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A. For p ≥ 3 an odd prime and a nonnegative integer r ≤ p − 2, we prove
a conjecture of Breuil on lattices in semi-stable representations, that is, the anti-
equivalence of categories between the category of strongly divisible lattices of
weight ≤ r and the category of Galois stableZp-lattices in semi-stable p-adic Galois
representations with Hodge-Tate weights in {0, . . . , r}.
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1. I

Let k be a perfect field of characteristic p > 2, W(k) its ring of Witt vectors,
K0 = W(k)[ 1

p ], K/K0 a finite totally ramified extension and e = e(K/K0) the absolute
ramification index. We are interested in understanding semi-stable p-adic Galois
representations of G := Gal(K̄/K). An important result in this direction is proved
by Colmez and Fontaine [CF00]: semi-stable p-adic Galois representations are
classified by weakly admissible filtered (ϕ,N)-modules. Since G is compact, any
continuous representation ρ : G → GLn(Qp) admits a G-stable Zp-lattice. It is
thus natural to ask whether there also exists a corresponding integral structure
on the side of filtered (ϕ,N)-modules. Fontaine and Laffaille [FL82] first attacked
this question by defining W(k)-lattices in filtered (ϕ,N)-modules. Unfortunately,
their theory only works for the case e = 1, N = 0 and Hodge-Tate weights in
{0, . . . , p − 2}. In the late 1990s, Breuil introduced the theory of filtered (ϕ,N)-
modules over S to study semi-stable Galois representations ([Bre97], [Bre98b],
[Bre99a]), where S is the p-adic completion of divided power envelop of W(k)[u]
with respect to the ideal (E(u)), and E(u) is the Eisenstein polynomial for a fixed
uniformizer π of K. Breuil proved that the knowledge of filtered (ϕ,N)-modules
over S is equivalent to that of filtered (ϕ,N)-modules (See Theorem 2.2.1 for the
precise statement). Furthermore, it turns out that there are integral structures,
strongly divisible lattices, which naturally live inside filtered (ϕ,N)-modules over
S. These structures allow for arbitrary ramification of K/K0. For a strongly divisible
lattice M, Breuil constructed a G-stable Zp-lattice Tst(M) in a semi-stable Galois
representation and raised the following conjecture (the main conjecture in [Bre02]):

Conjecture 1.0.1. Fix a nonnegative integer r ≤ p−2, the functor Tst establishes an anti-
equivalence of categories between the category of strongly divisible lattices of weight ≤ r
and the category of G-stableZp-lattices in semi-stable representations of G with Hodge-Tate
weights in {0, . . . , r}.

If r ≤ 1, the conjecture has been proved by Breuil in [Bre00] and [Bre02]. The case
e = 1 was shown by Fontaine and Laffaille in [FL82] for crystalline representations.
In [Bre99a], Breuil proved that there at least exists a strongly divisible lattice in
the side of filtered (ϕ,N)-modules over S if er < p − 1. Based on this result, Breuil
[Bre99c] proved the case e = 1 for general semi-stable representations and Caruso
[Car05] proved the Conjecture for er < p− 1. Their ideas involve a weak version of
Conjecture 1.0.1, see the end of §2.3 for details. In [Fal99], Faltings proved that the
restriction of Tst to the subcategory of filtered free strongly divisible lattices is fully
faithful.

In this paper, we give a complete proof for the above conjecture by using results
of Kisin ([Kis05]). Let K∞ = ∪n≥1K( pn√

π), G∞ = Gal(K̄/K∞) and S = W(k)[[u]]. We
equip S with the endomorphism ϕ which acts via Frobenius on W(k), and sends
u to up. Let Modϕ/S denote the category of finite free S-modules M equipped
with a ϕ-semi-linear map ϕM : M → M such that the cokernel of S-linear map
1⊗ϕM : S⊗ϕ,SM→M is killed by E(u)r. In [Kis05], Kisin proved that any G∞-stable
Zp-lattice T in a semi-stable Galois representation comes from an object (M, ϕ) in
Modϕ/S. Using the functor M { S ⊗ϕ,S M provided by Breuil, Kisin’s theory
allows us to construct “quasi-strongly divisible lattices”, i.e, strongly divisible
lattices without considering monodromy, to establish an anti-equivalence between
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the category of quasi-strongly divisible lattices and the category of G∞-stable Zp-
lattices in semi-stable Galois representations. Furthermore, we prove that a quasi-
strongly divisible lattice is strongly divisible if and only if the corresponding G∞-
stable Zp-lattice is G-stable (see Theorem 3.5.4 for the more precise statement).
Conjecture 1.0.1 then follows.

The paper proceeds as follows. In §2, after briefly reviewing the theory of semi-
stable p-adic Galois representations, filtered (ϕ,N)-modules over S and definition of
(quasi-)strongly divisible lattices, we are then able to give a precise statement of our
main theorem. §3 is devoted to review Kisin’s theory from [Kis05], which allows
us to construct quasi-strongly divisible lattices and establishes an anti-equivalence
between the category of quasi-strongly divisible lattices and the category of G∞-
stable Zp-lattices in semi-stable Galois representations; and the full faithfulness
of Tst follows from this. In the next two sections, we prove that a quasi-strongly
divisible lattice is strongly divisible if and only if the corresponding G∞-stable
Zp-lattice is G-stable. The idea is to use an extended version of a Falting’s theorem
(Theorem 5, [Fal99]). The proof of such a theorem (Theorem 4.3.4) mainly depends
on the construction of the Cartier dual for quasi-strongly divisible lattices from
[Car05], which we discuss in §4. In the last section, we combine our previous
preparations to prove the essential surjectivity of Tst.

Acknowledgment: It is a pleasure to thank T. Arnold, C. Breuil, X. Caruso, B.
Conrad and M. Kisin for very useful conversations and correspondences during
the preparation of this paper. Our overwhelming debt to Mark Kisin will be
obvious to readers. I would like to thank him in particular for pointing out me
the possibility to prove the Main Conjecture by his result. The author wrote this
paper as a post-doc of European Network AAG in Université de Paris-Sud 11. The
author is grateful to Université de Paris-Sud 11 for its hospitality.

2. P  M R

This paper discusses lots of categories and functors. However, we may summa-
rize their relations and our main results as the following diagram:

Modϕ,N∇
/O ∼

D //

DO

∼

((
MF(ϕ,N)

∼

D //MF (ϕ,N)

Modϕ,N/S ⊗Zp Qp MFW(ϕ,N)? _Θoo D

∼
//

?�

OO

MF
W(ϕ,N) ∼

Vst //
?�

OO

Repst
Qp

(G) // RepQp
(G∞)

Modϕ,N/S

��

OO

Modϕ,N/S
u

OO

��

Tst

∼
// Repst

Zp
(G)

OO

��

// RepZp
(G∞)

OO

M̃odϕ/S
Tcris //

� _

��

Repst
Zp

(G∞) � � // RepZp
(G∞)

Modϕ/S
TS

33
� � MS // Modϕ/S

Tcris // RepZp
(G∞)

Here is a general explanation of the above diagram:
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• Injection arrows ↪→ symbolize fully faithful functors. The notations Repst

symbolize the categories of semi-stable representations with Hodge-Tate weights
in {0, . . . , r}.
• The first column is about Kisin’s theory on ϕ-modules over S. The second

column is about classical modules in Fontaine’s theory and the third about Breuil’s
theory on S-modules. These three theories can be connected by auxiliary cate-
gories in the first row (see §3.2). The last two columns are about the Galois sides.
Note that representations of G∞ (e.g., G∞-stable Zp-lattices inside semi-stable rep-
resentations) can be more conveniently described by Kisin’s theory (see §3.1 and
§3.4).
• The second row is about the theory overQp whereas the third row is about the

theory over Zp, which also is the key result of this paper. Many important inputs
depend on the last two rows where are about theories on Zp-representations of
G∞(see §3.3 and §3.4).

2.1. Semi-stable Galois representations and weakly admissible modules. Fix an
odd prime p. Recall that a p-adic representation is a continuous linear represen-
tation of G := Gal(K̄/K) on a finite dimensional Qp-vector space V and a p-adic
representation V of G is called semi-stable ([Fon94b]) if:

(2.1.1) dimK0 (Bst ⊗Qp V)G = dimQp V,

where Bst is the period ring constructed by Fontaine, see for example [Fon94a] or
§2.2 for the construction.

In [CF00] and [Fon94b], Fontaine and Colmez gives an alternative description
of semi-stable p-adic representations. Recall that a filtered (ϕ,N)-module is a finite
dimensional K0-vector space D endowed with:

(1) a Frobenius semi-linear injection: ϕ : D→ D.
(2) a linear map N : D→ D such that Nϕ = pϕN.
(3) a decreasing filtration (FiliDK)i∈Z on DK := K⊗K0 D by K-vector spaces such

that FiliDK = DK for i� 0 and FiliDK = 0 for i� 0.

If D is a one dimensional (ϕ,N)-module, and v ∈ D is a basis vector, then ϕ(v) = αv
for some α ∈ K0. We write tN(D) for the p-adic valuation of α (p-adic valuation
of α does not depends on choice of v) and tH(D) the unique integer i such that
griDK is non-zero. If D has dimension d > 1, then we write tN(D) = tN(∧dD) and
tH(D) = tH(∧dD). Recall that a filtered (ϕ,N)-module is called weakly admissible
if tH(D) = tN(D) and for any (ϕ,N)-submodule D′ ⊂ D, tH(D′) ≤ tN(D′), where
D′K ⊂ DK is equipped with the induced filtration.

The aforementioned result of Colmez and Fontaine [CF00] is that the functor

Dst,∗ : V → (Bst ⊗Qp V)G

establishes an equivalence of categories between the category of semi-stable p-adic
representations of G and the category of weakly admissible filtered (ϕ,N)-modules.

In the sequel, we will instead use the contravariant functor Dst(V) := Dst,∗(V∨),
where V∨ is the dual representation of V. The advantage of this is that the Hodge-
Tate weights of V is exactly the i ∈ Z such that griDst(V)K , 0. A quasi-inverse to
Dst is then given by :

(2.1.2) Vst(D) := Homϕ,N(D,Bst) ∩HomFil· (DK,K ⊗K0 Bst).
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Convention 2.1.1. Here we use a little different notations from those in [Bre02]
and [CF00]. Dst here is D∗st in [Bre02] and [CF00]; Vst here is V∗st in [Bre02] and
[CF00]. Also we will use Tst to denote T∗st in [Bre02] and [Bre99a] later. The reason
for using such notations is that we will always use contravariant functors instead
of covariant functors in this paper. Removing “∗” from the superscript looks more
neat and convenient.

A filtered (ϕ,N)-module is called positive if Fil0D = D. In this paper, we only
consider positive filtered (ϕ,N)-modules. We denote the category of positive
filtered (ϕ,N)-modules by MF(ϕ,N) and the category of positive weakly admissible
filtered (ϕ,N)-modules by MFw(ϕ,N).

2.2. Breuil’s theory on filtered (ϕ,N)-modules over S. Throughout the paper we
will fix a uniformiser π ∈ OK, and E(u) ∈ W(k)[u] the Eisenstein polynomial of π.
We denote by S the p-adic completion of the divided power envelope of W(k)[u]
with respect to Ker(s), where s : W(k)[u] → OK is the canonical surjection by
sending u to π. For any positive integer i, let FiliS ⊂ S be the p-adic closure of the
ideal generated by the divided powers γ j(u) = E(u) j

j! for all j ≥ i. There is a unique
map ϕ : S → S which extends the Frobenius on W(k) and satisfies ϕ(u) = up.
We define a continuous W(k)-linear derivation N : S → S such that N(u) = −u.
It is easy to check that Nϕ = pϕN and ϕ(FiliS) ⊂ piS for 0 ≤ i ≤ p − 1, and we
write ϕi = p−iϕ|FiliS and c1 = ϕ1(E(u)). Note that c1 is a unit in S. Finally, we put
SK0 := S ⊗Zp Qp and FiliSK0 := FiliS ⊗Zp Qp.

LetMF (ϕ,N) be a category whose objects are finite free SK0 -modulesDwith:
• a ϕSK0

-semi-linear morphism ϕD : D → D such that the determinant of ϕD is
invertible in SK0 (the invertibility of the determinant does not depend on the choice
of basis).
• a decreasing filtration over D of SK0 -modules: Fili(D), i ∈ Z, such that

Fil0(D) = D and that FiliSK0 Fil j(D) ⊂ Fili+ j(D).
• a K0-linear map (monodromy) N : D→D such that

(1) for all f ∈ SK0 and m ∈ D, N( f m) = N( f )m + f N(m).
(2) Nϕ = pϕN,
(3) N(Fili

D) ⊂ Fili−1(D).

Let D ∈ MF(ϕ,N) be a filtered (ϕ,N)-module. We can associate an object D ∈
MF (ϕ,N) by the following:

(2.2.1) D := S ⊗W(k) D

and • ϕ := ϕS ⊗ ϕD : D→D.
• N := N ⊗ Id + Id ⊗N : D→D
• Fil0(D) := D and by induction:

Fili+1
D := {x ∈ D|N(x) ∈ Fili

D and fπ(x) ∈ Fili+1DK}

where fπ : D� DK is defined by λ ⊗ x 7→ s(λ)x.
For aD ∈ MF (ϕ,N), Breuil associated a Qp[G]-module Vst(D). Several period

rings have to be defined before we can describe this functor. Let R = lim
←−−
OK̄/p

where the transition maps are given by Frobenius. By the universal property of
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Witt vectors W(R) of R, there is a unique surjective map θ : W(R) → ÔK̄ to the
p-adic completion ÔK̄, which lifts the projection R → OK̄/p = ÔK̄/p onto the first
factor in the inverse limit. We denote by Acris the p-adic completion of the divided
power envelope of W(R) with respect to the Ker(θ), and write B+cris := Acris[1/p].

For each n ≥ 0, fix πn ∈ K̄ a pn-th root of π such that πp
n+1 = πn. Write

π = (πn)n≥0 ∈ R, and let [π] ∈ W(R) be the Teichmüller representation. We embed
the W(k)-algebra W(k)[u] into W(R) by u 7→ [π]. Since θ([π]) = π this embedding
extends to an embedding S ↪→ Acris, and θ|S is the map s : S → OK sending u to
π. The embedding is compatible with Frobenius endomorphisms. As usual,we
denote by B+st the ring obtained by formally adjoining the element “log[π]” to B+cris,
and by B+dR the Ker(θ)-adic completion of W(R)[1/p]. Choose a generator t of
Zp(1) ⊂ Acris. Such t can be constructed by t := log([ε]) for ε = (εi)i≥0 ∈ R, where εi
is a primitive pi-th root of unity such that εpi+1 = εi. We denote B+st[1/t] by Bst.

Let Âst be the p-adic completion of the P.D. polynomial algebra Acris 〈X〉. We
endow Âst with a continuous G-action, a Frobenius ϕ, a monodromy operator N
and positive filtration Fili as the following:

For any g ∈ G, let ε(g) = g([π])
[π] ∈ Acris. We extend the natural G-action and

Frobenius on Acris to Âst by putting g(X) = ε(g)X+ ε(g)− 1 and ϕ(X) = (1+X)p
− 1.

We define a monodromy operator N on Âst to be a unique Acris-linear derivation
such that N(X) = 1 + X. For any i ≥ 0, we define

FiliÂst = {

∞∑
j=0

a jγ j(X), a j ∈ Acris, lim
j→∞

a j = 0, a j ∈ Fili− jAcris, 0 ≤ j ≤ i}.

Finally, by §4.2 in [Bre97], we have an isomorphism S ∼
→ (Âst)G compatible with all

structures given by u 7→ [π](1 + X)−1. Therefore, Âst is an S-algebra.
For anyD ∈MF (ϕ,N), one can associate a Qp[G]-module

Vst(D) := HomS,Fil·,ϕ,N(D, Âst[1/p]).

The following theorem is one of main results in [Bre97]:

Theorem 2.2.1 (Breuil). The functorD : D→ S ⊗W(k) D defined in (and below) (2.2.1)
induces an equivalence between the category MF(ϕ,N) and MF (ϕ,N) and there is a
natural isomorphism Vst(D) ' Vst(D) as Qp[G]-modules.

From now on, we always identify Vst(D) with Vst(D) as the same Galois represen-
tations, and denoteMF w(ϕ,N) the essential image ofD restricted to MFw(ϕ,N).

2.3. The Main Theorem. Theorem 2.2.1 shows that the knowledge of filtered
(ϕ,N)-modules over S is equivalent to that of filtered (ϕ,N)-modules. It turns out
that integral structures can be more conveniently defined inside filtered (ϕ,N)-
modules over S. However, when working on integral p-adic Hodge theory via
S-modules, the following technical restriction has to be always assumed.

Assumption 2.3.1. Fix a positive integer r ≤ p − 2. The filtration on the weakly
admissible filtered (ϕ,N)-module D is such that Fil0 DK = DK and Filr+1DK = 0.
Equivalently, the Hodge-Tate weights of the semi-stable p-adic Galois representa-
tion under consideration are always contained in {0, . . . , r}.
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Remark 2.3.2. (1) Conjecture 1.0.1 has been proved for r = 0 in §3.1, [Bre02].
So we only consider the case r > 0 from now on (r = 0 will cause a little
trouble only in the end).

(2) Up to the twist of the (ϕ,N)-module of a power of the cyclotomic character,
all modules whose filtration length does not exceed r satisfy the above
assumption.

Following §2.2 in [Bre02], we define the integral structures inside D to corre-
spond to the Galois stable Zp-lattices.

Definition 2.3.3. Let D be a weakly admissible filtered (ϕ,N)-module satisfying
Assumption 2.3.1 andD := D(D) ∈ MF w(ϕ,N). A quasi-strongly divisible lattice of
weight r inD is an S-submoduleM ofD such that:

(1) M is S-finite free andM[ 1
p ] ∼→D

(2) M is stable under ϕ, i.e., ϕ(M) ⊂ M.
(3) ϕ(Filr

M) ⊂ pr
Mwhere Filr

M :=M∩ Filr
D.

A strongly divisible lattice of weight r in D is a quasi-strongly divisible latticeM in
D such that N(M) ⊂ M.

It will be more convenient and explicit to describe the category of (quasi-
)strongly divisible lattices by projective limits of torsion objects. Let ′Modϕ,N/S
denote the category whose objects are 4-tuples (M,Filr

M, ϕr,N), consisting of

(1) an S-moduleM
(2) an S-submodule Filr

M ⊂M containing FilrS · M.
(3) a ϕ-semi-linear map ϕr : Filr

M→M such that for all s ∈ FilrS and x ∈ M
we have ϕr(sx) = (c1)−rϕr(s)ϕr(E(u)rx).

(4) a W(k)-linear morphism N :M→M such that :
(a) for all s ∈ S and x ∈ M, N(sx) = N(s)x + sN(x).
(b) E(u)N(Filr

M) ⊂ Filr
M.

(c) the following diagram commutes:

Filr
M

E(u)N
��

ϕr //M

c1N
��

Filr
M

ϕr //M

(2.3.1)

Morphisms are given by S-linear maps preserving Filr’s and commuting with ϕr
and N. A sequence is defined to be short exact if it is short exact as a sequence of
S-module, and induces a short exact sequence on Filr’s.

We denote by ′Modϕ/S the category which forgets the operation N in the definition

of ′Modϕ,N/S . Objects in ′Modϕ/S are called filtered ϕ-module over S. Let Mod FIϕ,N/S
(resp. Mod FIϕ/S) be the full subcategory of ′Modϕ,N/S (resp. ′Modϕ/S) consisting of
objects such that

(1) as an S-moduleM is isomorphic to ⊕i∈IS/pni S, where I is a finite set and ni
is a positive number.

(2) ϕr(M) generatesM over S.
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Finally we denote by Modϕ,N/S (resp. Modϕ/S) the full subcategory of ′Modϕ,N/S
(resp. ′Modϕ/S) such thatM is a finite free S-module and for all n,

(Mn,Filr
Mn, ϕr,N) ∈Mod FIϕ,N/S (resp. (Mn,Filr

Mn, ϕr) ∈Mod FIϕ/S),

whereMn =M/pn
M, Filr

Mn = Filr
M/pnFilr

M, and ϕr, N are induced by modulo
pn.

Note that Âst ∈
′Modϕ,N/S . For anyM ∈Modϕ,N/S , define

Tst(M) := Hom′Modϕ,N/S
(M, Âst).

Proposition 2.3.4 (Breuil). (1) IfM is a quasi-strongly divisible lattice in D with
D ∈MF

w(ϕ,N), then (M,Filr
M, ϕr) is in Modϕ/S where ϕr := ϕ/pr.

(2) The category of strongly divisible lattices of weight r is just Modϕ,N/S . In particular,

for anyM ∈Modϕ,N/S , there exists a D ∈MFw(ϕ,N) such thatD(D) ' M⊗ZpQp

as filtered (ϕ,N)-modules over S. Furthermore, Tst(M) is a G-stableZp-lattice in
Vst(D).

Proof. (1) is a Proposition 2.1.3 in [Bre99a] and Theorem 2.2.3 in [Bre02] �

From now on, we use Modϕ,N/S to denote the category of strongly divisible lat-

tices of weight r and regard M̃odϕ/S as a full subcategory of Modϕ/S, where M̃odϕ/S
denote the category of quasi-strongly divisible lattices. Now we can state our Main
Theorem:

Theorem 2.3.5 (Main Theorem). If 0 ≤ r ≤ p− 2, the functorM→ Tst(M) establishes
an anti-equivalence of categories between the category of strongly divisible lattices of weight
r and the category of G-stableZp-lattices in semi-stable p-adic Galois representations with
Hodge-Tate weights in {0, . . . , r}.

Remark 2.3.6. In fact, there exists a weak version of Conjecture 1.0.1: Fix aD inside
MF

w(ϕ,N). Consider the restriction of the functor Tst, namely,

Tst|D : {strongly divisible lattices inD} → {G-stable Zp-lattices in Vst(D)}.

The weak version claims that all functors Tst|D are equivalences. It is obvious that
Conjecture 1.0.1 implies the weak one. On the other hand, from the weak version,
one can deduce the essentially surjectivity of Tst. Therefore if the full faithfulness of
Tst has been known, then the weak version and the strong version are equivalent.
[Car05] and [Bre98a] used this ideal to prove some special cases of Conjecture 1.0.1.

3. C  Q-S D L

Let T be a G-stable Zp-lattice in a semi-stable Galois representation V with
Hodge-Tate weights in {0, . . . , r}. In this section, we will use the theory from
[Kis05] to prove that there exists a quasi-strongly divisible lattice M ∈ Modϕ/S to
correspond to T|G∞ . As we will see later,M provides the ambient module for the
strongly divisible lattice corresponding to T.
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3.1. (ϕ,N∇)-modules. We equip K0[[u]] with the endomorphism ϕ : K0[[u]] →
K0[[u]] which acts via the Frobenius on K0, and sends u to up. Suppose that I ⊂ [0, 1)
is a subinterval. We set OI the subring of K0[[u]] whose elements converge for all
x ∈ K̄ such that |x| ∈ I. Put O = O[0,1). By Lemma 2.1 in [Bre97], S can be identified
as the subring of K0[[u]] whose elements have the following form

(3.1.1)
∞∑

n=0

wi
ui

q(i)!
, wi ∈W(k), lim

i→∞
wi = 0,

where q(i) is the quotient in the Euclidean division of i by e. Therefore, for any real
number µ satisfying p−

1
(p−1)e < µ ≤ 1, we have natural inclusionsS[1/p] ↪→ O[0,µ) ↪→

SK0 compatible with Frobenius. Set c0 = E(0)/p ∈ K0 and λ =
∞∏

n=0
ϕn(E(u)/pc0) ∈ O.

We define a derivation N∇ := −uλ d
du : O → O and denote by the same symbol

the induced derivation OI → OI, for each I ⊂ [0, 1).
By a ϕ-module over O we mean a finite free O-module M, equipped with a

ϕ-semi-linear, injective map ϕ : M→M. A (ϕ,N∇)-module over O is a ϕ-module M
over O, together with a differential operator NM

∇
over N∇. That is, for any f ∈ O

and m ∈M, we have

NM
∇

( f m) = N∇( f )m + f NM
∇

(m).

ϕ and NM
∇

are required to satisfy the relation NM
∇
ϕ = (1/c0)E(u)ϕNM

∇
. We will

usually write N∇ for NM
∇

if this will cause no confusion. The category of (ϕ,N∇)-
modules over O has a natural structure of a Tannakian category. We denote by
Modϕ,N∇

/O
the category of (ϕ,N∇)-modules M of height r, in the sense that the

cokernel of 1 ⊗ ϕ : ϕ∗M → M is killed by E(u)r for our fixed positive integer r,
where ϕ∗M := O ⊗ϕ,O M.

In §1.2 of [Kis05], Kisin constructed a functor D : Modϕ,N∇
/O
→ MF(ϕ,N). Let M

be an object in Modϕ,N∇
/O

. Define the underlying K0-vector space of D(M) is M/uM,
and the operatorϕ and N are induced byϕ, N∇ on M. The construction of filtration
on D(M) is somewhat not strait forward. First we define a decreasing filtration on
ϕ∗M by

Filiϕ∗M = {x ∈ ϕ∗M|1 ⊗ ϕ(x) ∈ E(u)iM}.

Fix any fixed real number µ such that p−
1
e < µ < p−

1
pe . Lemma 1.2.6 in [Kis05]

showed that there exists a unique O[0,µ)-linear, ϕ-equivariant isomorphism

(3.1.2) ξ : D(M) ⊗K0 O[0,µ)
∼
→ ϕ∗M ⊗O O[0,µ).

The required filtration on D(M)K is defined to be the image filtration under the
composite

D(M) ⊗K0 O[0,µ) → D(M) ⊗K0 O/E(u)O ∼
→ D(M) ⊗K0 K = D(M)K.

Theorem 1.2.8 in [Kis05] shows that the functor D induces an exact equivalence
between the category Modϕ,N∇

/O
and MF(ϕ,N).
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3.2. A functor from Modϕ,N∇
/O

toMF (ϕ,N). Combining the functor D in §3.1 with

the functorD in §2.2 together, we obtain a functorD◦D from Modϕ,N∇
/O

toMF (ϕ,N).
But it will be convenient to give another description ofD ◦D for later use.

Let M be an object in Modϕ,N∇
/O

. Define DO(M) = SK0 ⊗ϕ,O M, a ϕSK0
-semi-linear

endomorphism ϕDO(M) := ϕSK0
⊗ϕM (as usual, we will drop the subscript of ϕDO(M)

if no confusion will arise) and decreasing filtration onDO(M) by

(3.2.1) Fili(DO(M)) := {m ∈ DO(M)|(1 ⊗ ϕ)(m) ∈ FiliSK0 ⊗O M}.

Note that ϕ(λ) is a unit in SK0 , we can define N onDO(M) by

N := N ⊗ 1 +
p
ϕ(λ)

1 ⊗N∇.

We can naturally extend N∇ from O to SK0 . Note that for any f ∈ SK0 we have
N(ϕ( f )) = p

ϕ(λ)ϕ(N∇( f )). Thus it is easy to check that N is a well-defined derivation

ofDO(M) over the derivation N of SK0 defined by N(u) = −u d
du .

Proposition 3.2.1. N is well defined on DO(M) and (DO(M), ϕ,Fili,N) is an object in
MF (ϕ,N).

Proof. Let D = DO(M). We check that Frobenius, filtration and monodromy de-
fined onD satisfy the required properties listed in §2.2.

Since E(u)r kills the cokernel of 1⊗ϕ : O⊗ϕ,OM→M, we see that the determinant
of ϕM is a divisor of E(u)rd, where d is the O-rank of M. Thus the determinant of
ϕD is a divisor of ϕ(E(u))rd = prdcrd

1 , therefore is invertible in SK0 . Using (3.2.1),
one easily checks that FiliSK0 · Fil j

D ⊂ Fili+ j
D. Now it suffices to check that the

monodromy N satisfies the required properties.
To see Nϕ = pϕN, for any s ∈ SK0 and m ∈M, we have

Nϕ(s ⊗m) = N(ϕSK0
(s) ⊗ ϕM(m))

= N(ϕSK0
(s)) ⊗ ϕM(m) +

p
ϕ(λ)

ϕSK0
(s) ⊗N∇(ϕM(m))

= pϕSK0
(N(s)) ⊗ ϕM(m) +

p
ϕ(λ)

ϕ(E(u))
ϕ(c0)

ϕSK0
(s) ⊗ ϕM(N∇(m))

= pϕD(N(s) ⊗m +
p
ϕ(λ)

s ⊗N∇(m))

= pϕ(N(s ⊗m)).

To check that N(Fili
D) ⊂ Fili−1

D, note that

N∇(E(u)i) = −uiE(u)i−1E′(u)λ = E(u)i(−uiE′(u)
ϕ(λ)
pc0

).

Thus N∇(FiliSK0 ⊗OM) ⊂ FiliSK0 ⊗OM. Now let x =
∑

i si⊗mi ∈ Fili
D. We claim that

(3.2.2) E(u)(1 ⊗ ϕM)(N(x)) =
c0p
ϕ(λ)

N∇((1 ⊗ ϕM)(x))
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In fact, since E(u)N = c0p
ϕ(λ) N∇ and N∇ϕ =

E(u)
c0
ϕN∇, we have

E(u)(1 ⊗ ϕM)(N(x)) = E(u)(
∑

i

N(si) ⊗ ϕM(mi) +
p
ϕ(λ)

si ⊗ ϕM(N∇(mi)))

=
c0p
ϕ(λ)

(
∑

i

N∇(si) ⊗ ϕM(mi) + si ⊗N∇(ϕM(mi)))

=
c0p
ϕ(λ)

N∇(
∑

i

si ⊗ ϕM(mi))

This proves the claim (3.2.2). Finally, to prove N(x) ∈ Fili−1
D, it suffices to show

that (1 ⊗ ϕM)(N(x)) ∈ Fili−1SK0 ⊗O M. But (3.2.2) has shown us that

E(u)(1 ⊗ ϕM)(N(x)) ∈ FiliSK0 ⊗O M.

Then we reduce our proof to the following lemma: �

Lemma 3.2.2. Let x ∈ S (resp. Acris). If E(u) jx ∈ Fil j+iS (resp. E([π]) jx ∈ Fil j+iAcris)
then x ∈ FiliS (resp. x ∈ FiliAcris).

Proof. We have a natural embedding S
u→[π]
↪→ Acris ↪→ B+dR with respect to filtration.

By definition, FilnB+dR = E([π])nB+dR for all n ≥ 0. Thus, if E([π]) jx ∈ Fili+ jB+dR then
x ∈ FiliB+dR, as required. �

Corollary 3.2.3. The following equivalences of category commute:

MF(ϕ,N) D //MF (ϕ,N)

Modϕ,N∇
/O

D

OO
DO

88rrrrrrrrrr

Proof. Let M ∈ Modϕ,N∇
/O

and D = DO(M). Proposition 3.2.1 has shown that
DO(M) ∈ MF (ϕ,N). By Theorem 2.2.1, there exists a unique D ∈ MF(ϕ,N)
such that DO(M) = D(D). It suffices to check that D ' D(M). There exists an
isomorphism iS : SK0 ⊗ϕ,O M ' D ⊗K0 SK0 inMF (ϕ,N). Modulo u both sides, we
get a K0-linear isomorphism i : D(M) ' D. It is obvious that i is compatible with
ϕ and N structures on both sides. To see that i is compatible with filtration, recall
that the filtration on D(M) depend on the construction of the unique O[0,µ)-linear,
ϕ-equivariant morphism ξ in (3.1.2):

ξ : D(M) ⊗K0 O[0,µ)
∼
→ ϕ∗M ⊗O O[0,µ)

where µ is any fixed real number such that p−
1
e < µ < p−

1
pe . Choose µ such

that p−
1

(p−1)e < µ < p−
1
pe . By (3.1.1), O[0,µ) is a subring of SK0 . Then we have an

isomorphism
ϕ∗M ⊗O O[0,µ) ⊗ SK0 'M ⊗O,ϕ SK0 = DO(M).

So ξ ⊗O[0,µ) SK0 and iS induce an SK0 -linear, filtration compatible isomorphism

(D(M) ⊗K0 O[0,µ]) ⊗ SK0 ' D ⊗K0 SK0 .
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Both sides define filtration on D(M) and D by modulo E(u) respectively. Therefore,
filtration on D(M) and D coincides. �

3.3. Finiteϕ-modules of finite height and finiteZp-representations of G∞. Recall
that S = W(k)[[u]] with the endomorphism ϕ : S → S which acts on W(k) via
Frobenius and send u to up. In this subsection, we first recall the theory in [Fon90]
on finiteϕ-modules overS of finite height and associated finiteZp-representations
of G∞. Then we study the relations between the finite ϕ-module over S of finite
height and filtered ϕ-modules over S, and their associated finite representations of
G∞. These results have been essentially done in [Bre98c] and §1.1 in [Kis04].

Denote by ′Modϕ/S the category ofS-modulesM equipped with a ϕ-semi-linear
map ϕM :M→M such that the cokernel of theS-linear map: 1⊗ϕM : S⊗ϕ,SM→
M is killed by E(u)r. (We always drop subscript M of ϕM if no confusion will
arise.) We give ′Modϕ/S the structure of exact category induced by that on the
abelian category ofS-modules. We denote by Mod FIϕ/S the full category of ′Modϕ/S
consisting of those M such that as an S-module M is isomorphic to ⊕i∈IS/pniS,
where I is a finite set and ni is a positive integer. Finally we denote by Modϕ/S the
full subcategory of ′Modϕ/S consisting of thoseMwhich are S-finite free.

Recall that [π] ∈ W(R) constructed in §2.2. We embed S ↪→ W(R) by u 7→ [π].
This embedding is compatible with Frobenius endomorphisms. Denote by OE the
p-adic completion of S[ 1

u ]. Then OE is a discrete valuation ring with the residue
field the Laurent series ring k((u)). We write E for the field of fractions of OE. If
FrR denotes the field of fractions of R, then the inclusion S ↪→ W(R) extends to
OE ↪→W(FrR). Let Eur

⊂W(FrR)[1/p] denote the maximal unramified extension of
E contained in W(FrR)[1/p], and Our its ring of integers. Since FrR is easily seen to
be algebraically closed, the residue field Our/pOur is the separable closure of k((u)).
We denote by Êur the p-adic completion of Eur, and by Ôur its ring of integers. Êur

is also equal to the closure of Eur in W(FrR). We writeSur = Ôur ∩W(R) ⊂W(FrR).
We regard all these rings as subrings of W(FrR)[1/p].

Recall K∞ =
⋃

n≥0 K(πn) and G∞ = Gal(K̄/K∞). G∞ naturally acts on Sur and Ôur

and fixes the subring S ⊂ W(R). Denote RepZp
(G∞) the category of continuous

finite Zp-representations of G∞. For an M ∈ Mod FIϕ/S, one can associate a finite
Zp-representation of G∞ by (B 1.8, [Fon90]):

TS : M→ HomS,ϕ(M,Sur[1/p]/Sur).

In §B.1.8.4 [Fon90] and §A.1.2 [Fon90], Fontaine has proved that the functor

TS : Mod FIϕ/S → RepZp
(G∞) is an exact functor. If M '

m⊕
i=1
S/pniS as finite S-

modules, then TS(M) '
m⊕

i=1
Z/pniZ as finite Zp-modules. As the consequence, if

M ∈Modϕ/S is a finite free S-module with rank d, define

TS(M) = HomS,ϕ(M,Sur),

then TS(M) is a continuous finite free Zp-representation of G∞ with Zp-rank d.
As in [Bre98c] or §1.1 [Kis04], we define a functorMS : ′Modϕ/S →

′Modϕ/S as
follows: we have a map of W(k)-algebra S→ S given by u 7→ u, so we regard S as
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an S-algebra. We will denote by ϕ the map S ↪→ S obtained by composing this
map with ϕ on S. Given anM ∈ ′Modϕ/S, setM =MS(M) := S ⊗ϕ,SM.

One has the map 1 ⊗ ϕ : S ⊗ϕ,SM→ S ⊗SM. Set

Filr
M = {y ∈ M|(1 ⊗ ϕ)(y) ∈ FilrS ⊗SM ⊂ S ⊗SM}

and define ϕr : Filr
M→M as the composite

Filr
M

1⊗ϕ // FilrS ⊗SM
ϕr⊗1 // S ⊗ϕ,SM =M.

This gives M the structure of an object in ′Modϕ/S. We have the following result
similar to Lemma 2.2.1 in [Bre98c] and Proposition 1.1.11 in [Kis04].

Proposition 3.3.1 (Breuil, Kisin). The functorMS : ′Modϕ/S →
′Modϕ/S defined above

induces an exact and fully faithful functorMS : Mod FIϕ/S →Mod FIϕ/S. This functor is
an equivalence of categories between the full subcategories consisting of objects killed by p.

Proof. Lemma 2.2.1 in [Bre98c] and Proposition 1.1.11 in [Kis04] proved the case
r = 1. The idea of proof can be easily extended for 0 ≤ r ≤ p − 2. In particular,
the equivalence of subcategories consisting of p-torsion objects is again (almost)
verbatim the proof of Theorem 4.1.1 in [Bre99a]. �

Corollary 3.3.2. The functorMS : ′Modϕ/S →
′Modϕ/S induces an exact and fully faithful

functorMS : Modϕ/S →Modϕ/S.

Remark 3.3.3. In fact, the functorMS can be proved to be an equivalence ([CL06]).

Note that Acris is an object in ′Modϕ/S by defining ϕr := ϕ/pr on FilrAcris. For any
M ∈Modϕ/S, one can define a finite free continuous Zp-representation of G∞:

(3.3.1) Tcris :M→ Hom′Modϕ/S
(M,Acris)

as in §2.3.1 in [Bre99a]. Let M ∈ Modϕ/S and M = MS(M) ∈ Modϕ/S. For any
f ∈ TS(M) = HomS,ϕ(M,Sur), consider the natural embedding ι : Sur ↪→ Acris. It
is easy to check that ϕ(ι ◦ f ) ∈ Tcris(M) = Hom′Modϕ/S

(M,Acris). Therefore, we get a
natural map HomS,ϕ(M,Sur)→ Hom′Modϕ/S

(MS(M),Acris).

Lemma 3.3.4. The natural map TS(M)→ Tcris(MS(M)) defined above is an isomorphism
of finite free Zp-representations of G∞.

Proof. This is the consequence of the fact that for any M ∈ Mod FIϕ/S, the natural
map

(3.3.2) HomS,ϕ(M,Sur[1/p]/Sur)→ Hom′Modϕ/S
(MS(M),Acris[1/p]/Acris)

is an isomorphism of finiteZp[G∞]-modules. Note that the left hand side of (3.3.2)
is an exact functor on Mod FIϕ/S. The right hand side is also an exact functor from
the fact that Ext1

′Modϕ/S
(M,Acris[1/p]/Acris) = 0 for anyM ∈Mod FIϕ/S (Lemma 2.3.1.3

in [Bre99a]). Thus by the standard dévissage, it suffices to prove (3.3.2) for the case
that p killsM, and this is Proposition 4.2.1 in [Bre99b]. �
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3.4. G∞-stableZp-lattices in a semi-stable Galois representation. A (ϕ,N)-module
overS is a finite freeϕ-moduleM ∈Modϕ/S, equipped with a linear endomorphism

N :M/uM⊗Zp Qp →M/uM⊗Zp Qp such that Nϕ = pϕN. We denote by Modϕ,N/S the

category of (ϕ,N)-module over S, and by Modϕ,N/S ⊗Zp Qp the associated isogeny
category 1. The following theorem is one of main results (cf. Corollary 1.3.15) in
[Kis05].

Theorem 3.4.1 (Kisin). There exists a fully faithful ⊗-functor Θ from the category of
positive weakly admissible filtered (ϕ,N)-modules MFw(ϕ,N) to Modϕ,N/S ⊗Zp Qp.

Let M ∈ Modϕ,N/S and M = M ⊗S O. Then there exists a D ∈ MFw(ϕ,N) such
that M = Θ(D) if and only if there exists a differential operator N∇ on M such that
(M, ϕ,N∇) ∈Modϕ,N∇

/O
, D(M) ' D in MF(ϕ,N) and N∇ mod u = N onM/uM⊗Zp Qp.

Such N∇ (if exists) is necessarily unique.

Remark 3.4.2. (1) The above theorem is valid without any restriction of the
maximal Hodge-Tate weight. But here we only consider the case that
Hodge-Tate weights in {0, . . . , r}with r ≤ p − 2.

(2) The second paragraph of the above theorem is not the same as that of
Corollary 1.3.15 in [Kis05]. But they are equivalent (See Lemma 1.3.10 and
Lemma 1.3.13 in [Kis05]), and our description of Theorem 3.4.1 will be more
convenient.

Furthermore, Kisin proved (cf. Proposition 2.1.5 in [Kis05]) that there exists a
canonical bijection (without restriction of maximal Hodge-Tate weights)

(3.4.1) η : TS(M) ⊗Zp Qp
∼
→ Vst(D)

which is compatible with the action of G∞ on the two sides. For our purpose to
connect strongly divisible lattices, we reconstruct (3.4.1) in a little different way.

Let D ∈ MFw(ϕ,N) be a weakly admissible filtered (ϕ,N)-module under our
Assumption 2.3.1, M = Θ(D) and (M, ϕ,N∇) ∈ Modϕ,N∇

/O
as in the Theorem 3.4.1.

Let D = D(D) (Recall D(D) := S ⊗W(k) D in §2.2). By Corollary 3.2.3, we have
D = SK0 ⊗ϕ,O M = SK0 ⊗ϕ,S M =MS(M) ⊗Zp Qp, whereMS is the functor defined
in Corollary 3.3.2. Then we have a natural map of Zp[G∞]-modules

(3.4.2) HomS,ϕ(M,Sur) ∼→ Hom′Modϕ/S
(MS(M),Acris) ↪→ Hom′Modϕ/S

(D,B+cris).

The first map is an isomorphism by Lemma 3.3.4. Recall that

Vst(D) = Hom′Modϕ,N/S
(D, Âst[1/p]).

The canonical projection Âst → Acris defined by sending γi(X) to 0 induces a natural
map:

(3.4.3) Hom′Modϕ,N/S
(D, Âst[1/p])→ Hom′Modϕ/S

(D,B+cris).

We claim that the above map is an bijection. Let us accept the claim and postpone
the proof in Lemma 3.4.3. Recall that Theorem 2.2.1 has shown that there exists

1Recall that if C is an additive category, then the associated isogeny category D has same objects
and HomD(A,B) = HomC ⊗Z Q for all objects A and B.
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a canonical isomorphism Vst(D) ' Vst(D) as Qp-representations of G. Therefore,
combining (3.4.2) and (3.4.3), we have a natural injection

η : TS(M) ⊗Zp Qp ↪→ Vst(D)

of Qp[G∞]-modules and thus dimQp (Vst(D)) ≥ rankS(M) = dimK0 (D). But an ele-
mentary argument (Prop. 4.5, [CF00]) showed that weak admissibility of D implies
that dimQp (Vst(D)) has to be dimK0 (D). Hence the map η is a bijection.

Lemma 3.4.3. The natural map defined in (3.4.3) is a bijection.

Proof. We basically follow the idea of Lemma 2.3.1.1 in [Bre99a]. For any f ∈
Hom′Modϕ,N/S

(D, Âst[1/p]), let f0 be its image of the map in (3.4.3). For any x ∈ D

whereD = D ⊗W(k) S, since Ni(x) = 0 for i enough big, we can easily check that

(3.4.4) f (x) =
∞∑

i=0

f0(Ni(x))γi(log(1 + X)),

where γi(x) = xi

i! is the standard divided power. So if f0 = 0, we have f = 0
because D generates D. Thus (3.4.3) is injective. To prove the surjectivity, let
f0 ∈ Hom′Modϕ/S

(D,B+cris). For any y ∈ D, define

f (y) =
∞∑

i=0

f0(Ni(y))γi(log(1 + X)).

To see that f is well defined, note that f (y) converges in B+cris[[X]], and if x ∈ D
then f (x) converges in Âst[1/p] because Ni(x) = 0 for i enough big. By a standard
computation, we can easily check that f : D → B+cris[[X]] is S-linear. Therefore
f : D → Âst[1/p] is well defined. It suffices to check that f preserves Frobenius,
monodromy and filtration. Since f0 preserves all these structures, it is a strait
forward calculation to check that f preserves Frobenius, monodromy and filtration,
combining with the facts that ϕ(log(1 + X)) = p log(1 + X), N(log(1 + X)) = 1,
N j(Fili

D) ⊂ Fili− j
D and log(1 + X) ∈ Fil1Âst. �

Remark 3.4.4. (1) Let Vcris(D) := Hom′Modϕ/S
(D,B+cris). The above lemma gives a

natural transformation which makes the following diagram commutative:

MF (ϕ,N)

v

Vcris // RepQp
(G∞)

MF (ϕ,N)
Vst // RepQp

(G)

OO

(2) From the above proof, we see that the lemma is always valid without any
restriction of the maximal Hodge-Tate weight.

One advantage of using (ϕ,N)-module over S is that we can classify all G∞-
stable Zp-lattices inside the Galois representation.

Lemma 3.4.5 (Kisin). (1) Let V be a semi-stable representation with Hodge-Tate
weights in {0, . . . , r}. For any G∞-stable Zp-lattice T ⊂ V, there always exists an
N ∈Modϕ/S such that TS(N) ' T.
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(2) The functor TS : Modϕ/S → RepZp
(G∞) is fully faithful.

Proof. These are easy consequences of Lemma (2.1.15) and Proposition (2.1.12) in
[Kis05]. Remark that the lemma is valid without restriction of r. �

Recall that M̃odϕ/S denote the category of quasi-strongly divisible lattices of

weight r. LetM ∈ M̃odϕ/S be a quasi-strongly divisible lattice. By Definition 2.3.3,
there exists a D ∈ MF w(ϕ,N) such that M ⊂ D and D ' D(D) with D weakly
admissible. Let V := Vst(D) be the semi-stable Galois representation. Then we can
associate a G∞-stable Zp-lattice in V as the following:

M 7→ Tcris(M) = Hom′Modϕ/S
(M,Acris) ↪→ Hom′Modϕ/S

(D,B+cris) ' Vst(D) = V.

Recall that the isomorphism Vst(D) ∼→ Hom′Modϕ/S
(D,B+cris) has been established in

Lemma 3.4.3. Therefore Tcris induces a functor from M̃odϕ/S to Repst
Zp

(G∞), where
Repst

Zp
(G∞) denotes the category of G∞-stableZp-lattices in semi-stable Galois rep-

resentations with Hodge-Tate weights in {0, . . . , r}.

Proposition 3.4.6. The functor Tcris induces an anti-equivalence between M̃odϕ/S and
Repst

Zp
(G∞).

Proof. We first prove the essential surjectivity of the functor. Let M = Θ(D) as
in Theorem 3.4.1 and D = D(D). By corollary 3.2.3 and Theorem 3.4.1, we see
that D = M ⊗S,ϕ SK0 . Suppose that T ⊂ V is a G∞-stable Zp-lattice. Then by
lemma 3.4.5, there exists an N ∈ Modϕ/S, such that T ' TS(N). We claim that
M ⊗Zp Qp ' N ⊗Zp Qp. In fact, since TS(M) and TS(N) are G∞-stable Zp-lattices in
V, there exist G∞-equivariant maps f : TS(M) → TS(N) and g : TS(N) → TS(M)
such that f ◦ g = pnId. By full faithfullness of TS, there exists F : N → M and
G :M→ N such that F ◦G = pnId. Hence the claim follows. Now putN =MS(N).
We see that N is a quasi-strongly divisible lattice in D, and by Lemma 3.3.4,

Tcris(N) = T. This proves that the functor is essential surjective. LetM,N ∈ M̃odϕ/S
and f : Tcris(N) → Tcris(M) a morphism of Zp[G∞]-module. From the above
proof, there existM,N ∈ Modϕ/S such that TS(M) = Tcris(M) and TS(N) = Tcris(N).
Since TS is fully faithful (Lemma 3.4.5 (2)), there exists f : M → N a morphism
in Modϕ/S such that TS(f) = f . Then by Lemma 3.3.2 and Lemma 3.3.4, we have
Tcris(MS(f)) = f . It suffices to show thatM =MS(M) andN =MS(N). Therefore,
we reduce the proof to the following �

Lemma 3.4.7. LetM,M′ be two quasi-strongly lattices contained in D. If Tcris(M) =
Tcris(M′) thenM =M′.

We postpone our proof of the Lemma after Lemma 5.3.1.
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We may summarize our discussion in this subsection into the follow commuta-
tive diagram:

Modϕ/S
� � MS //
) 	

TS

((
Modϕ/S

Tcris // RepZp
(G∞)

M̃odϕ/S

?�

OO

Tcris

∼
// Repst

Zp
(G∞)

?�

OO

3.5. Fully faithfulness of Tst. Now suppose that T is a G-stableZp-lattice in a semi-
stable Galois representation V. By Proposition 3.4.6, there exists a quasi-strongly
divisible latticeM in D such that Tcris(M) = T|G∞ and there exists anM ∈ Modϕ/S
such thatM =MS(M).

Proposition 3.5.1. Notations as the above. If N(M) ⊂ M, then (M, ϕ,Filr
M,N) is a

strongly divisible lattice inD and Tst(M) = T.

Proof. M is clearly a strongly divisible lattice inD. It suffices to prove that Tst(M) =
T. By Proposition 2.3.4,

Tst(M) = Hom′Modϕ,N/S
(M, Âst) ⊂ Vst(D) ' Vst(D) = V

is a G-stable Zp-lattice. As in (3.4.3), the canonical projection Âst → Acris defined
by sending γi(X)→ 0 induces a natural map

(3.5.1) Tst(M) = Hom′Modϕ,N/S
(M, Âst)→ Hom′Modϕ/S

(M,Acris) = Tcris(M).

Then we have the following commutative diagram:

Hom′Modϕ,N/S
(M, Âst)

(3.5.1)

��

� � // Hom′Modϕ,N/S
(D, Âst[1/p])

o (3.4.3)

��
Hom′Modϕ/S

(M,Acris) � � // Hom′Modϕ/S
(D,B+cris)

T � � // V

Thus it suffices to show that (3.5.1) is an isomorphism of Zp-modules. This has
been proved in §2.3.1, [Bre99a]. �

Corollary 3.5.2. The functor Tst in the Main Conjecture 1.0.1 is fully faithful.

Proof. Let M, M′ be strongly divisible lattices, D = M⊗Zp Qp, D′ = M′ ⊗Zp Qp
and Tst(M), Tst(M′) G-stable Zp-lattices in Vst(D), Vst(D′) respectively. Suppose
that f : Tst(M) → Tst(M′) is a morphism of Zp[G]-modules. Tensoring by Qp,
there exists an f : D′ → D such that Vst(f) = f ⊗Zp Qp. It suffices to show that
f(M′) ⊂ M. Select an n such that pnf(M′) ⊂ M. Then g := pnf is a morphism of
strongly divisible lattices and Tst(g) = pn f . Note that (3.5.1) is an isomorphism
of Zp[G∞]-modules. So if g is regarded as a morphism of quasi-strongly divisible
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lattices, we have Tcris(g) = Tst(g) = pn f . On the other hand, by Proposition 3.4.6,
Tcris is fully faithful, there exists a morphism g′ : M′ → M in Modϕ/S such that
Tcris(g′) = f . Therefore png′ = g = pnf. Then f = g′ and f(M′) = g′(M′) ⊂ M. �

Also we reduce the proof of the essential surjectivity of Tst to the following

Lemma 3.5.3. Notations as the above, If T is G-stable then N(M) ⊂ M.

We will devote the next two sections to prove this Lemma. Combining with
Proposition 3.5.1, Corollary 3.5.2 and Proposition 3.4.6, we prove the Main Theorem
(Theorem 2.3.5) and the following

Theorem 3.5.4. The functor Tcris induces an anti-equivalence between the category of
quasi-strongly divisible lattices of weight r and the category of G∞-stableZp-lattices inside
semi-stable Galois representations with Hodge-Tate weights in {0, . . . , r}. Furthermore, a
quasi-strongly divisible latticeM is strongly divisible if and only if Tcris(M) is G-stable.

4. C D   T  CM  Tcris(M)

In this section, we extend a theorem of Faltings (cf. Theorem 5, [Fal99]) to a
more general setting to connect filtered ϕ-modules over S with their associated
Zp-representations of G∞. This theorem is one of technical keys to prove Lemma
3.5.3. For this purpose, we need more explicit structure of Filr

M and a notion of
Cartier dual forM ∈Modϕ/S. Luckily, such Cartier dual has been available from the
thesis of Caruso [Car05]. In the following two section, we always regard W(k)[u]
and S as subrings of Acris via u 7→ [π], and denote the identity matrix by I.

4.1. Structure of filtration of quasi-strongly divisible lattice.

Lemma 4.1.1. Let A be a d×d matrix with coefficients in W(k)[u]. Suppose that there exist
matrices B′ and C with coefficients in S and FilpS respectively such that AB′ = E(u)rI+C.
Then

(1) There exists a matrix B with coefficients in S such that AB = E(u)rI.
(2) Let ai ∈ Acris for i = 1, . . . , d. If (a1, . . . , ad)A is in FilrAcris, then there exists

bi ∈ Acris and ci ∈ FilpAcris for i = 1, . . . , d such that

(a1, . . . , ad) = (b1, . . . , bd)B + (c1, . . . , cd).

Proof. Note that for any f ∈ S, we can always write f = f0 + f1 with f0 ∈ W(k)[u]
and f1 ∈ FilpS. So B′ = B0 +B1 with B0’s coefficients in W(k)[u] and B1’s coefficients
in FilpS. Therefore, E(u)rI = AB0 + C1 with C1’s coefficients in W(k)[u] ∩ FilpS =
E(u)pW(k)[u]. Thus C1 = E(u)pC2 with C2’s coefficients in W(k)[u]. Now we have
E(u)rI = AB0 + E(u)pC2. Since E(u)n

→ 0 p-adically in S when n→∞, I − E(u)p−rC2
is invertible. Thus

(4.1.1) E(u)rI = AB0(I − E(u)p−rC2)−1.

Let B = B0(I − E(u)p−rC2)−1 and we settle (1).
For (2), write (a1, . . . , ad) = (b′1, . . . , b

′

d)+(c1, . . . , cd) with b′i ∈W(R) and ci ∈ FilpAcris

for i = 1, . . . , d. It suffices to prove that there exists bi ∈ Acris such that (b′1, . . . , b
′

d) =
(b1, . . . , bd)B. Note that

(a1, . . . , ad)A = (b′1, . . . , b
′

d)A + (c1, . . . , cd)A ∈ FilrAcris.
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Then (b′1, . . . , b
′

d)A ∈ FilrAcris ∩W(R) = E(u)rW(R). So there exists bi ∈ W(R) such
that (b′1, . . . , b

′

d)A = E(u)r(b1, . . . , bd). Multiplying by B on both sides, we get
(b′1, . . . , b

′

d)AB = E(u)r(b1, . . . , bd)B. Finally, (b′1, . . . , b
′

d) = (b1, . . . , bd)B as required. �

Proposition 4.1.2. LetM ∈Modϕ/S. There exists α1, . . . , αd ∈ Filr
M such that

(1) Filr
M =

d⊕
i=1

Sαi + (FilpS)M.

(2) E(u)r
M ⊆

d⊕
i=1

Sαi and (ϕr(α1), . . . , ϕr(αd)) is a basis ofM.

Proof. ConsideringM/pM, by Proposition 2.2.1.3 in [Bre99a],M/pM has a “base
adaptée”, i.e., there exists a basis (e1, . . . , ed) ofM and α1, . . . , αd ∈ Filr

M such that

(4.1.2) Filr
M/pFilr

M =

d⊕
i=1

S1ᾱi + FilpS1(M/pM)

such that (ᾱ1, . . . , ᾱd) = (ur1 ē1, . . . ,urd ēd) with 0 ≤ ri ≤ er, where S1 = S/pS and ᾱi,

ēi is the image of αi, ei inM/pM respectively. Let M̃ =
d⊕

i=1
Sαi + (FilpS)M. Then

M̃ ⊂ Filr
M. We claim that the natural map

f : M̃/FilpSM→ Filr
M/FilpSM

is surjective. To see the claim, note that S/FilpS ∼
→ W(k)[u]/(E(u)p) is Noetherian.

By Nakayama’s lemma, it suffices to show that f mod p is a surjection. Note that

Filr
M/FilpSM mod p = (Filr

M)1/(FilpSM)1

where (Filr
M)1 = Filr

M/pFilr
M and (FilpSM)1 = FilpSM/pFilpSM. By (4.1.2), we

see that f mod p is surjective and thus prove the claim. Then

(4.1.3) Filr
M = M̃ =

d⊕
i=1

Sαi + (FilpS)M.

Let (α1, . . . , αd) = (e1, . . . , ed)A where A is a d × d matrix with coefficients in S.
Write A = A0 + A1 with A0’s coefficients in W(k)[u] and A1’s coefficients in FilpS.
Replacing (α1, . . . , αd) by (e1, . . . , ed)A0, we can always assume that A’s coefficients
are in W(k)[u]. By (4.1.3), there exists d×d matrices B′, C with coefficients in S, FilpS
respectively such that E(u)rI = AB′ +C. Then by Lemma 4.1.1, there exists a B with

coefficients in S such that AB = E(u)rI. Therefore E(u)r
M ⊂

d⊕
i=1

Sαi. Sinceϕr(Filr
M)

generatesM and one always has p|ϕr(FilpS), we see that (ϕr(α1), . . . , ϕr(αd)) is a basis
ofM. �

Let D ∈ MF (ϕ,N) be a filtered (ϕ,N)-module over S. Following §3 in [Bre97],
we define

(4.1.4) Filr(Acris ⊗S D) =
r∑

i=0

Im(Filr−iAcris ⊗S Fili
D),

where Im(Filr−iAcris ⊗S Fili
D) is the image of Filr−iAcris ⊗S Fili

D in Acris ⊗S D. We
also define Filr(Acris ⊗SM) = Filr(Acris ⊗S D) ∩ (Acris ⊗SM).
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Corollary 4.1.3. Notations as Proposition 4.1.2,

Filr(Acris ⊗SM) =
d⊕

i=1

Acris ⊗ αi + FilpAcris ⊗SM.

Proof. Since we always have Filr−iS · Fili
D ⊂ Filr

D, it is easy to see that

Filr(Acris ⊗S D) = Acris ⊗S Filr
D.

Then the corollary follows the fact that Fili
M = Fili

D∩M. �

By the above corollary, we can ϕAcris -semi-linearly extend ϕr ofM to

ϕr : Filr(Acris ⊗SM)→ Acris ⊗SM

and we see that (Acris ⊗SM,Filr(Acris ⊗SM), ϕr) is an object in ′Modϕ/S.

4.2. Cartier dual on Modϕ/S. In this subsection, we recall the construction of Cartier
dual on Modϕ/S from [Car05]. LetM ∈Modϕ/S. DefineM∗ := HomS(M,S),

Filr
M
∗ := { f ∈ M∗| f (Filr

M) ⊂ FilrS}

and
ϕr : Filr

M
∗
→M

∗, for all x ∈ Filr
M, ϕr( f )(ϕr(x)) = ϕr( f (x)).

Note that ϕr( f ) is well defined because ϕr(Filr
M) generatesM.

Theorem 4.2.1 (Caruso). The functorM → M∗ induces an exact anti-equivalence on
Modϕ/S and (M∗)∗ =M.

Proof. Proposition V 3.3.1 in [Car05] proved the theorem on the category of strongly
divisible lattices. But the same proof also works on Modϕ/S if we ignore monodromy.

�

Example 4.2.2. Let S∗ be the Cartier dual of S. Then S∗ is the S-rank-1 quasi-strongly
divisible lattice with FilrS∗ = S and ϕr(1) = 1.

4.3. Application to Galois representations. Let M ∈ Modϕ/S and M∗ its Cartier
dual. The canonical perfect pairing M ×M∗ → S in the construction of Cartier
dual is compatible with filtration and Frobenius on both sides. Taking Cartier dual
on both sides, note that (M∗)∗ ' M by Theorem 4.2.1, we have a map

i : S∗ →M∗ × (M∗)∗ ' M∗ ×M

and i induces a pairing

(4.3.1) ĩ : Hom′Modϕ/S
(M,Acris) ×Hom′Modϕ/S

(M∗,Acris)→ HomS(S∗,Acris).

Lemma 4.3.1. The above pairing induces a perfect paring of Zp-representations of G∞:

(4.3.2) Tcris(M) × Tcris(M∗)→ Tcris(S∗) = Zp(r).

Proof. This has been essentially proved in Chapter 5, §4 of [Car05]. The proof
consists of two steps. The first step is to check the image of ĩ is in Hom′Modϕ/S

(S∗,Acris).
This is basically a direct check by the definition of Cartier dual. The proof of the
perfectness of the paring (4.3.2) is non-trivial. It suffices to show that the pairing
is perfect by modulo p, and the proof is contained in the proof of Theorem V.
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4.3.1 in [Car05]. (Although the hypotheses of Theorem 4.3.1 require er < p − 1,
the statement is always valid for any e if we only consider the paring induced by
filtered ϕ-modules over S killed by p, as explained in Caruso’s remark in the end
of proof.) �

We use A∗cris to denote Acris with non-canonical filtration FilrA∗cris = Acris and
Frobenius ϕr(1) = 1.

Lemma 4.3.2. There are natural isomorphisms of Zp[G∞]-modules:

HomAcris,Filr,ϕ(A∗cris,Acris ⊗SM
∗) ' Filr(Acris ⊗SM

∗)ϕr=1
' Hom′Modϕ/S

(M,Acris).

Proof. While the first isomorphism is totally trivial to check, the second isomor-
phism needs some arguments. Let α1, . . . , αd ∈ Filr

M constructed in Proposition
4.1.2, (e1, . . . , ed) = (ϕr(α1), . . . , ϕr(αd)) a basis of M and (e∗1, . . . , e

∗

d) the dual basis.
Write (α1, . . . , αd) = (e1, . . . , ed)A where A is a d by d matrix with coefficients in S.
By the argument after formula (4.1.3), we may assume that all A’s coefficients are
in W(k)[u]. By Lemma 4.1.1, there exists a matrix B with coefficients in S such that
AB = BA = E(u)rI. Put (α∗1, . . . , α

∗

d) = (e∗1, . . . , e
∗

d)Bt (Here t means transpose). It is
easy to check that α∗i ∈ Filr

M
∗ for i = 1, . . . , d.

Forgetting filtration and Frobenius structure for a while, sinceM is S-finite free,

we can identify Acris ⊗SM
∗ with HomS(M,Acris) by sending

d∑
i=1

ai ⊗ e∗i to
d∑

i=1
aie∗i . For

any f ∈ Filr(Acris ⊗SM
∗) = Acris ⊗S Filr

M
∗ (Lemma 4.1.3), write f =

∑
i ai ⊗ fi with

ai ∈ Acris and fi ∈ Filr
M
∗. Then for any x ∈ Filr

M, f (x) =
∑

i ai fi(x) ∈ FilrS · Acris ⊂

FilrAcris. That is, f is a map fromM to Acris preserving filtration. On the other hand,
let f be an S-linear map fromM to Acris preserving filtration. Then f (αi) ∈ FilrAcris
for all i = 1, . . . , d. Denote ai = f (ei), i = 1, . . . , d. We have (a1, . . . , ad)A ∈ FilrAcris
where A is the matrix constructed in the first paragraph. By Lemma 4.1.1, we have

(a1, . . . , ad) = (b1, . . . , bd)B + (c1, . . . , cd)

with bi ∈ Acris and ci ∈ FilpAcris for i = 1, . . . , d. So we have

f =
d∑

i=1

aie∗i =
d∑

i=1

biα
∗

i +

d∑
i=1

cie∗i ∈ Filr(Acris ⊗SM
∗).

Therefore, we have f ∈ HomS(M,Acris) preserves filtration if and only of f ∈
Filr(Acris ⊗SM

∗). Now suppose that f ∈ HomS(M,Acris) also preserves Frobenius,
that is, f (ϕr(x)) = ϕr( f (x)) for all x ∈ Filr

M. Then

ϕr( f )(ei) = ϕr( f )(ϕr(αi))) = ϕr( f (αi)) = f (ϕr(αi)) = f (ei), ∀i = 1, . . . , d.

Therefore, ϕr( f ) = f . On the other hand, if f ∈ (Acris ⊗S M
∗)ϕr=1, reversing the

above argument shows that f ∈ Hom′Modϕ/S
(M,Acris). �

By the above Lemma, we get

(4.3.3) Tcris(M) ' Filr(Acris ⊗SM
∗)ϕr=1 ↪→ Acris ⊗SM

∗.

So we also have Tcris(M∗) ↪→ Acris ⊗SM.
Recall that t is a generator of Zp(1) = (Fil1Acris)ϕ1=1

⊂ Acris.
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Corollary 4.3.3. The following diagram commutes

Tcris(M) × Tcris(M∗)
� � //

(4.3.2)
��

Acris ⊗SM
∗
× Acris ⊗SM

��
Zp(r) 17→tr

// Acris

(4.3.4)

where the top row is induced by (4.3.3) and the right column is induced by the canonical
pairingM×M∗ → S.

Proof. This follows the fact that (4.3.2) is induced by taking dual of the canonical
pairingM×M∗ → S. �

Now we can construct the following theorem to compare M ⊗S Acris with
T∨cris(M) ⊗Zp Acris.

Theorem 4.3.4. There exist Acris-linear injections

ι∗ : T∨cris(M)(r) ⊗Zp A∗cris → Acris ⊗SM, ι : Acris ⊗SM→ T∨cris(M) ⊗Zp Acris

such that ι and ι∗ are compatible with G∞-actions, Frobenius and filtration. Furthermore,
ι ◦ ι∗ = Id ⊗ tr.

Remark 4.3.5. (1) Suppose that M is further a strongly divisible lattice. Let
D =M⊗Zp Qp and D ∈ MFw(ϕ,N) such thatD = D(D). In [Bre97], Breuil
extended the classical isomorphism D ⊗K0 Bst ' V∨st(D) ⊗Qp Bst to the B̂st-

version: ιS : D⊗S B̂st ' V∨st(D)⊗Qp B̂st where B̂st := Âst[1/p, 1/t]. Note that Bst

is a B̂st-algebra after modulo X. It is not hard to see that ιS⊗B̂st
Bst ' ι⊗Acris Bst.

Therefore, ιmay be seen as an integral version of ιS.
(2) There exists a geometric interpretation of the above theorem. Conjecturally,

the log-crystalline cohomology of certain varieties satisfies the axioms of
strongly divisible modules, but it is not conjectured that any strongly di-
visible module can be seen as a log-crystalline cohomology group. See §4
in [Bre02] for the exposé of this direction.

(3) IfM comes from anM ∈Modϕ/S, i.e.,M =MS(M), then we have a similar
result as the above theorem without restriction of r. See §5.3, [Liu06] for
details.

Proof. We use the same idea as the proof of Theorem 5 (ii) in [Fal99]. First an easy
computation shows that Tcris(M) = HomAcris,Filr,ϕ(Acris ⊗SM,Acris). Then we get a
map:

(4.3.5) ι̃ : Tcris(M) × Acris ⊗SM→ Acris

Therefore, we get a natural map

ι : Acris ⊗SM→ T∨cris(M) ⊗Zp Acris,

and it is easy to check that ι preserves G∞-actions, Frobenius and filtration. On the
other hand, by (4.3.3) and Lemma 4.3.1, we get

ι∗ : Tcris(M∗) ⊗Zp A∗cris = T∨cris(M)(r) ⊗Zp A∗cris ↪→ Acris ⊗SM,
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and Lemma 4.3.2 shows that the above map is compatible with G∞-actions, Frobe-
nius and filtration. Combining ι∗ with (4.3.5), it suffices to show the following
diagram commutes:

Tcris(M) × Tcris(M∗) ⊗Zp A∗cris
Id×ι∗ //

(4.3.2)⊗Id
��

Tcris(M) × Acris ⊗SM

(4.3.5)

��
Zp(r) ⊗Zp A∗cris

17→tr
// Acris

Note that we have an injection Tcris(M) ↪→ Acris ⊗SM
∗ by (4.3.3). So the commuta-

tivity of the above diagram follows the commutativity of diagram (4.3.4), and this
is proved in Corollary 4.3.3. �

Let α1, . . . , αd ∈ Filr
M as in Proposition 4.1.2 and e1, . . . , ed ∈ M a basis ofM. Let

e1, . . . , ed be a basis of T∨cris(M). By Theorem 4.3.4, we have

ι(α1, . . . , αd) = (ed, . . . , ed)C,

where C is a d × d-matrix with coefficients in FilrAcris.

Lemma 4.3.6. There exists a d×d-matrix C′ with coefficients in Acris such that coefficients
of C′C − trI are all in FilpAcris.

Proof. Forgetting G∞-actions, Frobenius and filtration structures, we may identify
T∨cris(M)⊗Zp Acris with T∨cris(M)(r)⊗Zp A∗cris as finite free Acris-modules. In particular,
we regard (e1, . . . , ed) as a basis of T∨cris(M)(r). Then ι∗◦ιmakes sense and ι∗◦ι = tr

⊗Id
by Theorem 4.3.4. Therefore, we get

(4.3.6) tr(α1, . . . , αd) = ι∗ ◦ ι(α1, . . . , αd) = ι∗(e1, . . . , ed)C

Note that FilrA∗cris = Acris, so (e1, . . . , ed) ∈ Filr(T∨cris(M)(r) ⊗Zp A∗cris), and then
ι∗(e1, . . . ed) is in Filr(M⊗S Acris). By Corollary 4.1.3, we have

(4.3.7) ι∗(e1, . . . , ed) = (α1, . . . , αd)C′ + (e1, . . . , ed)D

where e1, . . . , ed is a basis ofM, C′ and D are d× d-matrices with coefficients in Acris
and FilpAcris respectively. Write (α1, . . . αd) = (e1, . . . , ed)A with A a d × d-matrix.
Combining (4.3.6) and (4.3.7), we have

trA = AC′C +DC.

By Lemma 4.1.2, there exists a d × d-matrix B with coefficients in S such that
AB = BA = E(u)rI, we get E(u)r(trI−C′C) = BDC. Note that the coefficients of C and
D are in FilrAcris and FilpAcris respectively. Thus the coefficients of E(u)r(trI−C′C) are
in Filr+pAcris. By Lemma 3.2.2, the coefficients of C′C− trI are all in the FilpAcris. �

5. T P  L 3.5.3

In this section, we will show how to recover monodromy N on M by the G-
action on T and then prove Lemma 3.5.3. Recall that T is a G-stable Zp-lattice
in a semi-stable p-adic Galois representation V, M = MS(M) the quasi-strongly
divisible lattice such that Tcris(M) = T|G∞ (Proposition 3.4.6) andD :=M⊗Zp Qp ∈

MF
w(ϕ,N) to correspond V. We first construct a G-action on Acris ⊗S D by using

N onD.
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5.1. G-action on Acris ⊗S D. We already have a natural semi-linear G∞-action on
Acris ⊗S D induced from the G∞-action on Acris. We extend this to a G-action by
using N onD. For any σ ∈ G, recall ε(σ) = σ([π])

[π] . For any a ⊗ x ∈ Acris ⊗S D, define

(5.1.1) σ(a ⊗ x) =
∞∑

i=0

σ(a)γi(− log(ε(σ))) ⊗Ni(x).

whereγi(x) = xi

i! is the standard divided power. Note that if σ ∈ G∞, then log(ε(σ)) =
0 and σ(a ⊗ x) = σ(a) ⊗ x. Thus G-action defined above (if it is well defined) is
compatible with the natural G∞-action on Acris ⊗S D.

Lemma 5.1.1. The above action is well defined Acris-semi-linear G-action on Acris ⊗S D

and compatible with Frobenius and filtration.

Proof. In fact, this result has been explicitly or non-explicitly used in several papers,
e.g., §4 in [Fal99]. To see the series in the right side of (5.1.1) converges, note that
D = D ⊗W(k) S and N is nilpotent on D. It suffices to show that γi(− log(ε(σ)))→ 0
when i→∞. This is a well-known result. See for example, §5.2.4 in [Fon94a].

For any f (u) ∈ S, x ∈ D and σ, τ ∈ G, we need to check that

(1) σ(1 ⊗ f (u)x) = σ( f ([π]) ⊗ x) = f (σ([π])) ⊗ σ(x)
(2) σ(τ(1 ⊗ x)) = (σ ◦ τ)(1 ⊗ x).
(3) the G-action preserves filtration and commutes with ϕ.

It is fairly standard direct calculations to check these equations combining with
facts that Fil1S ·N(Fili

D) ⊂ Fili
D, log(ε(σ)) ∈ Fil1Acris and Nϕ = pϕN inD. �

One the other hand, given the G-action on Acris⊗SD defined via (5.1.1), we want
to define a certain logarithm of the G-action to recover N. (We should be careful at
this point because the G-action is not linear). A technical result is needed to define
such a logarithm.

For any field extension F over Qp, denote Fp∞ =
⋃
∞

n=1 F(ζpn ) with ζpn a pn-th
primitive root of unity. Thus K∞,p∞ =

⋃
∞

n=1 K( pn√
π, ζpn ) is Galois. So we have the

following field extensions

K∞,p∞
HH

HH

K∞

vvvv
Kp∞

HKuuuuu

K

HHHHHH

Let HK = Gal(Kp∞/K) ⊂ Gal(Qp,p∞/Qp) ' Z×p . So HK may be identified as a closed
subgroup of Z×p .

Lemma 5.1.2. (1) Kp∞ ∩ K∞ = K.
(2) Gal(K∞,p∞/K∞) ' HK and Gal(K∞,p∞/Kp∞ ) ' Zp(1).
(3) Gal(K∞,p∞/K) = Gal(K∞,p∞/Kp∞ ) o Gal(K∞,p∞/K∞) ' Zp(1) o HK. HK acts on
Zp(1) by the cyclotomic character.

Proof. We only need to prove (1). For any n ≥ 0, let Fn = K(πn) ∩ Kp∞ and denote
K(πn) by Kn. We prove that Fn = K by an induction on n. The case n = 0 is trivial.
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Now suppose that Fn = K and Fn+1 , K. We first show that ζp ∈ K. Note that

[Fn+1 · Kn : Kn] | [Kn+1 : Kn] = p and Fn+1 · Kn , Kn,

we have [Fn+1·Kn : Kn] = p and Fn+1·Kn = Kn+1. Moreover, since K ⊂ Fn+1∩Kn ⊂ Fn =
K, Kn+1/Kn is Galois and hence Gal(Kn+1/Kn) ' Gal(Fn+1/K). Let σ ∈ Gal(Kn+1/Kn)
be a nontrivial element, then σ(πn+1)/πn+1 ∈ Kn+1 is nontrivial p-th root of unity. So
ζp ∈ Kn+1. Note that

[Kn(ζp) : Kn] ≤ p − 1 and [Kn(ζp) : Kn]|[Kn+1 : Kn] = p,

we have Kn(ζp) = Kn and ζp ∈ Kn. By the induction that Fn = K, ζp ∈ K.
Now Gal(Kp∞/K) is a closed subgroup of Gal(Qp,p∞/Qp(ζp)) ' 1+ pZp (Note that

this fails if p = 2). Since [Fn+1 : K] = p, there must exist an m such that ζpm ∈ K,
ζpm+1 < K and Fn+1 = K(ζpm+1 ). In particular, Gal(Kn+1/Kn) ' Gal(K(ζpm+1 )/K(ζpm )) '
Z/pZ. Choose σ ∈ Gal(Kn+1/Kn) such that σ(ζpm+1 ) = ζpζpm+1 . Then σ(πn+1) = ζb

pπn+1

for some b ∈ (Z/pZ)×. Write ζpm+1 =
p−1∑
i=0

aiπi
n+1 with ai ∈ OKn . Then

ζpζpm+1 = σ(ζpm+1 ) = σ(
p−1∑
i=0

aiπ
i
n+1) =

p−1∑
i=0

aiζ
bi
p π

i
n+1.

Thus we have a0 = ζpa0 and a0 = 0. Then ζpm+1 is not a unit. Contradiction.
Therefore Fn+1 has to be K. �

Remark 5.1.3. The above Lemma fails if p = 2 in general. For example, let K = Q2

and π = 2. Then Q2(
√

2) ⊂ Q2(ζ8).

Fix a topological generator τ of Gal(K∞,p∞/Kp∞ ), the above Lemma shows that
− log(ε(τ)) is a generator of (Fil1Acris)ϕ1=1. So from now on, we fix t := − log(ε(τ)).
Note that τ acts trivially on ε(τ), thus on t. Therefore, for any n ≥ 0 and x ∈ D, an
easy induction on n shows that

(5.1.2) (τ − 1)n(x) =
∞∑

m=n

 ∑
i1+···+in=m,i j≥1

m!
i1! · · · in!

γm(t) ⊗Nm(x)

In particular, (τ − 1)n(x) ∈ FilnB+cris ⊗S D and (τ−1)n

n (x) → 0 p-adically as n → ∞ (in
fact, it is easy to show that γn(t)/n→ 0 p-adically, see §5.2.4, [Fon94a]). So we can
define

(5.1.3) log(τ)(x) =
∞∑

n=1

(−1)n−1 (τ − 1)n

n
(x).

and a direct computation shows that

(5.1.4) log(τ)(x) = t ⊗N(x).

5.2. A Qp-version of Theorem 4.3.4. Let D ∈ MFw(ϕ,N) be a weakly admissible
filtered (ϕ,N)-module andD = D(D) := D ⊗W(k) S ∈ MF w(ϕ,N). By Lemma 3.4.3,
the map

(5.2.1) Vst(D) = Hom′Modϕ,N/S
(D, Âst[1/p])→ Hom′Modϕ/S

(D,B+cris).
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induced by the canonical projection Âst → Acris defined by sending γi(X)→ 0 is an
isomorphism compatible with G∞-action. On the other hand,

(5.2.2) Hom′Modϕ/S
(D,B+cris) ' HomAcris,Fil·,ϕ(Acris ⊗S D,B+cris).

By Lemma 5.1.1, we have a natural G-action on Acris⊗SD via (5.1.1). So there exists
a G-action on the right side of (5.2.2) defined by

σ( f )(x) = σ( f (σ−1(x))) for any x ∈ Acris ⊗D.

Combining (5.2.1) with (5.2.2) together, we have

Lemma 5.2.1. The map

Vst(D) = Hom′Modϕ,N/S
(D, Âst[1/p])→ HomAcris,Fil·,ϕ(Acris ⊗S D,B+cris)

induced by (5.2.1) and (5.2.2) is a G-equivariant isomorphism.

Proof. Lemma 3.4.3 has proved the above map is a Qp-linear bijection. So we
only need to check the G-equivariance. For any f ∈ Hom′Modϕ,N/S

(D, Âst[1/p]), let

f0 ∈ Hom′Modϕ/S
(D,B+cris) be its image of the map defined in (5.2.1). It suffices to

check for any x ∈ D, σ ∈ G, σ( f )0(x) = σ( f0(σ−1(x))). Using (3.4.4) and the fact that
σ(X) = ε(σ)X + ε(σ) − 1, we have:

σ( f (x)) =
∑
i≥0

σ( f0(Ni(x)))γi(log(1 + σ(X)))

=
∑
i≥0

σ( f0(Ni(x)))
i∑

j=0

γi− j(log(ε(σ)))γ j(log(1 + X))

Modulo X, then we get

σ( f )0(x) =
∑
j≥0

σ( f0(N j(x)))γ j(log(ε(σ)))

= σ( f0(
∑
j≥0

γ j(log(σ−1ε(σ))) ⊗N j(x)))

= σ( f0(σ−1(x))).

�

Corollary 5.2.2. The B+cris-linear injections:

ι ⊗Zp Qp : Acris ⊗S D→ V∨st(D) ⊗Zp Acris,

ι∗ ⊗Zp Qp : V∨st(D)(r) ⊗Zp A∗cris → Acris ⊗S D.

are compatible with G-actions, where ι and ι∗ are constructed in Theorem 4.3.4.
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5.3. Proof of the Main Theorem. Using notations in §3.5 and Lemma 3.5.3. Recall
that T is a G-stable Zp-lattice in a semi-stable p-adic Galois representation V, and
M the quasi-strongly divisible lattice such that Tcris(M) = T|G∞ (Proposition 3.4.6).
Also recall that τ is the fixed topological generator of Gal(K∞,p∞/Kp∞ ) discussed in
§5.1. We will use Lemma 4.3.6 and Corollary 5.2.2 to prove N is stable onM by
two steps. The first step is to show that Acris ⊗SM is G-stable in Acris ⊗S D. More
generally, we have the following:

Lemma 5.3.1. Notations as in Theorem 4.3.4. Let M,M′ ∈ Modϕ/S. Suppose that we
have the following commutative diagram:

Acris ⊗SM
′

f

��

ιM′ // T∨cris(M
′) ⊗Zp Acris

f
��

Acris ⊗SM
ιM // T∨cris(M) ⊗Zp Acris

(5.3.1)

where f and f are Acris-linear or τ-semi-linear morphisms compatible with Frobenius and
filtration. If p| f then p|f.

Proof. We only prove the case that f and f are Acris-linear. The proof for τ-semi-
linear case is totally the same.

Let d′ be the S-rank of M′, α′1, . . . , α
′

d′ ∈ Filr
M
′ such that ϕr(α′1), . . . , ϕr(α′d′ ) is

a basis of M′. Since f preserves filtration, f(α′1, . . . , α
′

d′ ) ∈ [Filr(Acris ⊗S M)]d. By
Corollary 4.1.3, we have

(5.3.2) Filr(Acris ⊗SM) =
d⊕

i=1

Acris ⊗ αi + FilpAcris ⊗SM.

with (e1, . . . , ed) = (ϕr(α1), . . . , ϕr(αd)) a basis of M. Therefore there exist d × d′-
matrices X, W with coefficients in Acris, FilpAcris respectively such that

(5.3.3) f(α′1, . . . , α
′

d′ ) = (α1, . . . , αd)X + (e1, . . . , ed)W.

We claim that coefficients of X are in Fil1Acris + pAcris.
To see the claim, applying ιM on the both sides of (5.3.3), we have

ιM ◦ f(α′1, . . . , α
′

d′ ) = ιM(α1, . . . , αd)X + ιM(e1, . . . , ed)W = (e1, . . . , ed)(CX +W′),

where e1, . . . , ed is a basis of T∨cris(M) as in Lemma 4.3.6 and C, W′ are matrices with
coefficients in Acris, FilpAcris respectively such that ιM(α1, . . . , αd) = (e1, . . . , ed)C
and ιM(e1, . . . , ed)W = (e1, . . . , ed)W′. On the other hand, since diagram (5.3.1) is
commutative and p|f, all the coefficients of CX + W′ are in pAcris. By Lemma
4.3.6, there exists a matrix C′ such that the coefficients of C′C − trI are in FilpAcris.
Thus coefficients of trX are in FilpAcris + pAcris. To show the claim, it suffices
to show that if x ∈ Acris and trx ∈ pAcris + FilpAcris then x ∈ Fil1Acris + pAcris.
Recall R = lim

←−−
OK̄/p constructed in §2.2. For any (ai)i≥0 ∈ R with ai ∈ OK/p, let

âi ∈ OK be a lift of ai, then a(0) = lim
n→∞

(ân)pn
is well defined and independent of the

choice of âi. We define the valuation on R by vR((ai)i≥0) = v(a(0)) where v(·) is the
standard valuation of OK̄ (§1.2.2 and §1.2.3, [Fon94a]). Let FiliR be the image of
Fili(W(R)) under the reduction mod p. We see that Fil1R = {x ∈ R|vR(x) ≥ 1} and
Acris/(pAcris + FilpAcris) ' R/FilpR. Let x̄ and t̄ be the image of x and t in R/FilpR
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respectively. Note that vR(t̄) = vR( τ(π)
π − 1) = p

p−1 . Since t̄rx̄ ∈ FilpR, vR(t̄rx̄) ≥ p. But

vR(t̄r) = rp
p−1 < p− 1 because r ≤ p− 2. Therefore, vR(x̄) ≥ 1 and x ∈ Fil1Acris mod p.

Now since f is compatible with Frobenius, by (5.3.3) we have

f((ϕr(α′1), . . . , ϕr(α′d′ ))) = ϕr((α1, . . . , αd)X + (e1, . . . ed)W)
= (e1, . . . , ed)ϕ(X) + ϕ(e1, . . . , ed)ϕr(W)

Since coefficients of X are in Fil1Acris + pAcris, we have p|ϕ(X). Note that p|ϕr(W)
because W’s coefficients are in FilpAcris. Finally, since ϕr(α′1), . . . , ϕr(α′d′ ) is a basis
ofM′, we get p|f. �

Proof of Lemma 3.4.7. It suffices to prove thatM′ ⊂ M. Choose a smallest integer
n such that pn

M
′
⊂ M. Then pn :M′ →M is a morphism in Modϕ/S. Use Lemma

5.3.1 for f = pn and f = pn. Then we see that n has to be 0. �

Combining Theorem 4.3.4 with Corollary 5.2.2, we have the following commu-
tative diagram:

(5.3.4) Acris ⊗S D
ι⊗ZpQp // V∨st(D) ⊗Zp Acris

Acris ⊗SM
?�

OO

ι // T∨cris(M) ⊗Zp Acris
?�

OO

where the top row map is compatible with G-action and the bottom row map is
compatible with G∞-action. We claim that Acris ⊗SM is stable under G. To check
this, it suffices to check Acris ⊗S M is stable under τ. Since T∨ = T∨cris(M) is a
G-stable Zp-lattice, we see that T∨ ⊗Zp Acris is stable under τ. Choose n such that
pnτ(Acris ⊗S M) ⊆ Acris ⊗S M. Now using Lemma 5.3.1 for f = pnτ on Acris ⊗S M

and f = pnτ on T∨cris(M) ⊗Zp Acris, we have τ(Acris ⊗SM) ⊆ Acris ⊗SM.
Now we are ready to show that M is stable under N. By (5.1.4), for any

x ∈ M, t ⊗ N(x) = log(τ)(x). We claim that t ⊗ N(M) ⊂ Acris ⊗S M by proving
that log(τ)(M) ⊂ Acris ⊗S M. It suffices to show that (τ−1)n

n (M) ⊂ Acris ⊗S M for
all n ≥ p. Let (α1, . . . , αd) ∈ Filr

M constructed in Proposition 4.1.2, (e1, . . . , ed) =
(ϕr(α1), . . . ϕr(αd)) a basis ofM. Using (5.1.2), we see that

(τ − 1)n(α1, . . . , αd) ∈ [FilnB+cris(Acris ⊗SM)]d.

Since τ(M) ⊂ (Acris ⊗SM),we get

(τ − 1)n(α1, . . . , αd) ∈ [FilnAcris(Acris ⊗SM)]d.

Therefore,

(τ − 1)n(e1, . . . , ed) = ϕr((τ − 1)n(α1, . . . , αd)) ∈ [ϕr(FilnAcris) · ϕ(Acris ⊗SM)]d.

Now it suffices to check that for any n ≥ p and x ∈ FilnAcris, ϕr(x)/n ∈ Acris. We
can further reduce the problem to check if ϕ(E(u)m)

prnm! ∈ S for all m ≥ n ≥ p. Note

that c1 = ϕ(E(u))/p is a unit in S. So it is equivalent to show that pm−r

nm! ∈ Zp for all
m ≥ n ≥ p and we include the computation in the lemma below. Thus we prove
the claim that t ⊗N(x) ∈ Acris ⊗SM.

Lemma 5.3.2. If m ≥ n ≥ p > 2 and r < p − 1, then m − r − vp(nm!) ≥ 0.
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Proof. Since n ≥ p, vp(n) ≤ n
p ≤

m
p . Hence

d = m − vp(nm!) ≥ m −
m

p − 1
−

m
p
=

m(p2
− 3p + 1)

p(p − 1)
≥

p2
− 3p + 1
p − 1

= p − 2 −
1

p − 1
.

Since d is an integer, it follows that d ≥ p − 2 ≥ r. �

Finally, suppose that we have

N((e1, . . . , ed)) = (e1, . . . , ed)W

with coefficients of W in SK0 . Select the smallest number n such that all coefficients
of pnW are in S. Then pnN(M) ⊂ M. Since E(u)N(Filr

D) ⊂ Filr
D, we have

(5.3.5) E(u)pnN((α1, . . . , αd)) = (α1, . . . , αd)X + (e1, . . . , ed)Y

with coefficients of X, Y in S, FilpS respectively. On the other hand, note that
t ⊗N(M) ⊂ Acris ⊗SM and t ⊗N(Filr

M) ⊂ Filr(Acris ⊗SM), we have

(5.3.6) tN((α1, . . . , αd)) = (α1, . . . , αd)X′ + (e1, . . . , ed)Y′

with coefficients of X′, Y′ in Acris, FilpAcris respectively. Combining (5.3.5) with
(5.3.6), we have

A(tX − E(u)pnX′) = tY − E(u)pnY′

where (α1, . . . , αd) = (e1, . . . , ed)A. By Lemma 4.1.2, there exists a d×d-matrix B with
coefficients in S such that BA = AB = E(u)rI, we have

E(u)r(tX − E(u)pnX′) = tBY − E(u)pnBY′

Note that the right hand side is in Fil1Acris · FilpAcris. By Lemma 3.2.2, we get
E(u)r−1(tX − E(u)pnX′) ∈ FilpAcris. Modulo FilpAcris + pAcris both sides, we get the
coefficients of E(u)r−1tX are in FilpAcris+pAcris (here we may assume that n ≥ 1). An
almost the same argument as in the proof of Lemma 5.3.1 shows that the coefficients
of X are in Fil1S + pS.

Now consider

c1pnN((e1, . . . , ed)) = c1pnN(ϕr(α1), . . . , ϕd(αd))
= pnϕr(E(u)N((α1, . . . , αd)))
= ϕr((α1, . . . , αd))ϕ(X) + ϕ((e1, . . . , ed))ϕr(Y)

But p|ϕ(X) and p|ϕr(Y) in Acris. This contradicts to the selection of n unless n = 0.
That is, W has all its coefficients in S and then N(M) ⊂ M.

R

[Bre97] Christophe Breuil, Représentations p-adiques semi-stables et transversalité de Griffiths, Math. Ann.
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