Vector spaces

Samy Tindel
Purdue University

Differential equations and linear algebra - MA 262

Taken from Differential equations and linear algebra Edwards, Penney, Calvis

Outline

(1) The vector space \mathbb{R}^{3}
(2) The vector space \mathbb{R}^{n} and subspaces
(3) Linear combinations and independence of vectors

4 Bases and dimension for vector spaces

- Bases
- The dimension of a vector space
(5) Row and column space

Outline

(1) The vector space \mathbb{R}^{3}
(2) The vector space \mathbb{R}^{n} and subspaces
(3) Linear combinations and independence of vectors
4. Bases and dimension for vector spaces

- Bases
- The dimension of a vector space
(5) Row and column space

Vectors in \mathbb{R}^{3}

Fact: A tuple

$$
\mathbf{u}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]
$$

can be geometrically interpreted as a vector
Illustration of an addition:

Some operations on vectors in \mathbb{R}^{3}

Algebraic operations:

- $1 \mathbf{x}=\mathbf{x}$
- ($s t) \mathbf{x}=s(t \mathbf{x})$
- $r(\mathbf{x}+\mathbf{y})=r \mathbf{x}+r \mathbf{y}$
- $(s+t) \mathbf{x}=s \mathbf{x}+t \mathbf{x}$

Generalization:
(1) Solutions of differential equations exhibit the same kind of structure
(2) We need a more abstract concept
\hookrightarrow Vector spaces

Vector space definition

Proposition 1.

The space \mathbb{R}^{3} is such that

- An addition and scalar multiplication are defined on \mathbb{R}^{3}
- Those operations satisfy conditions 1-10 below

The space \mathbb{R}^{3} is an example of vector space.

Conditions 1 to 5

(1) Closure under addition:

If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$, then $\mathbf{u}+\mathbf{v} \in \mathbb{R}^{3}$
(2) Commutativity of addition: For all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$,

$$
\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}
$$

(0) Associativity of addition: For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$,

$$
(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})
$$

(1) Existence of a zero vector: There exists $\mathbf{0} \in \mathbb{R}^{3}$ such that

$$
\mathbf{v}+\mathbf{0}=\mathbf{v}
$$

(0) Existence of additive inverses in \mathbb{R}^{3} :

For all $\mathbf{v} \in \mathbb{R}^{3}$, there exists $-\mathbf{v} \in \mathbb{R}^{3}$ such that

$$
\mathbf{v}+(-\mathbf{v})=\mathbf{0}
$$

Conditions 6 to 10

(Closure under scalar multiplication: If $\mathbf{u} \in \mathbb{R}^{3}$ and $k \in \mathbb{R}$, then $k \mathbf{u} \in \mathbb{R}^{3}$
(Distributivity 1 :

$$
r(\mathbf{u}+\mathbf{v})=r \mathbf{u}+r \mathbf{v}
$$

(c) Distributivity 2:

$$
(r+s) \mathbf{v}=r \mathbf{v}+s \mathbf{v}
$$

(0) Associativity of scalar multiplication:

$$
(r s) \mathbf{v}=r(s \mathbf{v})
$$

(1) Unit property: For all $\mathbf{v} \in \mathbb{R}^{3}$, we have $1 \mathbf{v}=\mathbf{v}$

Linear dependence of 2 vectors

Definition 2.

Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be two vectors in \mathbb{R}^{3}. Then
(1) If there exist c_{1}, c_{2} not all zero such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=\mathbf{0}
$$

we say that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ are linearly dependent
(2) If we have

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=\mathbf{0} \quad \Longrightarrow \quad c_{1}=c_{2}=0
$$

we say that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ are linearly independent

Example of linear dependence/independence

Example of linear dependence: The vectors

$$
\mathbf{u}=(3,-2) \quad \text { and } \quad \mathbf{v}=(-6,4)
$$

are linearly dependent
Example of linear independence: The vectors

$$
\mathbf{u}=(3,-2) \quad \text { and } \quad \mathbf{v}=(5,-7)
$$

are linearly independent

Linear dependence of 3 vectors

Definition 3.

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be 3 vectors in \mathbb{R}^{3}. Then
(1) If there exist c_{1}, c_{2}, c_{3} not all zero such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{0}
$$

we say that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ are linearly dependent
(2) If we have

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{0} \quad \Longrightarrow \quad c_{1}=c_{2}=c_{3}=0
$$

we say that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ are linearly independent

Example of linear dependence/independence

Example of linear dependence: The vectors

$$
\mathbf{u}=(1,2,-3), \quad \mathbf{v}=(3,1,-2) \quad \text { and } \quad \mathbf{w}=(5,-5,6)
$$

are linearly dependent, with

$$
4 \mathbf{u}-3 \mathbf{v}+\mathbf{w}=\mathbf{0}
$$

Example of linear independence: The vectors

$$
\mathbf{u}=(1,2,-3), \quad \mathbf{v}=(3,1,-2) \quad \text { and } \quad \mathbf{w}=(5,-5,0)
$$

are linearly independent

Criterion for linear dependence of 3 vectors

Proposition 4.

Let

$$
\mathbf{v}_{1}, \quad \mathbf{v}_{2}, \mathbf{v}_{3}
$$

be 3 vectors in \mathbb{R}^{3}.
Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ are linearly independent iff

$$
\operatorname{det}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right) \neq 0
$$

Linear dependence with determinants

Example of linear dependence: The vectors

$$
\mathbf{u}=(1,2,-3), \quad \mathbf{v}=(3,1,-2) \quad \text { and } \quad \mathbf{w}=(5,-5,6)
$$

are such that

$$
\operatorname{det}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)=0
$$

Example of linear independence: The vectors

$$
\mathbf{u}=(1,2,-3), \quad \mathbf{v}=(3,1,-2) \quad \text { and } \quad \mathbf{w}=(5,-5,0)
$$

are such that

$$
\operatorname{det}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)=30 \neq 0
$$

Outline

(1) The vector space \mathbb{R}^{3}
(2) The vector space \mathbb{R}^{n} and subspaces
(3) Linear combinations and independence of vectors
4. Bases and dimension for vector spaces

- Bases
- The dimension of a vector space
(5) Row and column space

Vectors in \mathbb{R}^{n}

Fact: A tuple in \mathbb{R}^{n}

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]
$$

can be geometrically interpreted as a vector
Illustration of an addition:

Some operations on vectors in \mathbb{R}^{n}

Algebraic operations:

- $1 \mathbf{x}=\mathbf{x}$
- ($s t) \mathbf{x}=s(t \mathbf{x})$
- $r(\mathbf{x}+\mathbf{y})=r \mathbf{x}+r \mathbf{y}$
- $(s+t) \mathbf{x}=s \mathbf{x}+t \mathbf{x}$

Generalization:
(1) Solutions of differential equations exhibit the same kind of structure
(2) We need a more abstract concept
\hookrightarrow Vector spaces

Vector space definition

Proposition 5.

The space \mathbb{R}^{n} is such that

- An addition and scalar multiplication are defined on \mathbb{R}^{n}
- Those operations satisfy conditions 1-10 below

The space \mathbb{R}^{n} is an example of vector space.

Conditions 1 to 5

(1) Closure under addition:

If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$, then $\mathbf{u}+\mathbf{v} \in \mathbb{R}^{n}$
(2) Commutativity of addition: For all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$,

$$
\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}
$$

(3) Associativity of addition: For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$,

$$
(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})
$$

(4) Existence of a zero vector: There exists $\mathbf{0} \in \mathbb{R}^{n}$ such that

$$
\mathbf{v}+\mathbf{0}=\mathbf{v}
$$

(5) Existence of additive inverses in \mathbb{R}^{n} :

For all $\mathbf{v} \in \mathbb{R}^{n}$, there exists $-\mathbf{v} \in \mathbb{R}^{n}$ such that

$$
\mathbf{v}+(-\mathbf{v})=\mathbf{0}
$$

Conditions 6 to 10

(6) Closure under scalar multiplication: If $\mathbf{u} \in \mathbb{R}^{n}$ and $k \in \mathbb{R}$, then $k \mathbf{u} \in \mathbb{R}^{n}$
(Distributivity 1 :

$$
r(\mathbf{u}+\mathbf{v})=r \mathbf{u}+r \mathbf{v}
$$

(8) Distributivity 2:

$$
(r+s) \mathbf{v}=r \mathbf{v}+s \mathbf{v}
$$

(2) Associativity of scalar multiplication:

$$
(r s) \mathbf{v}=r(s \mathbf{v})
$$

(10) Unit property: For all $\mathbf{v} \in \mathbb{R}^{n}$, we have $1 \mathbf{v}=\mathbf{v}$

Examples of vector spaces

Examples:

- Scalar vector spaces: \mathbb{R} or \mathbb{C}
- Vectors as usual: \mathbb{R}^{n} or \mathbb{C}^{n}
- 2×2 matrices (check assumptions 1-10)

Notations for most common vector spaces:

- $M_{m \times n}(\mathbb{R}) \equiv$ vector space of $m \times n$ real matrices
- $M_{n}(\mathbb{R}) \equiv$ vector space of square $n \times n$ real matrices
- $\mathbb{P}_{n} \equiv$ space of polynomials of degree at most n (check)
- $C(I) \equiv$ continuous functions on an interval $/$

Subspace

Definition 6.

Let S such that

- S is a nonempty subset of a vector space V

Then

$$
S \text { is a subspace }
$$

$\mathbf{0} \in S, S$ is closed under addition and scalar multiplication

Example of subspace (1)

Homogeneous linear system:
In \mathbb{R}^{3}, the set S of solutions of system (1) is a subspace.

$$
\begin{array}{rll}
x_{1}+2 x_{2}-x_{3} & =0 \\
2 x_{1}+5 x_{2} & -4 x_{3} & =0 \tag{1}
\end{array}
$$

Example of subspace (2)

Proof: The row-echelon form of the system (1) is

$$
\left[\begin{array}{cccc}
1 & 0 & 3 & 0 \\
0 & 1 & -2 & 0
\end{array}\right]
$$

Thus the set of solutions is

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{3} ; \mathbf{x}=(-3 r, 2 r, r), \text { where } r \in \mathbb{R}\right\}
$$

One then proves stability by + and scalar \times
Geometric interpretation: S is a line (intersection of 2 planes) in \mathbb{R}^{3}

Counter-example of subspace (1)

Line which does not pass through $\mathbf{0}$: The set

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{2} ; \mathbf{x}=(r,-3 r+1), \text { where } r \in \mathbb{R}\right\}
$$

is not a subspace of \mathbb{R}^{2}

Counter-example of subspace (2)

Proof that S is not a subspace: We have

$$
\mathbf{x} \equiv(0,1) \in S, \quad \mathbf{y} \equiv(1,-2) \in S
$$

but

$$
\mathbf{x}+\mathbf{y}=(1,-1) \notin S
$$

Other examples of subspaces

Examples:
(1) $\ln M_{n}(\mathbb{R})$
\hookrightarrow The set $S=\left\{A \in M_{n}(\mathbb{R}) ; A^{T}=A\right\}$ is a subspace
(2) $\ln C([a, b])$
\hookrightarrow The set $S=\{f \in C([a, b]) ; f(a)=0\}$ is a subspace
(3) $\ln C([a, b])$
\hookrightarrow The set $C^{k}([a, b])$ is a subspace

Subspace spanned by a set

Definition 7.

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in V$. We define
Span $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\} \equiv$ Set of linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$

Theorem 8.
Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in V$. Then

$$
\text { Span }\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\} \text { is a subspace of } V
$$

Homogeneous linear systems

Theorem 9.

Let

- A be a $m \times n$ matrix
- System $A \mathbf{x}=\mathbf{0}$
- $S \equiv$ set of solutions of $A \mathbf{x}=\mathbf{0}$

Then:
(1) S is a subspace of \mathbb{R}^{n}.
(2) S is called null space of A or solution space of A
(3) Notation: Null (A).

Nullspace (2)

Illustration: if $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

Example of Nullspace

Matrix:

$$
A^{\sharp}=\left[\begin{array}{cccccc}
-3 & 6 & -1 & 1 & -7 & 0 \\
1 & -2 & 2 & 3 & -1 & 0 \\
2 & -4 & 5 & 8 & -4 & 0
\end{array}\right]
$$

We wish to describe the set of \mathbf{x} such that $A \mathbf{x}=\mathbf{0}$
Reduced echelon form:

$$
A^{\sharp} \sim\left[\begin{array}{cccccc}
1 & -2 & 0 & -1 & 3 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Example of Nullspace (2)

Reduced echelon form:

$$
A^{\sharp} \sim\left[\begin{array}{cccccc}
1 & -2 & 0 & -1 & 3 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Free variables: x_{2}, x_{4} and x_{5}
Description of Nullspace:

$$
\operatorname{Null}(A)=\{r \mathbf{u}+s \mathbf{v}+t \mathbf{w} ; r, s, t \in \mathbb{R}\}=\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\},
$$

with

$$
\mathbf{u}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{c}
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right]
$$

Outline

(1) The vector space \mathbb{R}^{3}
(C) The vector space \mathbb{R}^{n} and subspaces
(3) Linear combinations and independence of vectors

4 Bases and dimension for vector spaces

- Bases
- The dimension of a vector space
(5) Row and column space

Aim of the current and following sections

Basic questions:

- There are many different spanning sets for a space or subspace
- Is there a best choice among those spanning sets?
- Is there a minimal number for the cardinal of a spanning set?

Concept to answer those questions:
\hookrightarrow Linear dependence

Definition

Definition 10.

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be a family of vectors in V. Then
(1) If there exist c_{1}, \ldots, c_{k} not all zero such that

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}=0
$$

we say that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent
(2) If we have

$$
\begin{aligned}
& c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}=0 \quad \Longrightarrow \quad c_{1}=c_{2}=\cdots=c_{k}=0, \\
& \text { we say that }\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\} \text { is linearly independent }
\end{aligned}
$$

Examples

Simple examples:

- The family $\{\mathbf{v}\}$ is linearly dependent iff $\mathbf{v}=\mathbf{0}$
- The family $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent iff $\mathbf{v}_{2}=c \mathbf{v}_{1}$
- If $\mathbf{0}$ is an element of $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$
\hookrightarrow then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly dependent

Example in \mathbb{R}^{3}

Family of vectors: We consider

$$
\mathbf{v}_{1}=(1,2,-1), \quad \mathbf{v}_{2}=(2,-1,1), \quad \mathbf{v}_{3}=(8,1,1)
$$

Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent
Proof: The system

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{0}
$$

can be written as:

$$
\begin{array}{rlll}
c_{1} & +2 c_{2} & +8 c_{3} & =0 \\
2 c_{1} & -c_{2} & +c_{3} & =0 \\
-c_{1} & +c_{2} & +c_{3} & =0
\end{array}
$$

Example in $\mathbb{R}^{3}(2)$

Proof (ctd): System in row-echelon form

$$
\left[\begin{array}{llll}
1 & 2 & 8 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

One row is $\mathbf{0}$, so that we have linear dependence
Explicit linear dependence: We solve for c

$$
c_{3}=t, \quad c_{2}=-3 t, \quad c_{1}=-2 t
$$

Then choosing (arbitrary choice) $t=1$ we get

$$
-2 \mathbf{v}_{1}-3 \mathbf{v}_{2}+\mathbf{v}_{3}=\mathbf{0}
$$

Example with polynomials (1)

Family in \mathbb{P}_{1} : Consider

$$
\mathbf{p}_{1}(t)=1, \quad \mathbf{p}_{2}(t)=t, \quad \mathbf{p}_{3}(t)=4-t
$$

Linear dependence: We have that

$$
\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\} \text { are linearly dependent }
$$

Example with polynomials (2)

Proof of the linear dependence: We have

$$
\mathbf{p}_{3}=4 \mathbf{p}_{1}-\mathbf{p}_{2}
$$

Thus
$\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ are linearly dependent

Independence of n vectors in \mathbb{R}^{n}

Theorem 11.

Let

- $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ vectors in \mathbb{R}^{n}
- Form the matrix $A=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right]$

Then

$$
\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \text { linearly independent iff } \operatorname{det}(A) \neq 0
$$

Example in \mathbb{R}^{3} reloaded

Family of vectors: We consider

$$
\mathbf{v}_{1}=(1,2,-1), \quad \mathbf{v}_{2}=(2,-1,1), \quad \mathbf{v}_{3}=(8,1,1)
$$

Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent

Example in \mathbb{R}^{3} reloaded (2)

Determinant: We have

$$
\operatorname{det}(A)=\left|\begin{array}{ccc}
1 & 2 & 8 \\
2 & -1 & 1 \\
-1 & 1 & 1
\end{array}\right|=0
$$

Conclusion:
$\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent

Outline

(1) The vector space \mathbb{R}^{3}
(2) The vector space \mathbb{R}^{n} and subspaces
(3) Linear combinations and independence of vectors
4. Bases and dimension for vector spaces

- Bases
- The dimension of a vector space

(5) Row and column space

Outline

(1) The vector space \mathbb{R}^{3}
(2) The vector space \mathbb{R}^{n} and subspaces
(3) Linear combinations and independence of vectors

4 Bases and dimension for vector spaces

- Bases
- The dimension of a vector space
(5) Row and column space

Definition of basis

Definition 12.

Let

- V vector space
- $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a family of vectors in V.

The family \mathcal{B} is called a basis if
(a) The vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are linearly independent
(b) The vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ span V

Canonical basis of \mathbb{R}^{3}

Claim: Let

$$
\mathbf{e}_{1}=(1,0,0), \quad \mathbf{e}_{2}=(0,1,0), \quad \mathbf{e}_{3}=(0,0,1)
$$

Then $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ forms a basis of \mathbb{R}^{3}.

Canonical basis of $\mathbb{R}^{3}(2)$

Proof of (a): We have

$$
\operatorname{det}\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)=1
$$

Hence
$\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are linearly independent

Canonical basis of $\mathbb{R}^{3}(3)$

Proof of (b): If $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, then

$$
\mathbf{v}=v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2}+v_{3} \mathbf{e}_{3}
$$

Hence

$$
\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3} \operatorname{span} V
$$

Generalization: One can easily find canonical bases for

- \mathbb{R}^{n}
- $M_{m, n}(\mathbb{R})$
- \mathbb{P}_{n}

Spanning set theorem

Theorem 13.

Let

- $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ set in V
- $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$

Then
(1) If v_{k} is a linear combination of the remaining vectors in S, we have

$$
\operatorname{Span}(S)=\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{p}\right\}\right)
$$

(2) If $H \neq\{\mathbf{0}\}$, some subset of S is a basis for H

Application (1)

Family $S: \operatorname{In} \mathbb{R}^{3}$ we consider $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ with

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
6 \\
16 \\
-5
\end{array}\right]
$$

Problem:
Find a basis for H

Application (2)

Linear dependence: We have

$$
\mathbf{v}_{3}=5 \mathbf{v}_{1}+3 \mathbf{v}_{2}
$$

Conclusion: Since $\mathbf{v}_{1}, \mathbf{v}_{2}$ are independent

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} \text { is a basis for } H
$$

Basis of a column space

Theorem 14.

Let A be a $m \times n$ matrix. Then

A basis of $\operatorname{Col}(A)$
is given by
set of column vectors of A corresponding to leading 1's in any row-echelon form of A

Application of Theorem 14

Example: Consider

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 5 & 6 & 7 \\
7 & 8 & 9 & 10
\end{array}\right]
$$

Row-echelon form of A : We have

$$
A \sim\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Basis for $\operatorname{Col}(A)$:

$$
\{(1,4,7) ;(2,5,8)\}
$$

Outline

(1) The vector space \mathbb{R}^{3}
(2) The vector space \mathbb{R}^{n} and subspaces
(3) Linear combinations and independence of vectors

4 Bases and dimension for vector spaces

- Bases
- The dimension of a vector space
(5) Row and column space

Number of vectors in a basis

Theorem 15.

Let V be a vector space such that

- V has a basis $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ with n elements

Then
(1) Any set of more than n vectors is linearly dependent
(2) All bases of V have n vectors

Definition 16.

In the context of Theorem 15, we call

$$
n \equiv \text { dimension of } V
$$

Application of Theorem 15

Vector space: \mathbb{R}^{3}
Canonical basis:

$$
\mathcal{B}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}=\{(1,0,0) ;(0,1,0) ;(0,0,1)\}
$$

Dimension: $=3$
Examples of linearly dependent family in \mathbb{R}^{3} :
Any family of 4 or more vectors, such as

$$
\{(1,2,3) ;(1,7,4) ;(1,-1,5) ;(2,-1,5)\}
$$

Subspaces of \mathbb{R}^{3} and their dimensions

Typical examples of 0,1 and 2-dim subspaces of \mathbb{R}^{3} :

Application of Theorem 15 to polynomials

Vector space: \mathbb{P}_{2}
Canonical basis:

$$
\mathcal{B}=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}=\left\{1, t, t^{2}\right\}
$$

Dimension: $=3$
Examples of linearly dependent family in \mathbb{R}^{3} :
Any family of 4 or more polynomials, such as

$$
\left\{1+2 t+t^{2} ; 1+7 t+4 t^{2} ; 1-t+5 t^{2} ; 2-t+5 t^{2}\right\}
$$

Simplified criterion for basis

Theorem 17.

Consider

- V a vector space with $\operatorname{dim}[V]=n$
- $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ a family of n linearly independent vectors in V

Then $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ is a basis of V

Application of Theorem 17

Claim: The family

$$
\mathbf{p}_{1}(x)=1+x, \quad \mathbf{p}_{2}(x)=2-2 x+x^{2}, \quad \mathbf{p}_{3}(x)=1+x^{2}
$$

is a basis for \mathbb{P}_{2}.

Application of Theorem 17 (2)

Proof of the claim: We know that $\operatorname{dim}\left[\mathbb{P}_{2}\right]=3$. Moreover

$$
\operatorname{det}\left(\left[\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right]\right)=-3 \neq 0 .
$$

Thus $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$ are linearly independent \hookrightarrow according to Theorem 17, $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ is a basis for \mathbb{P}_{2}.

Outline

(1) The vector space \mathbb{R}^{3}
(C) The vector space \mathbb{R}^{n} and subspaces
(3) Linear combinations and independence of vectors
(1) Bases and dimension for vector spaces

- Bases
- The dimension of a vector space
(5) Row and column space

Homogeneous linear systems (repeated)

Theorem 18.

Let

- A be a $m \times n$ matrix
- System $A \mathbf{x}=\mathbf{0}$
- $S \equiv$ set of solutions of $A \mathbf{x}=\mathbf{0}$

Then:
(1) S is a subspace of \mathbb{R}^{n}.
(2) S is called null space of A.
(3) Notation: $\operatorname{Null}(A)$.

Nullspace (2)

Illustration: if $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

Example of Nullspace

Matrix:

$$
A=\left[\begin{array}{ccccc}
-3 & 6 & -1 & 1 & -7 \\
1 & -2 & 2 & 3 & -1 \\
2 & -4 & 5 & 8 & -4
\end{array}\right]
$$

We wish to describe the set of \mathbf{x} such that $A \mathbf{x}=\mathbf{0}$
Reduced echelon form:

$$
A^{\sharp} \sim\left[\begin{array}{cccccc}
1 & -2 & 0 & -1 & 3 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Example of Nullspace (2)

Reduced echelon form:

$$
A^{\sharp} \sim\left[\begin{array}{cccccc}
1 & -2 & 0 & -1 & 3 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Free variables: x_{2}, x_{4} and x_{5}
Description of Nullspace:

$$
\operatorname{Null}(A)=\{r \mathbf{u}+s \mathbf{v}+t \mathbf{w} ; r, s, t \in \mathbb{R}\}=\operatorname{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\},
$$

with

$$
\mathbf{u}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{c}
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right]
$$

Definition of column space

Definition 19.

Let A be a $m \times n$ matrix. The following holds true:

- The columns of A are vectors in \mathbb{R}^{m}

Then we define a subset of \mathbb{R}^{m} :

$$
\operatorname{Col}(A)=\operatorname{Span}\{\text { Columns of } A\} .
$$

Note: $\operatorname{Col}(A)$ is a subspace of \mathbb{R}^{m}

Example of column space

Example: Consider

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 5 & 6 & 7 \\
7 & 8 & 9 & 10
\end{array}\right]
$$

Then

$$
\operatorname{Col}(A)=\operatorname{Span}\{(1,4,7),(2,5,8),(3,6,9),(4,7,10)\}
$$

Comparison $\operatorname{Null}(A)$ vs $\operatorname{Col}(A)$

Situation: Consider a $m \times n$ matrix

$$
A \in \mathbb{R}^{m, n}
$$

Facts about $\operatorname{Null}(A)$:
(1) $\operatorname{Null}(A)$ subspace of \mathbb{R}^{n}
(2) $\operatorname{Null}(A)$ obtained by nontrivial computations

Facts about $\operatorname{Col}(A)$:
(1) $\operatorname{Col}(A)$ subspace of \mathbb{R}^{m}
(2) $\operatorname{Col}(A)$ immediately obtained as a Span

Dimension of $\operatorname{Null}(A)$ and $\operatorname{Col}(A)$

Proposition 20.

Let A be a $m \times n$ matrix. Then
(1) $\operatorname{dim}(\operatorname{Null}(A))=$ number of free variables in eq. $A \mathbf{x}=\mathbf{0}$
(2) $\operatorname{dim}(\operatorname{Col}(A))=$ number of pivot columns in A

Application of Proposition 20

Matrix: Consider

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 5 & 6 & 7 \\
7 & 8 & 9 & 10
\end{array}\right]
$$

Row-echelon form of A^{\sharp} : We have

$$
[A, \mathbf{0}] \sim\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 0 \\
0 & 1 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Conclusion: We have

$$
\operatorname{dim}(\operatorname{Null}(A))=2, \quad \operatorname{dim}(\operatorname{Col}(A))=2
$$

Definition of row space

Definition: Let A be a $m \times n$ matrix. The following holds true:

- The rows of A are vectors in \mathbb{R}^{n}

Then we set:

$$
\operatorname{Row}(A)=\operatorname{Span}\{\text { Rows of } A\} .
$$

Example: Consider

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 5 & 6 & 7 \\
7 & 8 & 9 & 10
\end{array}\right]
$$

Then

$$
\operatorname{Row}(A)=\operatorname{Span}\{(1,2,3,4),(4,5,6,7),(7,8,9,10)\}
$$

Basis of a row space

Theorem 21.

Let A be a $m \times n$ matrix. Then
A basis of $\operatorname{Row}(A)$
is given by
set of nonzero row vectors in the row-echelon form of A

Application

Matrix: Consider

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 5 & 6 & 7 \\
7 & 8 & 9 & 10
\end{array}\right]
$$

Row-echelon form of A : We find

$$
A \sim\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Basis for $\operatorname{Row}(A)$:

$$
\{(1,2,3,4) ;(0,1,2,3)\}
$$

Definition of column space (again)

Definition: Let A be a $m \times n$ matrix. The following holds true:

- The columns of A are vectors in \mathbb{R}^{m}

Then we set:

$$
\operatorname{Col}(A)=\operatorname{Span}\{\text { Columns of } A\} .
$$

Example: Consider

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 5 & 6 & 7 \\
7 & 8 & 9 & 10
\end{array}\right]
$$

Then

$$
\operatorname{Col}(A)=\operatorname{Span}\{(1,4,7),(2,5,8),(3,6,9),(4,7,10)\} .
$$

Basis of a column space

Theorem 22.

Let A be a $m \times n$ matrix. Then

> A basis of $\operatorname{Col}(A)$
> is given by
> set of column vectors of A corresponding to leading 1 's in any row-echelon form of A

Summary for bases of Col, Row, Null

Theorem 23.

Let A be a $m \times n$ matrix. Then

- Basis for $\operatorname{Col}(A)$:

Set of column vectors corresponding to leading 1's in row-echelon form of A

- Basis for $\operatorname{Row}(A)$:

Set of non 0 row vectors in row-echelon form of A

- Basis for $\operatorname{Null}(A)$: Solving $A \mathbf{x}=\mathbf{0}$

Summary for dimensions of Col, Row, Null

Theorem 24.

Let A be a $m \times n$ matrix. Then

- Dimension of $\operatorname{Col}(A)$: \# of pivot columns in A
- Dimension of $\operatorname{Row}(A)$: \# of pivot columns in $A($ same as $\operatorname{dim}(\operatorname{Col}(A)))$
- Dimension of $\operatorname{Null}(A)$: \# of free variables in $A \mathbf{x}=\mathbf{0}$

Rank

Definition 25.

Let A be a $m \times n$ matrix. Then we define

$$
\operatorname{rank}(A) \equiv \operatorname{dim}(\operatorname{Col}(A))
$$

Application

Matrix: Consider

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 5 & 6 & 7 \\
7 & 8 & 9 & 10
\end{array}\right]
$$

Row-echelon form of A : We have found

$$
A \sim\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Basis for $\operatorname{Col}(A)$:

$$
\{(1,4,7) ;(2,5,8)\} \quad \Longrightarrow \quad \operatorname{rank}(A)=2
$$

The rank theorem

Theorem 26.

Let A be a $m \times n$ matrix. Then we have

$$
\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Null}(A))=n
$$

Moreover

$$
\operatorname{rank}(A)=\operatorname{dim}(\operatorname{Col}(A))=\operatorname{dim}(\operatorname{Row}(A))
$$

Application of Theorem 26

Matrix: Consider

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 5 & 6 & 7 \\
7 & 8 & 9 & 10
\end{array}\right]
$$

Basis for $\operatorname{Row}(A)$:

$$
\{(1,2,3,4) ;(0,1,2,3)\}
$$

Basis for $\operatorname{Col}(A)$:

$$
\{(1,4,7) ;(2,5,8)\}
$$

Verification of Theorem 26: We have

$$
\operatorname{dim}(\operatorname{Row}(A))=\operatorname{dim}(\operatorname{Col}(A))=2 \equiv \operatorname{rank}(A)
$$

Application of Theorem 26 (2)

Row-echelon form of A : We find

$$
A \sim\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$\operatorname{Null}(A)$: We have found

$$
\operatorname{dim}(\operatorname{Null}(A))=2
$$

Verification of Theorem 26: Recall that $A \in \mathbb{R}^{3 \times 4}$. We get

$$
\operatorname{rank}(A)+\operatorname{dim}(\operatorname{Null}(A))=2+2=4
$$

