
.

is not a subspace of R2

Samy T. Vector spaces Differential equations 25 / 84



Counter-example of subspace (2)

Proof that S is not a subspace: We have

x ≡ (0, 1) ∈ S, y ≡ (1,−2) ∈ S,

but
x + y = (1,−1) 6∈ S
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Other examples of subspaces

Examples:
1 In Mn(R)

↪→ The set S = {A ∈ Mn(R); AT = A} is a subspace

2 In C([a, b])
↪→ The set S = {f ∈ C([a, b]); f (a) = 0} is a subspace

3 In C([a, b])
↪→ The set C k([a, b]) is a subspace
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Subspace spanned by a set

Let v1, . . . , vp ∈ V . We define

Span {v1, . . . , vp} ≡ Set of linear combinations of v1, . . . , vp

Definition 7.

Let v1, . . . , vp ∈ V . Then

Span {v1, . . . , vp} is a subspace of V

Theorem 8.
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Homogeneous linear systems

Let
A be a m × n matrix
System Ax = 0
S ≡ set of solutions of Ax = 0

Then:
1 S is a subspace of Rn.
2 S is called null space of A or solution space of A
3 Notation: Null(A).

Theorem 9.
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Nullspace (2)

Illustration: if A : Rn → Rm
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Example of Nullspace

Matrix:

A] =

−3 6 −1 1 −7 0
1 −2 2 3 −1 0
2 −4 5 8 −4 0


We wish to describe the set of x such that Ax = 0

Reduced echelon form:

A] ∼

1 −2 0 −1 3 0
0 0 1 2 −2 0
0 0 0 0 0 0
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Example of Nullspace (2)
Reduced echelon form:

A] ∼

1 −2 0 −1 3 0
0 0 1 2 −2 0
0 0 0 0 0 0


Free variables: x2, x4 and x5

Description of Nullspace:

Null(A) = {ru + sv + tw; r , s, t ∈ R} = Span{u, v,w},

with

u =


2
1
0
0
0

 , v =


1
0
−2
1
0

 , w =


−3
0
2
0
1
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Aim of the current and following sections
Basic questions:

There are many different spanning sets for a space or subspace
Is there a best choice among those spanning sets?
Is there a minimal number for the cardinal of a spanning set?

Concept to answer those questions:
↪→ Linear dependence
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Definition

Let v1, . . . , vk be a family of vectors in V . Then
1 If there exist c1, . . . , ck not all zero such that

c1v1 + · · ·+ ckvk = 0,

we say that {v1, . . . , vk} is linearly dependent
2 If we have

c1v1 + · · ·+ ckvk = 0 =⇒ c1 = c2 = · · · = ck = 0,

we say that {v1, . . . , vk} is linearly independent

Definition 10.
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Examples

Simple examples:
The family {v} is linearly dependent iff v = 0
The family {v1, v2} is linearly dependent iff v2 = c v1
If 0 is an element of {v1, . . . , vk}
↪→ then v1, . . . , vk are linearly dependent
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Example in R3

Family of vectors: We consider

v1 = (1, 2,−1), v2 = (2,−1, 1), v3 = (8, 1, 1)

Then v1, v2, v3 are linearly dependent

Proof: The system

c1v1 + c2v2 + c3v3 = 0

can be written as:

c1 +2c2 +8c3 = 0
2c1 −c2 +c3 = 0
−c1 +c2 +c3 = 0
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Example in R3 (2)
Proof (ctd): System in row-echelon form1 2 8 0

0 1 3 0
0 0 0 0


One row is 0, so that we have linear dependence

Explicit linear dependence: We solve for c

c3 = t, c2 = −3t, c1 = −2t

Then choosing (arbitrary choice) t = 1 we get

−2v1 − 3v2 + v3 = 0
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Example with polynomials (1)

Family in P1: Consider

p1(t) = 1, p2(t) = t, p3(t) = 4− t

Linear dependence: We have that

{p1,p2,p3} are linearly dependent
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Example with polynomials (2)

Proof of the linear dependence: We have

p3 = 4p1 − p2

Thus

{p1,p2,p3} are linearly dependent
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Independence of n vectors in Rn

Let
v1, . . . , vn vectors in Rn

Form the matrix A = [v1, · · · , vn]
Then

v1, . . . , vn linearly independent iff det(A) 6= 0

Theorem 11.
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Example in R3 reloaded

Family of vectors: We consider

v1 = (1, 2,−1), v2 = (2,−1, 1), v3 = (8, 1, 1)

Then v1, v2, v3 are linearly dependent
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Example in R3 reloaded (2)

Determinant: We have

det(A) =

∣∣∣∣∣∣∣
1 2 8
2 −1 1
−1 1 1

∣∣∣∣∣∣∣ = 0

Conclusion:
v1, v2, v3 are linearly dependent

Samy T. Vector spaces Differential equations 43 / 84



Outline

1 The vector space R3

2 The vector space Rn and subspaces

3 Linear combinations and independence of vectors

4 Bases and dimension for vector spaces
Bases
The dimension of a vector space

5 Row and column space

Samy T. Vector spaces Differential equations 44 / 84



Outline

1 The vector space R3

2 The vector space Rn and subspaces

3 Linear combinations and independence of vectors

4 Bases and dimension for vector spaces
Bases
The dimension of a vector space

5 Row and column space

Samy T. Vector spaces Differential equations 45 / 84



Definition of basis

Let
V vector space
B = {v1, . . . , vp} be a family of vectors in V .

The family B is called a basis if
(a) The vectors v1, . . . , vp are linearly independent
(b) The vectors v1, . . . , vp span V

Definition 12.

Samy T. Vector spaces Differential equations 46 / 84



Canonical basis of R3

Claim: Let

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)

Then (e1, e2, e3) forms a basis of R3.
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Canonical basis of R3 (2)

Proof of (a): We have

det(e1, e2, e3) = 1.

Hence

e1, e2, e3 are linearly independent
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Canonical basis of R3 (3)

Proof of (b): If v = (v1, v2, v3), then

v = v1e1 + v2e2 + v3e3

Hence

e1, e2, e3 span V

Generalization: One can easily find canonical bases for
Rn

Mm,n(R)
Pn
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Spanning set theorem

Let
S = {v1, . . . , vp} set in V
H = Span{v1, . . . , vp}

Then
1 If vk is a linear combination of the remaining vectors in S,

we have

Span(S) = Span ({v1, . . . , vk−1, vk+1, . . . , vp})

2 If H 6= {0}, some subset of S is a basis for H

Theorem 13.
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Application (1)

Family S: In R3 we consider H = Span{v1, v2, v3} with

v1 =

 0
2
−1

 , v2 =

22
0

 , v3 =

 6
16
−5



Problem:

Find a basis for H
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Application (2)

Linear dependence: We have

v3 = 5v1 + 3v2

Conclusion: Since v1, v2 are independent

{v1, v2} is a basis for H

Samy T. Vector spaces Differential equations 52 / 84



Basis of a column space

Let A be a m × n matrix. Then

A basis of Col(A)
is given by

set of column vectors of A corresponding to leading 1’s
in any row-echelon form of A

Theorem 14.
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Application of Theorem 14

Example: Consider

A =

1 2 3 4
4 5 6 7
7 8 9 10


Row-echelon form of A: We have

A ∼

1 2 3 4
0 1 2 3
0 0 0 0


Basis for Col(A):

{(1, 4, 7); (2, 5, 8)}
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Number of vectors in a basis

Let V be a vector space such that
V has a basis B = {v1, . . . , vn} with n elements

Then
1 Any set of more than n vectors is linearly dependent
2 All bases of V have n vectors

Theorem 15.

In the context of Theorem 15, we call

n ≡ dimension of V

Definition 16.
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Application of Theorem 15

Vector space: R3

Canonical basis:

B = {e1, e2, e3} = {(1, 0, 0); (0, 1, 0); (0, 0, 1)}

Dimension: = 3
Examples of linearly dependent family in R3:
Any family of 4 or more vectors, such as

{(1, 2, 3); (1, 7, 4); (1,−1, 5); (2,−1, 5)}
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Subspaces of R3 and their dimensions

Typical examples of 0,1 and 2-dim subspaces of R3:
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Application of Theorem 15 to polynomials

Vector space: P2

Canonical basis:

B = {p1,p2,p3} =
{
1, t, t2

}
Dimension: = 3
Examples of linearly dependent family in R3:
Any family of 4 or more polynomials, such as{

1 + 2t + t2; 1 + 7t + 4t2; 1− t + 5t2; 2− t + 5t2
}
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Simplified criterion for basis

Consider
V a vector space with dim[V ] = n
v1, . . . , vn a family of n linearly independent vectors in V

Then (v1, . . . , vn) is a basis of V

Theorem 17.

Samy T. Vector spaces Differential equations 60 / 84



Application of Theorem 17

Claim: The family

p1(x) = 1 + x , p2(x) = 2− 2x + x2, p3(x) = 1 + x2

is a basis for P2.
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Application of Theorem 17 (2)

Proof of the claim: We know that dim[P2] = 3. Moreover

det ([p1,p2,p3]) = −3 6= 0.

Thus p1,p2,p3 are linearly independent
↪→ according to Theorem 17, {p1,p2,p3} is a basis for P2.

Samy T. Vector spaces Differential equations 62 / 84



Outline

1 The vector space R3

2 The vector space Rn and subspaces

3 Linear combinations and independence of vectors

4 Bases and dimension for vector spaces
Bases
The dimension of a vector space

5 Row and column space

Samy T. Vector spaces Differential equations 63 / 84



Homogeneous linear systems (repeated)

Let
A be a m × n matrix
System Ax = 0
S ≡ set of solutions of Ax = 0

Then:
1 S is a subspace of Rn.
2 S is called null space of A.
3 Notation: Null(A).

Theorem 18.
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Nullspace (2)

Illustration: if A : Rn → Rm
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Example of Nullspace

Matrix:

A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4


We wish to describe the set of x such that Ax = 0

Reduced echelon form:

A] ∼

1 −2 0 −1 3 0
0 0 1 2 −2 0
0 0 0 0 0 0



Samy T. Vector spaces Differential equations 66 / 84



Example of Nullspace (2)
Reduced echelon form:

A] ∼

1 −2 0 −1 3 0
0 0 1 2 −2 0
0 0 0 0 0 0


Free variables: x2, x4 and x5

Description of Nullspace:

Null(A) = {ru + sv + tw; r , s, t ∈ R} = Span{u, v,w},

with

u =


2
1
0
0
0

 , v =


1
0
−2
1
0

 , w =


−3
0
2
0
1
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Definition of column space

Let A be a m × n matrix. The following holds true:
The columns of A are vectors in Rm

Then we define a subset of Rm:

Col(A) = Span {Columns of A} .

Definition 19.

Note: Col(A) is a subspace of Rm
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Example of column space

Example: Consider

A =

1 2 3 4
4 5 6 7
7 8 9 10


Then

Col(A) = Span {(1, 4, 7), (2, 5, 8), (3, 6, 9), (4, 7, 10)} .
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Comparison Null(A) vs Col(A)

Situation: Consider a m × n matrix

A ∈ Rm,n

Facts about Null(A):
1 Null(A) subspace of Rn

2 Null(A) obtained by nontrivial computations

Facts about Col(A):
1 Col(A) subspace of Rm

2 Col(A) immediately obtained as a Span
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Dimension of Null(A) and Col(A)

Let A be a m × n matrix. Then
1 dim(Null(A)) = number of free variables in eq. Ax = 0

2 dim(Col(A)) = number of pivot columns in A

Proposition 20.
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Application of Proposition 20
Matrix: Consider

A =

1 2 3 4
4 5 6 7
7 8 9 10


Row-echelon form of A]: We have

[A, 0] ∼

1 2 3 4 0
0 1 2 3 0
0 0 0 0 0


Conclusion: We have

dim(Null(A)) = 2, dim(Col(A)) = 2
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Definition of row space
Definition: Let A be a m × n matrix. The following holds true:

The rows of A are vectors in Rn

Then we set:
Row(A) = Span {Rows of A} .

Example: Consider

A =

1 2 3 4
4 5 6 7
7 8 9 10


Then

Row(A) = Span {(1, 2, 3, 4), (4, 5, 6, 7), (7, 8, 9, 10)} .
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Basis of a row space

Let A be a m × n matrix. Then

A basis of Row(A)
is given by

set of nonzero row vectors in the row-echelon form of A

Theorem 21.
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Application

Matrix: Consider

A =

1 2 3 4
4 5 6 7
7 8 9 10


Row-echelon form of A: We find

A ∼

1 2 3 4
0 1 2 3
0 0 0 0


Basis for Row(A):

{(1, 2, 3, 4); (0, 1, 2, 3)}
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Definition of column space (again)
Definition: Let A be a m × n matrix. The following holds true:

The columns of A are vectors in Rm

Then we set:
Col(A) = Span {Columns of A} .

Example: Consider

A =

1 2 3 4
4 5 6 7
7 8 9 10


Then

Col(A) = Span {(1, 4, 7), (2, 5, 8), (3, 6, 9), (4, 7, 10)} .
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Basis of a column space

Let A be a m × n matrix. Then

A basis of Col(A)
is given by

set of column vectors of A corresponding to leading 1’s
in any row-echelon form of A

Theorem 22.
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Summary for bases of Col, Row, Null

Let A be a m × n matrix. Then
Basis for Col(A):
Set of column vectors corresponding to leading 1’s
in row-echelon form of A

Basis for Row(A):
Set of non 0 row vectors
in row-echelon form of A

Basis for Null(A):
Solving Ax = 0

Theorem 23.
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Summary for dimensions of Col, Row, Null

Let A be a m × n matrix. Then
Dimension of Col(A):
# of pivot columns in A

Dimension of Row(A):
# of pivot columns in A ( same as dim(Col(A)))

Dimension of Null(A):
# of free variables in Ax = 0

Theorem 24.
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Rank

Let A be a m × n matrix. Then we define

rank(A) ≡ dim(Col(A))

Definition 25.
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Application
Matrix: Consider

A =

1 2 3 4
4 5 6 7
7 8 9 10


Row-echelon form of A: We have found

A ∼

1 2 3 4
0 1 2 3
0 0 0 0


Basis for Col(A):

{(1, 4, 7); (2, 5, 8)} =⇒ rank(A) = 2
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The rank theorem

Let A be a m × n matrix. Then we have

rank(A) + dim(Null(A)) = n

Moreover

rank(A) = dim(Col(A)) = dim(Row(A))

Theorem 26.
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Application of Theorem 26
Matrix: Consider

A =

1 2 3 4
4 5 6 7
7 8 9 10


Basis for Row(A):

{(1, 2, 3, 4); (0, 1, 2, 3)}

Basis for Col(A):
{(1, 4, 7); (2, 5, 8)}

Verification of Theorem 26: We have

dim(Row(A)) = dim(Col(A)) = 2 ≡ rank(A)
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Application of Theorem 26 (2)
Row-echelon form of A: We find

A ∼

1 2 3 4
0 1 2 3
0 0 0 0


Null(A): We have found

dim(Null(A)) = 2

Verification of Theorem 26: Recall that A ∈ R3×4. We get

rank(A) + dim(Null(A)) = 2 + 2 = 4
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