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Outline

© The vector space R?
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Vectors in R3

Fact: A tuple
uy
u= |Uu
us

can be geometrically interpreted as a vector

lllustration of an addition:
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Some operations on vectors in R3

Algebraic operations:
@ Ix=x
o (st)x =s(tx)
o r(x+y)=rx+ry
o (s+t)x=sx+tx

Generalization:

@ Solutions of differential equations exhibit the same kind of
structure

© We need a more abstract concept
— Vector spaces
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Vector space definition

,—[Proposition 1.] \
The space R? is such that
@ An addition and scalar multiplication are defined on R3

@ Those operations satisfy conditions 1-10 below

The space R? is an example of vector space.

\ J
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Conditions 1 to 5

@ Closure under addition:
If u,v € R3 thenu+veR?

© Commutativity of addition: For all u,v € R3,
ut+v=—v+u

© Associativity of addition: For all u,v,w € R3,

(u+v)+w=u+(v+w)

@ Existence of a zero vector: There exists 0 € R3 such that
v+0=v
@ Existence of additive inverses in R3:
For all v € R3, there exists —v € R3 such that
v+ (—v)=0
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Conditions 6 to 10

@ Closure under scalar multiplication:
If u e R? and k € R, then ku € R3

@ Distributivity 1:
rlu+v)=ru+rv

© Distributivity 2:
(r+s)v=rv+sv

@ Associativity of scalar multiplication:
(rs)v = r(sv)

@ Unit property: For all v € R3, we have 1v =v
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Linear dependence of 2 vectors

— Definition 2. | \

Let vq, v, be two vectors in R3. Then

© |If there exist ¢, ¢, not all zero such that
C1V1 + Gy = 0,

we say that {vy,v,} are linearly dependent
Q If we have

CiV1 + GVy = 0 — Ci = G = O,

we say that {vy, vy} are linearly independent
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Example of linear dependence/independence

Example of linear dependence: The vectors
u=(3,-2) and v=(-6,4)

are linearly dependent

Example of linear independence: The vectors
u=(3,-2) and v=(5-7)

are linearly independent
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Linear dependence of 3 vectors

— Definition 3. \

Let vi, Vo, vz be 3 vectors in R3. Then

© |If there exist ¢1, ¢y, c3 not all zero such that
cvi + ovo + vy = 0,

we say that {vy, v,,v3} are linearly dependent
Q If we have

avit+ovw+avs=0 — ¢g=06c6=c=0,

we say that {vy,v,,v3} are linearly independent
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Example of linear dependence/independence

Example of linear dependence: The vectors
u=(1,2,-3), v=(3,1,-2) and w=(5-5,6)
are linearly dependent, with

qu—3v+w=0

Example of linear independence: The vectors
u=(1,2,-3), v=(3,1,-2) and w=(5-5,0)

are linearly independent
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Criterion for linear dependence of 3 vectors

,—[Proposition 4.} \
Let

Vi, V2, V3

be 3 vectors in R3.
Then {v1, vy, v3} are linearly independent iff

det(vy,va,v3) #0
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Linear dependence with determinants

Example of linear dependence: The vectors
u=(1,2,-3), v=(3,1,-2) and w=(5-5,6)

are such that
det(vy,vo,v3) =0

Example of linear independence: The vectors
u=(1,2,-3), v=(3,1,-2) and w=(5-5,0)

are such that
det(vy,vp,v3) =30#0
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9 The vector space R” and subspaces
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Vectors in R”

Fact: A tuple in R”
uy
>

Un

can be geometrically interpreted as a vector

lllustration of an addition:
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Some operations on vectors in R”

Algebraic operations:
@ Ix=x
o (st)x =s(tx)
o r(x+y)=rx+ry
o (s+t)x=sx+tx

Generalization:

@ Solutions of differential equations exhibit the same kind of
structure

© We need a more abstract concept
— Vector spaces
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Vector space definition

,—[Proposition 5.] \
The space R” is such that
@ An addition and scalar multiplication are defined on R”

@ Those operations satisfy conditions 1-10 below

The space R” is an example of vector space.

\ J
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Conditions 1 to 5

@ Closure under addition:
If u,v e R"” thenu+v eR"

© Commutativity of addition: For all u,v € R”,
ut+v=—v+u

© Associativity of addition: For all u,v,w € R",

(u+v)+w=u+(v+w)

© Existence of a zero vector: There exists 0 € R” such that
v+0=v
© Existence of additive inverses in R":
For all v € R", there exists —v € R" such that
v+ (—v)=0
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Conditions 6 to 10

@ Closure under scalar multiplication:
If u e R" and k € R, then ku € R"

@ Distributivity 1:
rlu+v)=ru+rv

© Distributivity 2:
(r+s)v=rv+sv

@ Associativity of scalar multiplication:
(rs)v = r(sv)

@ Unit property: For all ve R"”, we have 1v=v
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Examples of vector spaces

Examples:
@ Scalar vector spaces: R or C
@ Vectors as usual: R" or C”

@ 2 X 2 matrices (check assumptions 1-10)

Notations for most common vector spaces:
@ M,,«n(R) = vector space of m x n real matrices
e M,(R) = vector space of square n x n real matrices
@ P, = space of polynomials of degree at most n (check)

@ C(/) = continuous functions on an interval /
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Subspace
— Definition 6. | ‘
Let S such that

@ S is a nonempty subset of a vector space V
Then

S is a subspace
<
0 € S, S is closed under addition and scalar multiplication

Samy T. Vector spaces Differential equations 22 / 84



Example of subspace (1)

Homogeneous linear system:
In R3, the set S of solutions of system (1) is a subspace.

X1 +2X2 —X3 =0 (1)
2X1 +5X2 —4X3 =0
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Example of subspace (2)

Proof: The row-echelon form of the system (1) is
10 3 0
01 -2 0

S = {x € R x = (=3r,2r,r), where r € R} :

One then proves stability by + and scalar x

Thus the set of solutions is

Geometric interpretation: S is a line (intersection of 2 planes) in R?
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Counter-example of subspace (1)

Line which does not pass through 0: The set
S= {x € R?% x = (r,—3r +1), where reR}.

is not a subspace of R?
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Counter-example of subspace (2)

Proof that S is not a subspace: We have
x=(0,1) €S, y=(1,-2)€S,

but
x+y=(1,-1)¢5S
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Other examples of subspaces

Examples:

© In M,(R)
< Theset S = {A € M,(R); AT = A} is a subspace

@ In C([a, b))
— Theset S = {f € C([a, b]); f(a) =0} is a subspace

Q In C([a, b))
< The set C*([a, b]) is a subspace
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Samy T. Vector spaces

Subspace spanned by a set

Definition 7. ;
Let vq,...,v, € V. We define

Span{vy,...,v,} = Set of linear combinations of vy, ...

Theorem 8.
Let vi,...,v, € V. Then

Span{vy,...,v,} is a subspace of V

Differential equations
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Homogeneous linear systems

~ Theorem 9. N

Let

@ A be a m X n matrix

@ System Ax =0

@ S = set of solutions of Ax =0
Then:

© S is a subspace of R”".

@ S is called null space of A or solution space of A
© Notation: Null(A).
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Nullspace (2)

lllustration: if A: R" — R™
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Example of Nullspace

Matrix:

AA=|1 -2 2 3 —-10
2 —4 5 8 —4 0

We wish to describe the set of x such that Ax =0

361170]

Reduced echelon form:

Samy T. Vector spaces

Differential equations

31 /84



Example of Nullspace (2)

Reduced echelon form:

Free variables: x5, x4 and x5

Description of Nullspace:

Null(A) = {ru+ sv+ tw; r,s,t € R} = Span{u, v, w},

with
2 1 -3
1 0 0
u=|0{, v=|—2], w= |2
0 1 0
0 0 1
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Outline

© Linear combinations and independence of vectors
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Aim of the current and following sections

Basic questions:
@ There are many different spanning sets for a space or subspace
@ Is there a best choice among those spanning sets?
@ Is there a minimal number for the cardinal of a spanning set?

Concept to answer those questions:
— Linear dependence

%7.2,0)
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Definition

r—[Definition 10.] \
Let vy, ...,v, be a family of vectors in V. Then
Q If there exist ¢y, ..., ¢k not all zero such that

avi+ -+ ave =0,

we say that {vy,..., v} is linearly dependent
Q If we have
avi+ - +avk=0 —= ag=c=---=c¢ =0,
we say that {vy,..., v} is linearly independent
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Examples

Simple examples:
@ The family {v} is linearly dependent iff v =0
@ The family {vy,v,} is linearly dependent iff v, = cv;

@ If 0 is an element of {vy,... v}
— then vy, ..., vy are linearly dependent
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Example in R®
Family of vectors: We consider
vi =(1,2,-1), wo=(2,-1,1), wv3=(8,1,1)
Then vy, vy, v3 are linearly dependent
Proof: The system
V1 + Vo + czvz3 = 0
can be written as:

o] +2C2 +8C3 =0
2C1 —C +c = 0
—C +0C +c3 = 0

Samy T. Vector spaces Differential equations 37/ 84



Example in R3 (2)
Proof (ctd): System in row-echelon form

1280
0130
0 00O

One row is 0, so that we have linear dependence
Explicit linear dependence: We solve for ¢

=t c=-3t, ¢ =-2t
Then choosing (arbitrary choice) t = 1 we get

—2vi —3v, +v3 =0
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Example with polynomials (1)

Family in P;: Consider

pi(t) =1,  p(t)=t, ps(t)=4-t

Linear dependence: We have that

{P1, P2, Pp3} are linearly dependent
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Example with polynomials (2)

Proof of the linear dependence: We have

P3 = 4p1 — P2
Thus

{P1, P2, p3} are linearly dependent
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Independence of n vectors in R”

~ Theorem 11.] w
Let
@ vy,...,Vv, vectors in R”
@ Form the matrix A = [vy, -+ ,v,]
Then
Vi,...,V, linearly independent iff det(A) # 0
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Example in R® reloaded

Family of vectors: We consider
vi =(1,2,-1), wv,=(2,—-1,1), v3=(8,1,1)

Then vy, vy, v3 are linearly dependent
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Example in R3 reloaded (2)

Determinant: We have

8
det(A)=|2 -1 1/=0
1

Conclusion:
V1, Vo, V3 are linearly dependent
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Outline

@ Bases and dimension for vector spaces
@ Bases

@ The dimension of a vector space
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Outline

@ Bases and dimension for vector spaces
@ Bases
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Definition of basis

r—[Definition 12.]
Let
@ V vector space

o B={vy,...,v,} be a family of vectors in V.

The family B is called a basis if
(a) The vectors vy, ..., v, are linearly independent

(b) The vectors vy, ..., v, span V

\

Samy T. Vector spaces Differential equations
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Canonical basis of R3

Claim: Let

e = (17 07 O)a
Then (ey, e;,e3) forms a basis of R3.

€ = (07 ]-a O)

€3 = (Oa Oa 1)

=] =) = £ 9OHQC
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Canonical basis of R> (2)

Proof of (a): We have

Hence

det(el, €y, e3) =1.

e, e, ez are linearly independent

=] =) = £ 9OHQC
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Canonical basis of R3 (3)

Proof of (b): If v = (w1, v, v3), then
V = vie; + ey + vzes
Hence
e;, e, e;3 span V
Generalization: One can easily find canonical bases for
o R”

o M, A(R)
o P,
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Spanning set theorem

r—[Theorem 13.]

Let
@ S={vy,...,vp}setin V
e H=Span{vy,...,v,}
Then

@ If vy is a linear combination of the remaining vectors in S,
we have

Span(S) = Span ({v1, ..., Vk_1,Vkt1,---,Vp})
@ If H # {0}, some subset of S is a basis for H

Samy T. Vector spaces Differential equations
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Application (1)

Family S: In R® we consider H = Span{vy, vy, v3} with
0 2 6

Vi = 2 s Vo = 2 s V3 = 16

-1 0 -5

Find a basis for H

Problem:
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Application (2)

Linear dependence: We have

V3 = 5V1 + 3V2

Conclusion: Since vy, v, are independent

{v1,Vva} is a basis for H
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Basis of a column space

r—[Theorem 14.] \

Let A be a m X n matrix. Then

A basis of Col(A)
is given by
set of column vectors of A corresponding to leading 1's
in any row-echelon form of A
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Application of Theorem 14

Example: Consider

1
A= |4
7

o0 O1 N
O O W
[y

o N

Row-echelon form of A: We have
1 2 3 4
01 3
00 0

{(1,4,7); (2,5,8)}

A~

N

o

Basis for Col(A):

Samy T. Vector spaces
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@ Bases and dimension for vector spaces

@ The dimension of a vector space
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Number of vectors in a basis

r—[Theorem 15.] \
Let V be a vector space such that
@ V has a basis B = {vy,...,v,} with n elements
Then

@ Any set of more than n vectors is linearly dependent

@ All bases of V have n vectors

Definition 16.] \

In the context of Theorem 15, we call

n = dimension of V
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Application of Theorem 15

Vector space: R3

Canonical basis:
B = {e;, e e} ={(1,0,0);(0,1,0);(0,0,1)}

Dimension: = 3

Examples of linearly dependent family in R3:
Any family of 4 or more vectors, such as

{(1,2,3):(1,7,4); (1, —1,5); (2, —1,5)}
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Subspaces of R3 and their dimensions

Typical examples of 0,1 and 2-dim subspaces of R3:

Samy T.

*2

Vector spaces




Application of Theorem 15 to polynomials

Vector space: P,

Canonical basis:
B = {p17 P2, p3} = {17 L, tz}

Dimension: = 3

Examples of linearly dependent family in R3:
Any family of 4 or more polynomials, such as

{1+2t+t2;1+7t+4t2;1—t+5t2;2—t+5t2}
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Simplified criterion for basis

r—[Theorem 17.] ‘

Consider

@ V a vector space with dim[V] = n

@ Vi,...,Vv, a family of n linearly independent vectors in V

Then (vy,...,v,) is a basis of V

\ J
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Application of Theorem 17

Claim: The family

p1(x) =1+ x,

is a basis for IP,.

Pa(x) = 2 — 2x + X7,

P3(x) =1+ x*

=] =) = £ 9OHQC
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Application of Theorem 17 (2)

Proof of the claim: We know that dim[[P,] = 3. Moreover

det ([p1, P2, p3]) = -3 # 0.

Thus p1, p2, p3 are linearly independent
— according to Theorem 17, {p1, p2, p3} is a basis for ;.
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© Row and column space
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Homogeneous linear systems (repeated)

r—[Theorem 18.]
Let

@ A be a m X n matrix
@ System Ax =0
@ S = set of solutions of Ax =0
Then:
© S is a subspace of R”".
@ S is called null space of A.
© Notation: Null(A).

Samy T. Vector spaces
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Nullspace (2)

lllustration: if A: R" — R™
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Example of Nullspace

Matrix:

A=|1 -2 2 3 -1

2 —4 5 8 —4

-3 6 —-11 7]

We wish to describe the set of x such that Ax =0

Reduced echelon form:

1 -2 0 -1 3 0
A~ 0 01 2 =20
00 00O 0 O

Samy T. Vector spaces

Differential equations
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Example of Nullspace (2)

Reduced echelon form:

Free variables: x5, x4 and x5

Description of Nullspace:

Null(A) = {ru+ sv+ tw; r,s,t € R} = Span{u, v, w},

with
2 1 -3
1 0 0
u=|0{, v=|—2], w= |2
0 1 0
0 0 1
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Definition of column space

r—[Definition 19.] \
Let A be a m x n matrix. The following holds true:

@ The columns of A are vectors in R™

Then we define a subset of R™:

Col(A) = Span {Columns of A}.

\.

Note: Col(A) is a subspace of R™
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Example of column space

Example: Consider

~ B~
0 Gl N

O O W
—_

o N &
S — |

Then

Col(A) = Span{(1,4,7), (2,5,8), (3,6,9), (4,7,10)} .
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Comparison Null(A) vs Col(A)

Situation: Consider a m x n matrix
Aec R™"
Facts about Null(A):

© Null(A) subspace of R”
@ Null(A) obtained by nontrivial computations

Facts about Col(A):
@ Col(A) subspace of R™
@ Col(A) immediately obtained as a Span
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Dimension of Null(A) and Col(A)

,—[Proposition 20.] \

Let A be a m X n matrix. Then

@ dim(Null(A)) = number of free variables in eq. Ax =0

@ dim(Col(A)) = number of pivot columns in A
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Application of Proposition 20

Matrix: Consider

1 2 3 4
A=1|4 5 6 7
7 8 9 10
Row-echelon form of A?: We have
1 23 40
[A,0]~ |0 1 2 3 0
0 00O0TO O

Conclusion: We have

dim(Null(A)) =2,  dim(Col(A)) = 2

Samy T. Vector spaces

Differential equations
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Definition of row space

Definition: Let A be a m x n matrix. The following holds true:
@ The rows of A are vectors in R”

Then we set:
Row(A) = Span {Rows of A}.

4
7
0

Row(A) = Span{(1,2,3,4), (4,5,6,7), (7,8,9,10)}.

Example: Consider

~N A=
0 G N
© o w
—_

Then
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Basis of a row space

r—[Theorem 21.] ‘
Let A be a m X n matrix. Then

A basis of Row(A)
is given by
set of nonzero row vectors in the row-echelon form of A

Samy T. Vector spaces Differential equations 74 / 84



Application

Matrix: Consider

1 2 3 4
A=14 5 6 7
7 8 9 10
Row-echelon form of A: We find
1 2 3 4
A~ |0 1 2 3
0 00O

Basis for Row(A):
{(1,2,3,4); (0,1,2,3)}
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Definition of column space (again)

Definition: Let A be a m x n matrix. The following holds true:
@ The columns of A are vectors in R”

Then we set:
Col(A) = Span {Columns of A} .

4
7
0

Col(A) = Span{(1,4,7), (2,5,8), (3,6,9), (4,7,10)} .

Example: Consider

~ B
o Gl N
© o w
—_

Then
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Basis of a column space

r—[Theorem 22.] ‘
Let A be a m X n matrix. Then

A basis of Col(A)
is given by
set of column vectors of A corresponding to leading 1's
in any row-echelon form of A
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Summary for bases of Col, Row, Null

r—[Theorem 23.] ‘
Let A be a m x n matrix. Then

@ Basis for Col(A):
Set of column vectors corresponding to leading 1's
in row-echelon form of A

@ Basis for Row(A):
Set of non 0 row vectors
in row-echelon form of A

@ Basis for Null(A):
Solving Ax =0
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Summary for dimensions of Col, Row, Null

r—[Theorem 24.} \
Let A be a m X n matrix. Then

@ Dimension of Col(A):
# of pivot columns in A

@ Dimension of Row(A):
# of pivot columns in A ( same as dim(Col(A)))

@ Dimension of Null(A):
# of free variables in Ax =0
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Rank

Definition 25.]

Let A be a m x n matrix. Then we define

rank(A) = dim(Col(A))
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Application
Matrix: Consider

1 2 3
A=14 5 6
789

—_

4

7

0
Row-echelon form of A: We have found

1 2 3 4
0123
0000

A~

Basis for Col(A):

{(1,4,7); (2,5,8)} = rank(A) =2

Samy T. Vector spaces

Differential equations
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The rank theorem

r—[Theorem 26.] ‘

Let A be a m X n matrix. Then we have

rank(A) + dim(Null(A)) = n

Moreover

rank(A) = dim(Col(A)) = dim(Row(A))
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Samy T. Vector spaces

Application of Theorem 26

Matrix: Consider

~N B
co C1 N
o o w

~ &

|

{(1,2,3,4); (0,1,2,3)}

—
o

Basis for Row(A):

Basis for Col(A):
{(1,4,7); (2,5,8)}

Verification of Theorem 26: We have

dim(Row(A)) = dim(Col(A)) = 2 = rank(A)

Differential equations
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Application of Theorem 26 (2)

Row-echelon form of A: We find

1 2 3 4
A~ 10 1 2 3
0 000

Null(A): We have found

dim(Null(A)) =2

Verification of Theorem 26: Recall that A € R3**. We get

rank(A) + dim(Null(A)) =2+2 =14
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