Vector spaces

Samy Tindel

Purdue University

Differential equations and linear algebra - MA 262

Taken from *Differential equations and linear algebra* Edwards, Penney, Calvis

Outline

f 1 The vector space \mathbb{R}^3

(2) The vector space \mathbb{R}^n and subspaces

Iinear combinations and independence of vectors

- Bases and dimension for vector spaces
 - Bases
 - The dimension of a vector space

Outline

1 The vector space \mathbb{R}^3

2 The vector space \mathbb{R}^n and subspaces

3 Linear combinations and independence of vectors

- 4 Bases and dimension for vector spaces
 - Bases
 - The dimension of a vector space

5 Row and column space

Vectors in \mathbb{R}^3

Fact: A tuple

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

can be geometrically interpreted as a vector

Illustration of an addition:

Some operations on vectors in \mathbb{R}^3

Algebraic operations:

- $1\mathbf{x} = \mathbf{x}$
- $(st)\mathbf{x} = s(t \mathbf{x})$
- $r(\mathbf{x} + \mathbf{y}) = r \mathbf{x} + r \mathbf{y}$
- $(s+t)\mathbf{x} = s\mathbf{x} + t\mathbf{x}$

Generalization:

- Solutions of differential equations exhibit the same kind of structure
- We need a more abstract concept
 - $\hookrightarrow \mathsf{Vector}\ \mathsf{spaces}$

Vector space definition

Proposition 1.

The space \mathbb{R}^3 is such that

- An addition and scalar multiplication are defined on \mathbb{R}^3
- Those operations satisfy conditions 1–10 below

The space \mathbb{R}^3 is an example of vector space.

Conditions 1 to 5

• Closure under addition: If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$, then $\mathbf{u} + \mathbf{v} \in \mathbb{R}^3$

② Commutativity of addition: For all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$,

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

③ Associativity of addition: For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$,

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

 Existence of a zero vector: There exists $\bm{0}\in\mathbb{R}^3$ such that $\bm{v}+\bm{0}=\bm{v}$

• Existence of additive inverses in \mathbb{R}^3 : For all $\mathbf{v} \in \mathbb{R}^3$, there exists $-\mathbf{v} \in \mathbb{R}^3$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$

Conditions 6 to 10

- Closure under scalar multiplication: If $\mathbf{u} \in \mathbb{R}^3$ and $k \in \mathbb{R}$, then $k \mathbf{u} \in \mathbb{R}^3$
- **O** Distributivity 1:

$$r(\mathbf{u} + \mathbf{v}) = r \, \mathbf{u} + r \, \mathbf{v}$$

Oistributivity 2:

$$(r+s)\mathbf{v}=r\,\mathbf{v}+s\,\mathbf{v}$$

Ssociativity of scalar multiplication:

$$(rs)\mathbf{v} = r(s\mathbf{v})$$

() Unit property: For all $\mathbf{v} \in \mathbb{R}^3$, we have $1 \, \mathbf{v} = \mathbf{v}$

Linear dependence of 2 vectors

Definition 2. Let $\mathbf{v}_1, \mathbf{v}_2$ be two vectors in \mathbb{R}^3 . Then • If there exist c_1, c_2 not all zero such that $c_1\mathbf{v}_1+c_2\mathbf{v}_2=\mathbf{0}.$ we say that $\{\mathbf{v}_1, \mathbf{v}_2\}$ are linearly dependent If we have $c_1\mathbf{v}_1+c_2\mathbf{v}_2=\mathbf{0} \implies c_1=c_2=\mathbf{0},$

we say that $\{\boldsymbol{v}_1,\boldsymbol{v}_2\}$ are linearly independent

Example of linear dependence/independence

Example of linear dependence: The vectors

$$\textbf{u}=(3,-2) \quad \text{and} \quad \textbf{v}=(-6,4)$$

are linearly dependent

Example of linear independence: The vectors

$$\mathbf{u}=(3,-2)$$
 and $\mathbf{v}=(5,-7)$

are linearly independent

Linear dependence of 3 vectors

Example of linear dependence/independence

Example of linear dependence: The vectors

$$u = (1, 2, -3), v = (3, 1, -2)$$
 and $w = (5, -5, 6)$

are linearly dependent, with

$$4\mathbf{u} - 3\mathbf{v} + \mathbf{w} = \mathbf{0}$$

Example of linear independence: The vectors

$$\textbf{u}=(1,2,-3), \quad \textbf{v}=(3,1,-2) \quad \text{and} \quad \textbf{w}=(5,-5,0)$$

are linearly independent

Criterion for linear dependence of 3 vectors

Linear dependence with determinants

Example of linear dependence: The vectors

$$u = (1, 2, -3), v = (3, 1, -2)$$
 and $w = (5, -5, 6)$

are such that

$$\mathsf{det}(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)=0$$

Example of linear independence: The vectors

$$\textbf{u}=(1,2,-3), \quad \textbf{v}=(3,1,-2) \quad \text{and} \quad \textbf{w}=(5,-5,0)$$

are such that

$$\mathsf{det}(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)=30\neq 0$$

Outline

$lacksymbol{1}$ The vector space \mathbb{R}^3

(2) The vector space \mathbb{R}^n and subspaces

3 Linear combinations and independence of vectors

4 Bases and dimension for vector spaces

- Bases
- The dimension of a vector space

5 Row and column space

Vectors in \mathbb{R}^n

Fact: A tuple in \mathbb{R}^n

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

can be geometrically interpreted as a vector

Illustration of an addition:

Some operations on vectors in \mathbb{R}^n

Algebraic operations:

- $1 \mathbf{x} = \mathbf{x}$
- $(st)\mathbf{x} = s(t \mathbf{x})$
- $r(\mathbf{x} + \mathbf{y}) = r \mathbf{x} + r \mathbf{y}$
- $(s+t)\mathbf{x} = s\mathbf{x} + t\mathbf{x}$

Generalization:

- Solutions of differential equations exhibit the same kind of structure
- We need a more abstract concept
 - $\hookrightarrow \mathsf{Vector}\ \mathsf{spaces}$

Vector space definition

Proposition 5.

The space \mathbb{R}^n is such that

- An addition and scalar multiplication are defined on \mathbb{R}^n
- Those operations satisfy conditions 1–10 below

The space \mathbb{R}^n is an example of vector space.

Conditions 1 to 5

• Closure under addition: If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, then $\mathbf{u} + \mathbf{v} \in \mathbb{R}^n$

② Commutativity of addition: For all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$,

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

③ Associativity of addition: For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$,

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

③ Existence of a zero vector: There exists $\mathbf{0} \in \mathbb{R}^n$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$

 Second Structure
 Existence of additive inverses in Rⁿ: For all v ∈ Rⁿ, there exists -v ∈ Rⁿ such that v + (-v) = 0

Conditions 6 to 10

- Olosure under scalar multiplication:
 If u ∈ ℝⁿ and k ∈ ℝ, then k u ∈ ℝⁿ
- **O** Distributivity 1:

$$r(\mathbf{u} + \mathbf{v}) = r \, \mathbf{u} + r \, \mathbf{v}$$

Oistributivity 2:

$$(r+s)\mathbf{v}=r\,\mathbf{v}+s\,\mathbf{v}$$

Associativity of scalar multiplication:

$$(rs)\mathbf{v} = r(s\mathbf{v})$$

(D) Unit property: For all $\mathbf{v} \in \mathbb{R}^n$, we have $1 \mathbf{v} = \mathbf{v}$

Examples of vector spaces

Examples:

- Scalar vector spaces: ${\mathbb R}$ or ${\mathbb C}$
- Vectors as usual: \mathbb{R}^n or \mathbb{C}^n
- 2×2 matrices (check assumptions 1–10)

Notations for most common vector spaces:

- $M_{m \times n}(\mathbb{R}) \equiv$ vector space of $m \times n$ real matrices
- $M_n(\mathbb{R}) \equiv$ vector space of square $n \times n$ real matrices
- $\mathbb{P}_n \equiv$ space of polynomials of degree at most n (check)
- $C(I) \equiv$ continuous functions on an interval I

Subspace

Definition 6.

Let S such that

• *S* is a nonempty subset of a vector space *V* Then

 \longleftrightarrow $\mathbf{0} \in S, S$ is closed under addition and scalar multiplication

Example of subspace (1)

Homogeneous linear system:

In \mathbb{R}^3 , the set *S* of solutions of system (1) is a subspace.

Example of subspace (2)

Proof: The row-echelon form of the system (1) is

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -2 & 0 \end{bmatrix}$$

Thus the set of solutions is

$$S = \left\{ \mathbf{x} \in \mathbb{R}^3; \ \mathbf{x} = (-3r, 2r, r), \ ext{where} \ r \in \mathbb{R}
ight\}.$$

One then proves stability by + and scalar imes

Geometric interpretation: S is a line (intersection of 2 planes) in \mathbb{R}^3

Counter-example of subspace (1)

Line which does not pass through **0**: The set

$$S = \left\{ \mathbf{x} \in \mathbb{R}^2; \ \mathbf{x} = (r, -3r+1), \ \text{where} \ r \in \mathbb{R}
ight\}.$$

is **not** a subspace of \mathbb{R}^2

3

A B M A B M

Image: A matrix

Counter-example of subspace (2)

Proof that S is not a subspace: We have

$$\mathbf{x} \equiv (0,1) \in S, \qquad \mathbf{y} \equiv (1,-2) \in S,$$

but

$$\mathbf{x} + \mathbf{y} = (1, -1)
ot\in S$$

э

Other examples of subspaces

Examples:

● In
$$M_n(\mathbb{R})$$

 \hookrightarrow The set $S = \{A \in M_n(\mathbb{R}); A^T = A\}$ is a subspace

② In
$$C([a, b])$$

 \hookrightarrow The set $S = \{f \in C([a, b]); f(a) = 0\}$ is a subspace

● In
$$C([a, b])$$

 \hookrightarrow The set $C^k([a, b])$ is a subspace

A B A A B A

Image: A matrix

э

Subspace spanned by a set

Definition 7.Let $\mathbf{v}_1, \dots, \mathbf{v}_p \in V$. We defineSpan $\{\mathbf{v}_1, \dots, \mathbf{v}_p\} \equiv$ Set of linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$

Theorem 8.Let $\mathbf{v}_1, \dots, \mathbf{v}_p \in V$. ThenSpan $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subspace of V

Homogeneous linear systems

Nullspace (2)

Illustration: if $A : \mathbb{R}^n \to \mathbb{R}^m$

Image: A matrix

Example of Nullspace

Matrix:

$$A^{\sharp} = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 & 0 \\ 1 & -2 & 2 & 3 & -1 & 0 \\ 2 & -4 & 5 & 8 & -4 & 0 \end{bmatrix}$$

We wish to describe the set of \mathbf{x} such that $A\mathbf{x} = \mathbf{0}$

Reduced echelon form:

$$A^{\sharp} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

э

Example of Nullspace (2) Reduced echelon form:

$$A^{\sharp} \sim egin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \ 0 & 0 & 1 & 2 & -2 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Free variables: x_2 , x_4 and x_5

Description of Nullspace:

 $\mathsf{Null}(A) = \{r\mathbf{u} + s\mathbf{v} + t\mathbf{w}; r, s, t \in \mathbb{R}\} = \mathsf{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\},\$

with

$$\mathbf{u} = \begin{bmatrix} 2\\1\\0\\0\\0 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} 1\\0\\-2\\1\\0 \end{bmatrix}, \qquad \mathbf{w} = \begin{bmatrix} -3\\0\\2\\0\\1 \end{bmatrix}$$

Outline

1 The vector space \mathbb{R}^3

2 The vector space \mathbb{R}^n and subspaces

3 Linear combinations and independence of vectors

Bases and dimension for vector spaces

- Bases
- The dimension of a vector space

5 Row and column space

Aim of the current and following sections Basic questions:

- There are many different spanning sets for a space or subspace
- Is there a *best* choice among those spanning sets?
- Is there a minimal number for the cardinal of a spanning set?

Concept to answer those questions:

 $\hookrightarrow \mathsf{Linear} \ \mathsf{dependence}$

Definition

Definition 10. Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be a family of vectors in V. Then • If there exist c_1, \ldots, c_k not all zero such that $c_1\mathbf{v}_1+\cdots+c_k\mathbf{v}_k=0.$ we say that $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is linearly dependent If we have $c_1\mathbf{v}_1+\cdots+c_k\mathbf{v}_k=0 \implies c_1=c_2=\cdots=c_k=0,$ we say that $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is linearly independent

Examples

Simple examples:

- $\bullet~$ The family $\{ \textbf{v} \}$ is linearly dependent iff v = 0
- The family $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly dependent iff $\mathbf{v}_2 = c \, \mathbf{v}_1$
- If **0** is an element of $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$
 - \hookrightarrow then $\mathbf{v}_1, \dots, \mathbf{v}_k$ are linearly dependent

э
Example in \mathbb{R}^3

Family of vectors: We consider

 $\mathbf{v}_1 = (1, 2, -1), \quad \mathbf{v}_2 = (2, -1, 1), \quad \mathbf{v}_3 = (8, 1, 1)$

Then $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent

Proof: The system

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3=\mathbf{0}$$

can be written as:

3

Example in \mathbb{R}^3 (2)

Proof (ctd): System in row-echelon form

$$\begin{bmatrix} 1 & 2 & 8 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

One row is $\mathbf{0}$, so that we have linear dependence

Explicit linear dependence: We solve for c

$$c_3 = t$$
, $c_2 = -3t$, $c_1 = -2t$

Then choosing (arbitrary choice) t = 1 we get

$$-2v_1 - 3v_2 + v_3 = 0$$

Example with polynomials (1)

Family in \mathbb{P}_1 : Consider

$$\mathbf{p}_1(t) = 1, \qquad \mathbf{p}_2(t) = t, \qquad \mathbf{p}_3(t) = 4 - t$$

Linear dependence: We have that

 $\{\boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{p}_3\}$ are linearly dependent

Example with polynomials (2)

Proof of the linear dependence: We have

$$\mathbf{p}_3 = 4\mathbf{p}_1 - \mathbf{p}_2$$

Thus

$\{\boldsymbol{p}_1,\boldsymbol{p}_2,\boldsymbol{p}_3\}$ are linearly dependent

Independence of *n* vectors in \mathbb{R}^n

Let

• $\mathbf{v}_1, \ldots, \mathbf{v}_n$ vectors in \mathbb{R}^n

• Form the matrix
$$A = [\mathbf{v}_1, \cdots, \mathbf{v}_n]$$

Then

 $\mathbf{v}_1, \ldots, \mathbf{v}_n$ linearly independent iff det $(A) \neq 0$

Example in \mathbb{R}^3 reloaded

Family of vectors: We consider

$$\mathbf{v}_1 = (1, 2, -1), \quad \mathbf{v}_2 = (2, -1, 1), \quad \mathbf{v}_3 = (8, 1, 1)$$

Then $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent

Example in \mathbb{R}^3 reloaded (2)

Determinant: We have

$$\det(A) = \begin{vmatrix} 1 & 2 & 8 \\ 2 & -1 & 1 \\ -1 & 1 & 1 \end{vmatrix} = 0$$

Conclusion:

 $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent

Outline

1) The vector space \mathbb{R}^3

2 The vector space \mathbb{R}^n and subspaces

3 Linear combinations and independence of vectors

- 4 Bases and dimension for vector spaces
 - Bases
 - The dimension of a vector space

5 Row and column space

Outline

1) The vector space \mathbb{R}^3

2 The vector space \mathbb{R}^n and subspaces

3 Linear combinations and independence of vectors

4 Bases and dimension for vector spaces

- Bases
- The dimension of a vector space

5 Row and column space

Definition of basis

Definition 12.

Let

- V vector space
- $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ be a family of vectors in V.

The family \mathcal{B} is called a basis if (a) The vectors $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are linearly independent (b) The vectors $\mathbf{v}_1, \ldots, \mathbf{v}_p$ span V Canonical basis of \mathbb{R}^3

Claim: Let

$${f e}_1=(1,0,0), \quad {f e}_2=(0,1,0), \quad {f e}_3=(0,0,1)$$

Then $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ forms a basis of \mathbb{R}^3 .

Canonical basis of \mathbb{R}^3 (2)

Proof of (a): We have

 $det(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) = 1.$

Hence

 $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are linearly independent

Canonical basis of \mathbb{R}^3 (3)

Proof of (b): If $\mathbf{v} = (v_1, v_2, v_3)$, then

 $\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + v_3 \mathbf{e}_3$

Hence

 $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ span V

Generalization: One can easily find canonical bases for

- **R**ⁿ
- $M_{m,n}(\mathbb{R})$
- \mathbb{P}_n

3

Spanning set theorem

Application (1)

Family S: In \mathbb{R}^3 we consider $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ with

$$\mathbf{v}_1 = \begin{bmatrix} 0\\2\\-1 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 2\\2\\0 \end{bmatrix}, \qquad \mathbf{v}_3 = \begin{bmatrix} 6\\16\\-5 \end{bmatrix}$$

Problem:

Find a basis for H

Linear dependence: We have

$$\mathbf{v}_3 = 5\mathbf{v}_1 + 3\mathbf{v}_2$$

Conclusion: Since $\mathbf{v}_1, \mathbf{v}_2$ are independent

 $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for H

Basis of a column space

Theorem 14.

Let A be a $m \times n$ matrix. Then

A basis of Col(A)is given by set of column vectors of A corresponding to leading 1's in any row-echelon form of A

Application of Theorem 14

Example: Consider

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 7 \\ 7 & 8 & 9 & 10 \end{bmatrix}$$

Row-echelon form of A: We have

$$A \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Basis for Col(A):

{(1, 4, 7); (2, 5, 8)}

Outline

1) The vector space \mathbb{R}^3

2 The vector space \mathbb{R}^n and subspaces

3 Linear combinations and independence of vectors

4 Bases and dimension for vector spaces

- Bases
- The dimension of a vector space

5 Row and column space

Number of vectors in a basis

Application of Theorem 15

Vector space: \mathbb{R}^3

Canonical basis:

$$\mathcal{B} = \{ \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \} = \{ (1, 0, 0); (0, 1, 0); (0, 0, 1) \}$$

Dimension: = 3

Examples of linearly dependent family in \mathbb{R}^3 : Any family of 4 or more vectors, such as

$$\{(1,2,3);(1,7,4);(1,-1,5);(2,-1,5)\}$$

Subspaces of \mathbb{R}^3 and their dimensions

Typical examples of 0,1 and 2-dim subspaces of \mathbb{R}^3 :

Application of Theorem 15 to polynomials

Vector space: \mathbb{P}_2

Canonical basis:

$$\mathcal{B} = \left\{ \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \right\} = \left\{ 1, t, t^2 \right\}$$

Dimension: = 3

Examples of linearly dependent family in \mathbb{R}^3 : Any family of 4 or more polynomials, such as

$$\left\{1+2t+t^2; 1+7t+4t^2; 1-t+5t^2; 2-t+5t^2
ight\}$$

Simplified criterion for basis

Application of Theorem 17

Claim: The family

 $\mathbf{p}_1(x) = 1 + x$, $\mathbf{p}_2(x) = 2 - 2x + x^2$, $\mathbf{p}_3(x) = 1 + x^2$

is a basis for \mathbb{P}_2 .

э

▶ < ∃ >

Application of Theorem 17 (2)

Proof of the claim: We know that dim $[\mathbb{P}_2] = 3$. Moreover

$$\mathsf{det}\left(\left[\boldsymbol{p}_1,\boldsymbol{p}_2,\boldsymbol{p}_3\right]\right)=-3\neq 0.$$

Thus $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ are linearly independent \hookrightarrow according to Theorem 17, $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is a basis for \mathbb{P}_2 .

Outline

1) The vector space \mathbb{R}^3

2 The vector space \mathbb{R}^n and subspaces

3 Linear combinations and independence of vectors

- 4 Bases and dimension for vector spaces
 - Bases
 - The dimension of a vector space

Homogeneous linear systems (repeated)

Nullspace (2)

Illustration: if $A : \mathbb{R}^n \to \mathbb{R}^m$

Example of Nullspace

Matrix:

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

We wish to describe the set of \mathbf{x} such that $A\mathbf{x} = \mathbf{0}$

Reduced echelon form:

$$A^{\sharp} \sim egin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \ 0 & 0 & 1 & 2 & -2 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Example of Nullspace (2) Reduced echelon form:

$$A^{\sharp} \sim egin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \ 0 & 0 & 1 & 2 & -2 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Free variables: x_2 , x_4 and x_5

Description of Nullspace:

 $\mathsf{Null}(A) = \{r\mathbf{u} + s\mathbf{v} + t\mathbf{w}; r, s, t \in \mathbb{R}\} = \mathsf{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\},\$

with

$$\mathbf{u} = \begin{bmatrix} 2\\1\\0\\0\\0 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} 1\\0\\-2\\1\\0 \end{bmatrix}, \qquad \mathbf{w} = \begin{bmatrix} -3\\0\\2\\0\\1 \end{bmatrix}$$

Definition of column space

Definition 19.

Let A be a $m \times n$ matrix. The following holds true:

• The columns of A are vectors in \mathbb{R}^m

Then we define a subset of \mathbb{R}^m :

 $Col(A) = Span \{Columns of A\}.$

Note: Col(A) is a subspace of \mathbb{R}^m

Example of column space

Example: Consider

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 7 \\ 7 & 8 & 9 & 10 \end{bmatrix}$$

Then

$$Col(A) = Span \{(1, 4, 7), (2, 5, 8), (3, 6, 9), (4, 7, 10)\}.$$

A B A A B A

Image: A matrix

Comparison Null(A) vs Col(A)

Situation: Consider a $m \times n$ matrix

 $A \in \mathbb{R}^{m,n}$

Facts about Null(A):

- Null(A) subspace of \mathbb{R}^n
- Null(A) obtained by nontrivial computations

Facts about Col(A):

- Col(A) subspace of \mathbb{R}^m
- Col(A) immediately obtained as a Span

Dimension of Null(A) and Col(A)

Proposition 20.

Let A be a $m \times n$ matrix. Then

• dim(Null(A)) = number of free variables in eq. $A\mathbf{x} = \mathbf{0}$

2 dim(Col(A)) = number of pivot columns in A

Application of Proposition 20

Matrix: Consider

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 7 \\ 7 & 8 & 9 & 10 \end{bmatrix}$$

Row-echelon form of A^{\sharp} : We have

$$[A, \mathbf{0}] \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Conclusion: We have

 $\dim(\operatorname{Null}(A)) = 2, \qquad \dim(\operatorname{Col}(A)) = 2$

3

B N A **B** N

Image: A matrix
Definition of row space

Definition: Let A be a $m \times n$ matrix. The following holds true: • The rows of A are vectors in \mathbb{R}^n

Then we set:

$$\operatorname{Row}(A) = \operatorname{Span} \{\operatorname{Rows of} A\}.$$

Example: Consider

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 7 \\ 7 & 8 & 9 & 10 \end{bmatrix}$$

Then

 $\mathsf{Row}(A) = \mathsf{Span} \{ (1, 2, 3, 4), (4, 5, 6, 7), (7, 8, 9, 10) \}.$

Basis of a row space

Theorem 21.

Let A be a $m \times n$ matrix. Then

A basis of Row(A)is given by set of nonzero row vectors in the row-echelon form of A

Application

Matrix: Consider

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 7 \\ 7 & 8 & 9 & 10 \end{bmatrix}$$

Row-echelon form of A: We find

$$A \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Basis for Row(A):

 $\{(1,2,3,4); (0,1,2,3)\}$

э

Definition of column space (again)

Definition: Let A be a $m \times n$ matrix. The following holds true: • The columns of A are vectors in \mathbb{R}^m

Then we set:

$$Col(A) = Span \{Columns of A\}.$$

Example: Consider

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 7 \\ 7 & 8 & 9 & 10 \end{bmatrix}$$

Then

 $Col(A) = Span \{(1, 4, 7), (2, 5, 8), (3, 6, 9), (4, 7, 10)\}.$

Basis of a column space

Theorem 22. Let A be a $m \times n$ matrix. Then A basis of Col(A)is given by set of column vectors of A corresponding to leading 1's in any row-echelon form of A

Summary for bases of Col, Row, Null

Theorem 23. Let A be a $m \times n$ matrix. Then • Basis for Col(A): Set of column vectors corresponding to leading 1's in row-echelon form of A• Basis for Row(A): Set of non 0 row vectors in row-echelon form of A• Basis for Null(A): Solving $A\mathbf{x} = \mathbf{0}$

Summary for dimensions of Col, Row, Null

Theorem 24.

Let A be a $m \times n$ matrix. Then

- Dimension of Col(A):
 # of pivot columns in A
- Dimension of Row(A):

of pivot columns in A (same as dim(Col(A)))

• Dimension of Null(*A*):

of free variables in $A\mathbf{x} = \mathbf{0}$

Definition 25.

Let A be a $m \times n$ matrix. Then we define

 $\operatorname{rank}(A) \equiv \dim(\operatorname{Col}(A))$

Samy T.

э

Image: A match a ma

Application

Matrix: Consider

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 7 \\ 7 & 8 & 9 & 10 \end{bmatrix}$$

Row-echelon form of A: We have found

$$A \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Basis for Col(A):

 $\{(1,4,7); (2,5,8)\} \implies \operatorname{rank}(A) = 2$

3

A B M A B M

< □ > < 同 >

The rank theorem

Let A be a $m \times n$ matrix. Then we have

```
rank(A) + dim(Null(A)) = n
```

Moreover

$$rank(A) = dim(Col(A)) = dim(Row(A))$$

< 行

Application of Theorem 26

Matrix: Consider

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 7 \\ 7 & 8 & 9 & 10 \end{bmatrix}$$

Basis for Row(A):

 $\{(1, 2, 3, 4); (0, 1, 2, 3)\}$

Basis for Col(A):

 $\{(1, 4, 7); (2, 5, 8)\}$

Verification of Theorem 26: We have

 $\dim(\operatorname{Row}(A)) = \dim(\operatorname{Col}(A)) = 2 \equiv \operatorname{rank}(A)$

Application of Theorem 26 (2)

Row-echelon form of A: We find

$$A \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Null(A): We have found

 $\dim(\operatorname{Null}(A)) = 2$

Verification of Theorem 26: Recall that $A \in \mathbb{R}^{3 \times 4}$. We get rank(A) + dim(Null(A)) = 2 + 2 = 4