ON LATTICES IN SEMI-STABLE REPRESENTATIONS: A PROOF OF A
CON]JECTURE OF BREUIL

TONG LIU

AsstrACT. For p > 3 an odd prime and a nonnegative integer r < p — 2, we prove
a conjecture of Breuil on lattices in semi-stable representations, that is, the anti-
equivalence of categories between the category of strongly divisible lattices of
weight < rand the category of Galois stable Z,,-lattices in semi-stable p-adic Galois
representations with Hodge-Tate weights in {0, ..., r}.
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1. INTRODUCTION

Let k be a perfect field of characteristic p > 2, W(k) its ring of Witt vectors,
Ky = W(k)[%], K/Kj a finite totally ramified extension and e = e(K/Kj) the absolute
ramification index. We are interested in understanding semi-stable p-adic Galois
representations of G := Gal(K/K). An important result in this direction is proved
by Colmez and Fontaine [CF00]: semi-stable p-adic Galois representations are
classified by weakly admissible filtered (¢, N)-modules. Since G is compact, any
continuous representation p : G — GL,(Q,) admits a G-stable Z,-lattice. It is
thus natural to ask whether there also exists a corresponding integral structure
on the side of filtered (¢, N)-modules. Fontaine and Laffaille [FL82] first attacked
this question by defining W(k)-lattices in filtered (¢, N)-modules. Unfortunately,
their theory only works for the case ¢ = 1, N = 0 and Hodge-Tate weights in
{0,...,p — 2}. In the late 1990s, Breuil introduced the theory of filtered (¢, N)-
modules over S to study semi-stable Galois representations ([Bre97], [Bre98b],
[Bre99a]), where S is the p-adic completion of divided power envelop of W(k)[u]
with respect to the ideal (E(u)), and E(u) is the Eisenstein polynomial for a fixed
uniformizer m of K. Breuil proved that the knowledge of filtered (¢, N)-modules
over S is equivalent to that of filtered (¢, N)-modules (See Theorem 2.2.1 for the
precise statement). Furthermore, it turns out that there are integral structures,
strongly divisible lattices, which naturally live inside filtered (¢, N)-modules over
S. These structures allow for arbitrary ramification of K/Ky. For a strongly divisible
lattice M, Breuil constructed a G-stable Z,,-lattice Ts (M) in a semi-stable Galois
representation and raised the following conjecture (the main conjecture in [Bre02]):

Conjecture 1.0.1. Fix a nonnegative integer r < p —2, the functor Ty establishes an anti-
equivalence of categories between the category of strongly divisible lattices of weight < r
and the category of G-stable Z,,-lattices in semi-stable representations of G with Hodge-Tate
weights in {0,...,r}.

Ifr < 1, the conjecture has been proved by Breuil in [Bre00] and [Bre(02]. The case
e = 1 was shown by Fontaine and Laffaille in [FL82] for crystalline representations.
In [Bre99a], Breuil proved that there at least exists a strongly divisible lattice in
the side of filtered (¢, N)-modules over S if er < p — 1. Based on this result, Breuil
[Bre99c] proved the case e = 1 for general semi-stable representations and Caruso
[Car05] proved the Conjecture for er < p — 1. Their ideas involve a weak version of
Conjecture 1.0.1, see the end of §2.3 for details. In [Fal99], Faltings proved that the
restriction of Ty to the subcategory of filtered free strongly divisible lattices is fully
faithful.

In this paper, we give a complete proof for the above conjecture by using results
of Kisin ([Kis05]). Let Ko, = U,»1K( A7), Goo = Gal(K/Ks) and S = W(k)[u]. We
equip © with the endomorphism ¢ which acts via Frobenius on W(k), and sends
u to u’. Let Mod(/’)S denote the category of finite free ©-modules M equipped
with a ¢-semi-linear map @y : M — NVt such that the cokernel of S-linear map
1®pm : ©®,,cM — Miskilled by E(u)". In [Kis05], Kisin proved that any Ge.-stable
Z,-lattice T in a semi-stable Galois representation comes from an object (M, ) in
Mod‘fg. Using the functor M ~ S ®, s M provided by Breuil, Kisin’s theory
allows us to construct “quasi-strongly divisible lattices”, i.e, strongly divisible
lattices without considering monodromy, to establish an anti-equivalence between
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the category of quasi-strongly divisible lattices and the category of G -stable Z,,-
lattices in semi-stable Galois representations. Furthermore, we prove that a quasi-
strongly divisible lattice is strongly divisible if and only if the corresponding G-
stable Z,-lattice is G-stable (see Theorem 3.5.4 for the more precise statement).
Conjecture 1.0.1 then follows.

The paper proceeds as follows. In §2, after briefly reviewing the theory of semi-
stable p-adic Galois representations, filtered (¢, N)-modules over S and definition of
(quasi-)strongly divisible lattices, we are then able to give a precise statement of our
main theorem. §3 is devoted to review Kisin’s theory from [Kis05], which allows
us to construct quasi-strongly divisible lattices and establishes an anti-equivalence
between the category of quasi-strongly divisible lattices and the category of G-
stable Z,-lattices in semi-stable Galois representations; and the full faithfulness
of T follows from this. In the next two sections, we prove that a quasi-strongly
divisible lattice is strongly divisible if and only if the corresponding G..-stable
Z,-lattice is G-stable. The idea is to use an extended version of a Falting’s theorem
(Theorem 5, [Fal99]). The proof of such a theorem (Theorem 4.3.4) mainly depends
on the construction of the Cartier dual for quasi-strongly divisible lattices from
[Car05], which we discuss in §4. In the last section, we combine our previous
preparations to prove the essential surjectivity of T.

Acknowledgment: It is a pleasure to thank T. Arnold, C. Breuil, X. Caruso, B.
Conrad and M. Kisin for very useful conversations and correspondences during
the preparation of this paper. Our overwhelming debt to Mark Kisin will be
obvious to readers. I would like to thank him in particular for pointing out me
the possibility to prove the Main Conjecture by his result. The author wrote this
paper as a post-doc of European Network AAG in Université de Paris-Sud 11. The
author is grateful to Université de Paris-Sud 11 for its hospitality.

2. PRELIMINARY AND THE MAIN REsuLT

This paper discusses lots of categories and functors. However, we may summa-
rize their relations and our main results as the following diagram:

Do
Mod?"" —Z— MF(p, N) —2= MF (¢, N)
Mod?2 ®z, Q, << MF"(p, N) ~2> MF (g, N) —= Rep (G) —> Repg (Geo)
¢ b T
ModZ' Modf;" —=— Rep (G) —> Repy, (Go)
s H

e’ Tcris
MOdjOS e Repz) (Geo)— Repy, (Go)

Mod” ¢ Me Mod?, Ters Rep, (Geo)

Here is a general explanation of the above diagram:
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e Injection arrows < symbolize fully faithful functors. The notations Rep*'
symbolize the categories of semi-stable representations with Hodge-Tate weights
in{0,...,r}.

e The first column is about Kisin’s theory on ¢-modules over &. The second
column is about classical modules in Fontaine’s theory and the third about Breuil’s
theory on S-modules. These three theories can be connected by auxiliary cate-
gories in the first row (see §3.2). The last two columns are about the Galois sides.
Note that representations of G (e.g., Geo-stable Z,,-lattices inside semi-stable rep-
resentations) can be more conveniently described by Kisin’s theory (see §3.1 and
§3.4).

e The second row is about the theory over Q, whereas the third row is about the
theory over Z,,, which also is the key result of this paper. Many important inputs
depend on the last two rows where are about theories on Z,-representations of
Goo(see §3.3 and §3.4).

2.1. Semi-stable Galois representations and weakly admissible modules. Fixan
odd prime p. Recall that a p-adic representation is a continuous linear represen-
tation of G := Gal(K/K) on a finite dimensional Q,-vector space V and a p-adic
representation V of G is called semi-stable ([Fon94b]) if:

(2.1.1) dimg, (Bst ®g, V)© = dimg, V,

where Bg; is the period ring constructed by Fontaine, see for example [Fon94a] or
§2.2 for the construction.

In [CFO0] and [Fon94b], Fontaine and Colmez gives an alternative description
of semi-stable p-adic representations. Recall that a filtered (¢, N)-module is a finite
dimensional Ko-vector space D endowed with:

(1) aFrobenius semi-linear injection: ¢ : D — D.

(2) alinear map N : D — D such that Ng = ppN.

(3) adecreasing filtration (FiliDK)iEz on Dx := K®k, D by K-vector spaces such
that Fil'Dx = Dx for i < 0 and Fil'Dg = 0 for i > 0.

If D is a one dimensional (¢, N)-module, and v € D is a basis vector, then ¢(v) = av
for some a € Kg. We write fy(D) for the p-adic valuation of a (p-adic valuation
of a does not depends on choice of v) and t4(D) the unique integer i such that
griDK is non-zero. If D has dimension d > 1, then we write ty(D) = ty(AD) and
tu(D) = tu(AD). Recall that a filtered (¢, N)-module is called weakly admissible
if ty(D) = ty(D) and for any (¢, N)-submodule D’ C D, ty(D’) < ty(D’), where
Dj, c D is equipped with the induced filtration.
The aforementioned result of Colmez and Fontaine [CFO00] is that the functor
Dy, : V — (B4 ®q, V)°

establishes an equivalence of categories between the category of semi-stable p-adic
representations of G and the category of weakly admissible filtered (¢, N)-modules.

In the sequel, we will instead use the contravariant functor Ds(V) := Dg.(V"),
where V" is the dual representation of V. The advantage of this is that the Hodge-
Tate weights of V is exactly the i € Z such that gr'Dg(V)x # 0. A quasi-inverse to
D is then given by :

(2.1.2) Vst(D) := Homgy n(D, Bst) N Homgir (Dx, K ®k, Bst)-
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Convention 2.1.1. Here we use a little different notations from those in [Bre02]
and [CF00]. Ds here is Dy, in [Bre02] and [CF00]; Vi here is V7, in [Bre02] and
[CF00]. Also we will use T to denote T, in [Bre02] and [Bre99a] later. The reason
for using such notations is that we will always use contravariant functors instead
of covariant functors in this paper. Removing “+” from the superscript looks more
neat and convenient.

A filtered (¢, N)-module is called positive if Fil’D = D. In this paper, we only
consider positive filtered (¢, N)-modules. We denote the category of positive
filtered (¢, N)-modules by MF(¢p, N) and the category of positive weakly admissible
filtered (¢, N)-modules by MF" (g, N).

2.2. Breuil’s theory on filtered (¢, N)-modules over S. Throughout the paper we
will fix a uniformiser n € Ok, and E(1) € W(k)[u] the Eisenstein polynomial of 7.
We denote by S the p-adic completion of the divided power envelope of W(k)[u]
with respect to Ker(s), where s : W(k)[u] — Ok is the canonical surjection by

sending u to 7. For any positive integer i, let Fil'S c S be the p-adic closure of the
ideal generated by the divided powers y;(u) = E(jb!’)] for all j > i. There is a unique
map @ : S — S which extends the Frobenius on W(k) and satisfies @(u) = u”.
We define a continuous W(k)-linear derivation N : S — S such that N(u) = —u.
It is easy to check that N¢ = ppN and @(Fil'S) C p'S for 0 < i < p — 1, and we
write ; = p~' @l and c1 = @1(E(u)). Note that c; is a unit in S. Finally, we put
Sk, := S ®z, Q, and Fil'Sg, := Fil'S®z, Q,.
Let MF (¢, N) be a category whose objects are finite free Sx,-modules D with:

® a s, -semi-linear morphism @p : D — D such that the determinant of ¢y is
invertible in Sk, (the invertibility of the determinant does not depend on the choice
of basis).

e a decreasing filtration over D of .S'KO—modules: Fil' (D), i € Z, such that
Fil’(D) = D and that Fil'Sg, Fil/(D) ¢ Fil'*/(D).
e a Kp-linear map (monodromy) N : O — D such that
(1) forall f € Sx, and m € D, N(fm) = N(f)m + fN(m).
(2) Ng =ppN,
(3) N(Fil'D) c Fil (D).
Let D € MF(p, N) be a filtered (¢, N)-module. We can associate an object D €
MF (¢, N) by the following;:
(2.2.1) D :=S®ww D

ande ¢ :=ps®¢pp: D — D.
e N:=N®Id+Id®N:D - D
¢ Fil’(D) := D and by induction:
Fil'™"'D := {x € DIN(x) € Fil'D and f;(x) € Fil""' Dy}
where fr : D - Dk is defined by A ® x = s(A)x.
For a D € M¥ (¢, N), Breuil associated a Q,[G]-module V(D). Several period

rings have to be defined before we can describe this functor. Let R = lim Og/p
where the transition maps are given by Frobenius. By the universal property of
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Witt vectors W(R) of R, there is a unique surjective map 6 : W(R) — (’); to the

p-adic completion Og, which lifts the projection R — Og/p = Og/p onto the first
factor in the inverse limit. We denote by A.s the p-adic completion of the divided
power envelope of W(R) with respect to the Ker(6), and write B} .. := Acis[1/p]-

For each n > 0, fix 1, € K a p"-th root of 7 such that TZZ 41 = T Write
7 = (Tw)uz0 € R, and let [] € W(R) be the Teichmiiller representation. We embed
the W(k)-algebra W(k)[u] into W(R) by u — [r]. Since 6([rt]) = 7 this embedding
extends to an embedding S < A, and 6| is the map s : S — Ok sending u to
1. The embedding is compatible with Frobenius endomorphisms. As usual,we
denote by B, the ring obtained by formally adjoining the element “log[r]” to BY .,
and by Bj; the Ker(0)-adic completion of W(R)[1/p]. Choose a generator t of
Z,(1) C Aais- Such t can be constructed by t := log([e]) for € = (€;)i»0 € R, where €;

is a primitive pi—th root of unity such that efﬂ = €;. We denote B} [1/t] by B.
Let Ay be the p-adic completion of the P.D. polynomial algebra Aguis (X). We
endow Ag with a continuous G-action, a Frobenius ¢, a monodromy operator N

and positive filtration Fil' as the following:

For any g € G, let ¢(g) = g([%]) € Auis. We extend the natural G-action and

Frobenius on A;s to Z; by putting g(X) = e(9)X +€e(g) —1and p(X) = (1 + X)" - 1.

We define a monodromy operator N on Ay to be a unique Ais-linear derivation
such that N(X) = 1 + X. For any i > 0, we define

Fil Ag = () ayi(X), 8; € Acis, lim a; = 0,0} € Fil T Aqgs, 0 < j <.
- j—oo
j=0
Finally, by §4.2 in [Bre97], we have an isomorphism S — (Ag)C compatible with all
structures given by u — [r](1 + X)~!. Therefore, Ay is an S-algebra.
For any D € MF (¢, N), one can associate a Q,[G]-module

V(D) = Homg eir (D, Axl1/p]).
The following theorem is one of main results in [Bre97]:

Theorem 2.2.1 (Breuil). The functor D : D — S ®wq) D defined in (and below) (2.2.1)
induces an equivalence between the category MF(p, N) and MF (¢, N) and there is a
natural isomorphism V(D) = V(D) as Q,[Gl-modules.

Fromnow on, we always identify V(D) with V(D) as the same Galois represen-
tations, and denote M¥F " (¢, N) the essential image of D restricted to ME" (¢, N).

2.3. The Main Theorem. Theorem 2.2.1 shows that the knowledge of filtered
(p, N)-modules over S is equivalent to that of filtered (¢, N)-modules. It turns out
that integral structures can be more conveniently defined inside filtered (¢, N)-
modules over S. However, when working on integral p-adic Hodge theory via
S-modules, the following technical restriction has to be always assumed.

Assumption 2.3.1. Fix a positive integer ¥ < p — 2. The filtration on the weakly
admissible filtered (¢, N)-module D is such that Fil’ Dx = Dx and Fil'"'Dg = 0.
Equivalently, the Hodge-Tate weights of the semi-stable p-adic Galois representa-
tion under consideration are always contained in {0, ..., }.
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Remark 2.3.2. (1) Conjecture 1.0.1 has been proved for r = 0 in §3.1, [Bre02].
So we only consider the case r > 0 from now on (r = 0 will cause a little
trouble only in the end).

(2) Up to the twist of the (¢, N)-module of a power of the cyclotomic character,
all modules whose filtration length does not exceed r satisfy the above
assumption.

Following §2.2 in [Bre02], we define the integral structures inside D to corre-
spond to the Galois stable Z,,-lattices.

Definition 2.3.3. Let D be a weakly admissible filtered (¢, N)-module satisfying
Assumption 2.3.1 and D := D(D) € MF " (p,N). A quasi-strongly divisible lattice of
weight r in D is an S-submodule M of D such that:

(1) M s S-finite free and M[%] =D
(2) Mis stable under ¢, i.e., p(M) c M.
(3) @(Fil'’ M) c p’ M where Fil' M := M NFil'D.

A strongly divisible lattice of weight r in D is a quasi-strongly divisible lattice M in
D such that N(M) c M.

It will be more convenient and explicit to describe the category of (quasi-
)strongly divisible lattices by projective limits of torsion objects. Let ’Mod‘fs’N
denote the category whose objects are 4-tuples (M, Fil' M, ¢,, N), consisting of

(1) an S-module M
(2) an S-submodule Fil’ M c M containing Fil'S - M.
(3) a g-semi-linear map ¢, : Fil' M — M such that for all s € Fil'S and x € M
we have ¢,(sx) = (c1) ™ @, (s)p,(E(1) x).
(4) a W(k)-linear morphism N : M — M such that:
(a) foralls € Sand x € M, N(sx) = N(s)x + sN(x).
(b) E(u)N(Fil'’M) c Fil' M.

(c) the following diagram commutes:
Fil' M —"> M
(2.3.1) E(u)Nl lclN
Fi'M —"> M

Morphisms are given by S-linear maps preserving Fil"’s and commuting with ¢,
and N. A sequence is defined to be short exact if it is short exact as a sequence of
S-module, and induces a short exact sequence on Fil"’s.

We denote by ’Modjos the category which forgets the operation N in the definition
of ’Mod(fs’N. Objects in ’Mod(fs are called filtered @-module over S. Let Mod FITS’N
(resp. Mod FI%.) be the full subcategory of "Mod?N (resp. "Mod?.) consisting of

P /s gory /S P /S g
objects such that

(1) as an S-module M is isomorphic to ®;e;S/p™S, where I is a finite set and n;
is a positive number.

(2) @+(M) generates M over S.
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Finally we denote by Mod(féN (resp. Mod(/PS) the full subcategory of ’Mod‘fs’N
(resp. ’Mod(/Ps) such that M is a finite free S-module and for all #,

(M,,, Fil' M,,, ¢, N) € Mod FI(;’S’N (resp. (M, Fil' M,,, ;) € Mod FIy),

where M,, = M/p" M, Fil' M,, = Fil' M/p"Fil’' M, and ¢,, N are induced by modulo
p".
Note that ;\:t € ’Mod(/ps’N. For any M e Mod(fs’N, define

To(M) := Hom,y,_ o (M, Ag).

/s

Proposition 2.3.4 (Breuil). (1) If M is a quasi-strongly divisible lattice in D with
D e MF"(p,N), then (M, Fil' M, ¢,) is in Mod(fs where @, == @[p".

(2) The category of strongly divisible lattices of weight r is just Mod‘fS’N. In particular,

forany M € Mod(/’)’N, there exists a D € MF" (¢, N) such that D(D) =~ M®&z,Q,

as filtered (¢, N)-modules over S. Furthermore, Ts((M) is a G-stable Z,,-lattice in
Vst(D)'

Proof. (1) is a Proposition 2.1.3 in [Bre99a] and Theorem 2.2.3 in [Bre(2] O

From now on, we use Mod‘féN to denote the category of strongly divisible lat-

tices of weight r and regard M/;Jijs as a full subcategory of Mod(/PS, where Mfadijs
denote the category of quasi-strongly divisible lattices. Now we can state our Main

Theorem:

Theorem 2.3.5 (Main Theorem). If0 < r < p — 2, the functor M — T (M) establishes
an anti-equivalence of categories between the category of strongly divisible lattices of weight
r and the category of G-stable Z.,-lattices in semi-stable p-adic Galois representations with
Hodge-Tate weights in {0, ..., r}.

Remark 2.3.6. In fact, there exists a weak version of Conjecture 1.0.1: Fix a O inside
MF ™ (p,N). Consider the restriction of the functor T, namely,

Teyp : {strongly divisible lattices in D} — {G-stable Z,,-lattices in V(D)}.

The weak version claims that all functors Tyyp are equivalences. It is obvious that
Conjecture 1.0.1 implies the weak one. On the other hand, from the weak version,
one can deduce the essentially surjectivity of T. Therefore if the full faithfulness of
Tst has been known, then the weak version and the strong version are equivalent.
[Car05] and [Bre98a] used this ideal to prove some special cases of Conjecture 1.0.1.

3. CoNSTRUCTION OF QUASI-STRONGLY D1vISIBLE LATTICES

Let T be a G-stable Z,-lattice in a semi-stable Galois representation V with
Hodge-Tate weights in {0,...,r}. In this section, we will use the theory from
[Kis05] to prove that there exists a quasi-strongly divisible lattice M € Mod‘fs to
correspond to Tlc.. As we will see later, M provides the ambient module for the
strongly divisible lattice corresponding to T.
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3.1. (¢, Ny)-modules. We equip Ko[[u] with the endomorphism ¢ : Ko[u] —
Ko[[u]l which acts via the Frobenius on Ky, and sends u to u”. Suppose that I C [0,1)
is a subinterval. We set O; the subring of Ko[[u]] whose elements converge for all
x € K such that |x| € I. Put O = Ojp). By Lemma 2.1 in [Bre97], S can be identified
as the subring of Ky[[u]] whose elements have the following form

1.1 i—, W; k), Ii ;=
3 ) HZ:sz q(i)!’ w; € W(k), iggwf 0,

where g(i) is the quotient in the Euclidean division of i by e. Therefore, for any real
number y satisfying p_vﬂ%hf < u £ 1, we have natural inclusions S[1/p] = Ojg ) =

Sk, compatible with Frobenius. Set ¢y = E(0)/p € Ko and A = [] ¢"(E(u)/pco) € O.
n=0

We define a derivation Ny := —uA£ : O — O and denote by the same symbol
the induced derivation O; — Oy, for each I C [0, 1).

By a ¢p-module over O we mean a finite free O-module M, equipped with a
@-semi-linear, injective map ¢ : M — M. A (¢, Nvy)-module over O is a p-module M
over O, together with a differential operator N¥ over Ny. That is, for any f € O
and m € M, we have

NM(fn1) = Ny(fym + FNM(m).

¢ and N are required to satisfy the relation N¥p = (1/co)E(u)pN>. We will
usually write Ny for NM if this will cause no confusion. The category of (¢, Ny)-
modules over O has a natural structure of a Tannakian category. We denote by

Mod%NV the category of (¢, Ny)-modules M of height r, in the sense that the
cokernel of 1 ® ¢ : M — M is killed by E(u)" for our fixed positive integer r,
where ¢*M := 0 ®,,0 M.

In §1.2 of [Kis05], Kisin constructed a functor D : Mod%\]V — MF(p,N). Let M

be an object in Mod(/p(’)NV. Define the underlying Ko-vector space of D(M) is M/uM,
and the operator ¢ and N are induced by ¢, Ny on M. The construction of filtration
on D(M) is somewhat not strait forward. First we define a decreasing filtration on
¢"Mby

Fil'p'M = {x € p"MI1 ® p(x) € E(u)'M}.

Fix any fixed real number u such that pi o< < p_#. Lemma 1.2.6 in [Kis05]
showed that there exists a unique Oy ,)-linear, p-equivariant isomorphism

(3.12) & D(M) ®, Opo ) = ¢"M &0 Op,)-

The required filtration on D(M) is defined to be the image filtration under the
composite

D(M) @x, Ojo,) — D(M) ®, O/E()O > D(M) &x, K = D(Mx.

Theorem 1.2.8 in [Kis05] shows that the functor D induces an exact equivalence
between the category Mod(/p(')]\l‘7 and MF(p, N).
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3.2. A functor from Mod%\’v to M (¢, N). Combining the functor D in §3.1 with

the functor D in §2.2 together, we obtain a functor DoD from Mocl(/p(’)NV to MF (¢, N).
But it will be convenient to give another description of D o D for later use.

Let M be an object in Mod(/p(’)NV. Define Do(M) = Sk, ®,0 M, a s, -semi-linear
endomorphism ¢, ) := @s,, ® Pum (as usual, we will drop the subscript of P,
if no confusion will arise) and decreasing filtration on Do (M) by

(3.2.1) Fil'(Do(M)) := {m € Do(M)|(1® @)(m) € Fil'S, ® M}.

Note that ¢(A) is a unit in Sg,, we can define N on Dp(M) by

p
N:=N®l+ ——1®N,
1+ o0 ® Ny.
We can naturally extend Ny from O to Sk,. Note that for any f € Sk, we have
N(p(f)) = q)( S PN ( £)). Thus it is easy to check that N is a well defined derivation

of Dp(M) over the derivation N of Sk, defined by N(u) = —u+- du

Proposition 3.2.1. N is well defined on Do(M) and (Do(M), @, Fil',N) is an object in
MF (@, N).

Proof. Let D = Dp(M). We check that Frobenius, filtration and monodromy de-
fined on D satisfy the required properties listed in §2.2.

Since E(u)" kills the cokernel of 1®¢ : O®,0M — M, we see that the determinant
of gy is a divisor of E(u)™, where d is the O-rank of M. Thus the determinant of
@op is a divisor of p(E(w)) = p“’lcgd, therefore is invertible in Sk,. Using (3.2.1),
one easily checks that Fil'Sg, - Fi'D c Fil""/9D. Now it suffices to check that the
monodromy N satisfies the required properties.

To see No = ppN, for any s € Sk, and m € M, we have

No(s @ m) N(gs, (s) ® pa(m))

= N(@s,, () ® ouilm) + ﬁ% () ® Ny(pa(m))
P p(E@w)
o) 9lco)

= pep(N(s)®@m+ WS ® Ny (m))

= pps, (N(s) ® pm(m) + Psx, (5) ® Pu(Nv (1))

= pp(N(s ®m)).

To check that N(Fil'D) c Fil' ' D, note that

<p()

Nv(E(u)') = —uiEu)'E’(u)A = E(u) (—uiE’ (u) )

Thus Ny (Fil'Sg, ® M) C Fil'Sx, ® M. Now let x = ¥;5;®m; € Fil'D. We claim that

(B8.2.2) E@)(1® pm)(N(x)) = P Nv(1e Pm)(x))

(A)
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In fact, since E(u)N = - Ny and Nyg = E(”) = ¢Nv, we have

®()
E@)(1® pm)(N() = E(u)(Z NGs) ® () + 2551 © o (N ()
= o0 (Z Ny(si) ® a(mi) +s; ® No(pu(m)))
Cop
= o0 NV(Z 5 ® (i)

This proves the claim (3.2.2). Finally, to prove N(x) € Fil"™' D, it suffices to show
that (1 ® ppm)(N(x)) € Fil’_lsk0 ®p M. But (3.2.2) has shown us that

E(u)(1 ® ou)(N(x)) € Fil'Sg, ®o M.

Then we reduce our proof to the following lemma: o

Lemma 3.2.2. Let x € S (resp. Aeis). If E(u)x € FiU*'S (resp. E([n])ix € Fil'*' Aqys)
then x € Fil'S (resp. x € Fil'Auis).

Proof. We have a natural embedding S HC—[> d Acis < Bl with respect to filtration.
By definition, Fil"B, = E([n])"B for all n > 0. Thus, if E([rt])/x € Fil"*/B then

x € Fil'B*

irs as required. O

Corollary 3.2.3. The following equivalences of category commute:

MF(p, N) —2~ MF (¢, N)

| 27

@.Nv
Mod 10

Proof. Let M € Mod(/{)(’)z\]v and D = Dp(M). Proposition 3.2.1 has shown that

DoM) € MF(p,N). By Theorem 2.2.1, there exists a unique D € MF(p,N)
such that Dp(M) = D(D). It suffices to check that D ~ D(M). There exists an
isomorphism is : Sk, ®,,0 M = D ®k, Sk, in MF (¢, N). Modulo u both sides, we
get a Kp-linear isomorphism i : D(M) =~ D. It is obvious that i is compatible with
@ and N structures on both sides. To see that i is compatible with filtration, recall
that the filtration on D(M) depend on the construction of the unique Oy ,)-linear,
@-equivariant morphism & in (3.1.2):

& : D(M) ®k, Ojo,u) = "M ®0 Opo

where u is any fixed real number such that p~¢ < u < p_%%. Choose u such
that pfﬁ <u< pfﬁ By (3.1.1), Oy, is a subring of Sk,. Then we have an
isomorphism

P*"M &0 Ojp ) ® Sk, = M ®g,, Sk, = Do(M).

So & ®g,,, Sk, and is induce an Sg,-linear, filtration compatible isomorphism

(D(M) ®k, O[O,y]) ® Sk, = D ®g, Sk,
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Both sides define filtration on D(M) and D by modulo E(u) respectively. Therefore,
filtration on D(M) and D coincides. O

3.3. Finite p-modules of finite height and finite Z,-representations of G.. Recall
that © = W(k)[u]] with the endomorphism ¢ : & — & which acts on W(k) via
Frobenius and send u to #”. In this subsection, we first recall the theory in [Fon90]
on finite p-modules over & of finite height and associated finite Z,-representations
of Go. Then we study the relations between the finite p-module over & of finite
height and filtered p-modules over S, and their associated finite representations of
Goo. These results have been essentially done in [Bre98c] and §1.1 in [Kis04].

Denote by ’Mod(/p‘6 the category of S-modules M equipped with a ¢-semi-linear
map ¢y : M — N such that the cokernel of the S-linear map: 1@ pg : S®,,c M —
It is killed by E(u)". (We always drop subscript M of @u if no confusion will
arise.) We give ’Mod(f5 the structure of exact category induced by that on the
abelian category of S-modules. We denote by Mod FI(/Pe the full category of ’Mod(/p6
consisting of those M such that as an ©-module I is isomorphic to G;e;S/ p G,
where I is a finite set and #; is a positive integer. Finally we denote by Mod s the
full subcategory of ’Modq; consisting of those It which are G-finite free.

Recall that [1] € W(R) constructed in §2.2. We embed G — W(R) by u — [r].
This embedding is compatible with Frobenius endomorphisms. Denote by Og the
p-adic completion of G[1]. Then O is a discrete valuation ring with the residue
field the Laurent series ring k(u). We write & for the field of fractions of Og. If
FrR denotes the field of fractions of R, then the inclusion & — W(R) extends to
Og — W(FrR). Let & ¢ W(FrR)[1/p] denote the maximal unramified extension of
& contained in W(FrR)[1/p], and O"" its ring of integers. Since FrR is easily seen to
be algebralcally closed, the residue field O""/pO"* is the separable closure of k((u))
We denote by & the p-adic completion of &, and by O its rmg of integers. gur

is also equal to the closure of &* in W(FrR). We write & = o N W(R) c W(FrR).
We regard all these rings as subrings of W(FrR)[1/p].

Recall Koo = [U,50 K(71,) and G = Gal(K/Kw). Go naturally acts on G* and our
and fixes the subring & c W(R). Denote Rep,, (Goo) the category of continuous

finite Z,-representations of Gu. For an I € Mod FI(;),, one can associate a finite
Z,-representation of G, by (B 1.8, [Fon90]):

Ts: M — Homg,(M, S[1/p]/S™).
In §B.1.8.4 [Fon90] and §A.1.2 [Fon90], Fontaine has proved that the functor

Ts : Mod FI(/p — Rep, (Gwo) is an exact functor. If M = @ S/p™ G as finite &-
i=1

modules, then Tg(M) =~ EB Z.[p"Z. as finite Z,,-modules. As the consequence, if
i=1
M e Mod(/’)6 is a finite free ©-module with rank d, define
Ts(M) = Homg ,(MN, S),
then Tg(9M) is a continuous finite free Z,-representation of G, with Z,-rank d.

As in [Bre98c] or §1.1 [Kis04], we define a functor Mg : ’Mocl(/pE - ’Mod(/p5 as
follows: we have a map of W(k)-algebra © — S given by u — u, so we regard S as
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an S-algebra. We will denote by ¢ the map © < S obtained by composing this
map with ¢ on S. Given an M € 'Mod?_, set M = Mz(IM) := S @, s M.

/€’

One has themap 1® ¢ : S®p,c M — S ®z M. Set
Fil'M = {y e M|(1® ¢)(y) € FilI'S ®z M C S @z M}
and define ¢, : Fil'’M — M as the composite

Fil' M —2> Fil'S @ M 22 S @, M = M.

This gives M the structure of an object in ’Mod(/ps. We have the following result
similar to Lemma 2.2.1 in [Bre98c] and Proposition 1.1.11 in [Kis04].

Proposition 3.3.1 (Breuil, Kisin). The functor Mg : ’Mocl(f6 — ’Mod(/”s defined above
induces an exact and fully faithful functor Mg : Mod FIT5 — Mod Fl(fs. This functor is
an equivalence of categories between the full subcategories consisting of objects killed by p.

Proof. Lemma 2.2.1 in [Bre98c] and Proposition 1.1.11 in [Kis04] proved the case
r = 1. The idea of proof can be easily extended for 0 < r < p — 2. In particular,
the equivalence of subcategories consisting of p-torsion objects is again (almost)
verbatim the proof of Theorem 4.1.1 in [Bre99a]. O

Corollary 3.3.2. The functor Mg : ’Mod(/"6 - ’Mod‘/‘)s induces an exact and fully faithful
functor Mg : Mod(/p‘5 - Mod(fs.

Remark 3.3.3. In fact, the functor Mg can be proved to be an equivalence ([CL06]).

Note that Ais is an object in "Mod; by defining ¢, := ¢/p" on Fil"Acis. For any
Me Mod(fs, one can define a finite free continuous Z,-representation of Ge:

(331) Teris M- Hom'Mod‘;’s (M/ Acris)

as in §2.3.1 in [Bre99a]. Let M € Mod‘fS and M = Mc() € Mod(/Ps. For any
f € Te(M) = Homg ,(M, S7), consider the natural embedding ¢ : " < A.e. It
is easy to check that ¢(t o f) € Teis(M) = Hom,ModyS (M, Aqris)- Therefore, we get a

natural map Homg ,(M, ) — Hom,MOdZJs (Mc(M), Actis)-

Lemma 3.3.4. The natural map Te(M) — Tais(Me(IN)) defined above is an isomorphism
of finite free Z.,-representations of Ge.

Proof. This is the consequence of the fact that for any It € Mod FI(/PS, the natural
map

(332)  Home,, (M, S [1/p]/S") — Homyogr (M), Acis[1/p]/Ackis)

is an isomorphism of finite Z,[Ge]-modules. Note that the left hand side of (3.3.2)
is an exact functor on Mod FITG. The right hand side is also an exact functor from

the fact that Ext,lMO 4 (M, Acsi[1/p]/ Acis) = 0 for any M € Mod FI(/”S (Lemma2.3.1.3
/S

in [Bre99a]). Thus by the standard dévissage, it suffices to prove (3.3.2) for the case
that p kills 9, and this is Proposition 4.2.1 in [Bre99b]. O
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3.4. Gu-stable Z,-lattices in a semi-stable Galois representation. A (¢, N)-module
over Gis a finite free p-module M € Mod(/pe, equipped with a linear endomorphism

N : M/uM®z, Q, — M/uMz, Q) such that N = ppN. We denote by Mocl(/”’eN the
category of (¢, N)-module over &, and by Mod(/péN ®z, Q, the associated isogeny

category !. The following theorem is one of main results (cf. Corollary 1.3.15) in
[Kis05].

Theorem 3.4.1 (Kisin). There exists a fully faithful ®-functor © from the category of
positive weakly admissible filtered (@, N)-modules MF" (¢, N) to Mod(/p’SN ®z, Qp.

Let M € ModféN and M = M @z O. Then there exists a D € MF" (¢, N) such
that M = O(D) if and only if there exists a differential operator Ny on M such that

(M, @,Nvy) € Mod(;j(’)NV, DM) = D in MF(p,N) and Ny mod u = N on M/uM@z, Q.

Such Ny (if exists) is necessarily unique.

Remark 3.4.2. (1) The above theorem is valid without any restriction of the
maximal Hodge-Tate weight. But here we only consider the case that
Hodge-Tate weights in {0, ..., r} withr <p - 2.

(2) The second paragraph of the above theorem is not the same as that of
Corollary 1.3.15 in [Kis05]. But they are equivalent (See Lemma 1.3.10 and
Lemma 1.3.13 in [Kis05]), and our description of Theorem 3.4.1 will be more
convenient.

Furthermore, Kisin proved (cf. Proposition 2.1.5 in [Kis05]) that there exists a
canonical bijection (without restriction of maximal Hodge-Tate weights)

(3.4.1) n: Te(M) ®z, Q) = V(D)
which is compatible with the action of G, on the two sides. For our purpose to
connect strongly divisible lattices, we reconstruct (3.4.1) in a little different way.
Let D € MF¥(¢,N) be a weakly admissible filtered (¢, N)-module under our
Assumption 2.3.1, M = O(D) and (M, ¢, Ny) € Mod%NV as in the Theorem 3.4.1.
Let D = D(D) (Recall D(D) := S g D in §2.2). By Corollary 3.2.3, we have
D = Sk, ®p0 M = Sk, ®,c M = Mz(M) ®z, Q,, where Mz is the functor defined
in Corollary 3.3.2. Then we have a natural map of Z,[Ge]-modules

(342) Homg,(p(ﬁﬁ, gur) l) Hom,ModZ»S (Mg(gﬁ), Acris) — Hom’Mod(fS (D, B+ )

cris
The first map is an isomorphism by Lemma 3.3.4. Recall that

V(D) = Hom,y, o (D, Ax[1/p)).

The canonical projection Z; — Acris defined by sending y;(X) to 0 induces a natural
map:
(3.4.3) Hom s

’Moci(;’S

We claim that the above map is an bijection. Let us accept the claim and postpone
the proof in Lemma 3.4.3. Recall that Theorem 2.2.1 has shown that there exists

(D, Ag[1/p]) — Homuyoqr (D, BG,)-

IRecall that if C is an additive category, then the associated isogeny category D has same objects
and Homgp(A, B) = Home ®z Q for all objects A and B.
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a canonical isomorphism V(D) =~ V(D) as Qp-representations of G. Therefore,
combining (3.4.2) and (3.4.3), we have a natural injection
n: Te(M) ®z, Qp = V(D)

of Qp[Ge]-modules and thus dimg, (Vst(D)) > rankg(M) = dimg, (D). But an ele-
mentary argument (Prop. 4.5, [CF00]) showed that weak admissibility of D implies
that dimg, (V«t(D)) has to be dimg, (D). Hence the map 7 is a bijection.

Lemma 3.4.3. The natural map defined in (3.4.3) is a bijection.

Proof. We basically follow the idea of Lemma 2.3.1.1 in [Bre99a]. For any f €
Hom,,, o~ (D, Aql1/p]), let fy be its image of the map in (3.4.3). For any x € D
/S

where D = D ®y S, since Ni(x) =0 fori enough big, we can easily check that
(3.4.4) f6) =Y fo(N'(x))yi(log(1 + X)),
i=0

where y;(x) = ’1‘—,’ is the standard divided power. So if fy = 0, we have f = 0
because D generates . Thus (3.4.3) is injective. To prove the surjectivity, let
fo€ Hom,Mod;p5 (D, B*.). For any y € D, define

cris

F@) =) foN'()yi(log(1 + X)).
i=0

To see that f is well defined, note that f(y) converges in B_, [X], and if x € D

then f(x) converges in Agll /p] because N'(x) = 0 for i enough big. By a standard
computation, we can easily check that f : D — B! [X] is S-linear. Therefore
f D — Agyl1/p] is well defined. It suffices to check that f preserves Frobenius,
monodromy and filtration. Since fy preserves all these structures, it is a strait
forward calculation to check that f preserves Frobenius, monodromy and filtration,
combining with the facts that p(log(1l + X)) = plog(l + X), N(log(1 + X)) = 1,
NI(Fil'D) c Fil'/D and log(1 + X) € Fil'Aq. O
Remark 3.4.4. (1) Let V(D) = Hom,ModfS (D, BY,,)- The above lemma gives a

natural transformation which makes the following diagram commutative:

MF (¢, N) —=> Repg, (Goo)

]
MF (@, N) —*> Repq, (G)

(2) From the above proof, we see that the lemma is always valid without any
restriction of the maximal Hodge-Tate weight.

One advantage of using (¢, N)-module over S is that we can classify all Ge-
stable Z,,-lattices inside the Galois representation.

Lemma 3.4.5 (Kisin). (1) Let V be a semi-stable representation with Hodge-Tate
weights in {0,...,r}. For any Ge-stable Z,-lattice T C V, there always exists an

Ne Mod(/p6 such that Te(N) = T.
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. @ . .
(2) The functor Ts : Mod s — Repy (Gwo) is fully faithful.

Proof. These are easy consequences of Lemma (2.1.15) and Proposition (2.1.12) in
[Kis05]. Remark that the lemma is valid without restriction of r. O

Recall that Mf—ojd-{/ps denote the category of quasi-strongly divisible lattices of

weight r. Let M € l\/fo\d?/ps be a quasi-strongly divisible lattice. By Definition 2.3.3,

there exists a D € MF " (p,N) such that M c D and D =~ D(D) with D weakly
admissible. Let V := V(D) be the semi-stable Galois representation. Then we can
associate a Geo-stable Z,,-lattice in V' as the following:

cris

M Tcris(M) = Hom’Mod(fS (Mr Acris) — Hom’Mod‘fS (D/ B! ) = Vst(-Z)) =V

Recall that the isomorphism V(D) — Hom,MOdTS (D, B ) has been established in

cris
Lemma 3.4.3. Therefore T;s induces a functor from Mod(/ps to Repszfp(Goo), where

RepSZfV(Goo) denotes the category of G-stable Z,-lattices in semi-stable Galois rep-
resentations with Hodge-Tate weights in {0, ..., 7}.

Proposition 3.4.6. The functor T induces an anti-equivalence between Modjos and
Rep (Geo).

Proof. We first prove the essential surjectivity of the functor. Let M = O(D) as
in Theorem 3.4.1 and D = D(D). By corollary 3.2.3 and Theorem 3.4.1, we see
that D = M ®g,, Sk,- Suppose that T C V is a Ge-stable Z,-lattice. Then by
lemma 3.4.5, there exists an 9t € Mod(/’)S, such that T =~ Tg(9). We claim that
Moz, Qp =~ N®z, Q). In fact, since Ts(M) and Ts(N) are G.-stable Z,,-lattices in
V, there exist Geo-equivariant maps f : Tg(M) — Te(M) and g : Te(MN) — Ts(WN)
such that f o ¢ = p"Id. By full faithfullness of T, there exists F : 9t — 9t and
G : M — N such that F o G = p"Id. Hence the claim follows. Now put N' = Mg(N).
We see that N is a quasi-strongly divisible lattice in ©, and by Lemma 3.3.4,
Teis(N) = T. This proves that the functor is essential surjective. Let M, N € Mod(fs
and f : Tuis(N) — Tais(M) a morphism of Z,[Ge]-module. From the above
proof, there exist M, N € Mod(fe such that Tg(MM) = Teis(M) and Te(N) = Teis(N).
Since Tg is fully faithful (Lemma 3.4.5 (2)), there exists f : M — N a morphism
in Mod‘f6 such that T¢(f) = f. Then by Lemma 3.3.2 and Lemma 3.3.4, we have
Teris(Ms(F)) = f. It suffices to show that M = Mg (M) and N = Mg(N). Therefore,
we reduce the proof to the following O

Lemma 3.4.7. Let M, M’ be two quasi-strongly lattices contained in D. If Teis(M) =
Teris(M) then M = M.

We postpone our proof of the Lemma after Lemma 5.3.1.
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We may summarize our discussion in this subsection into the follow commuta-
tive diagram:
T

T

Mod”, <& Mod?, ="~ Rep,, (Gw)

)

e Teris
Mod/, —=> Rep3, (G

Gl

3.5. Fully faithfulness of T;. Now suppose that T'is a G-stable Z,,-1attice in a semi-
stable Galois representation V. By Proposition 3.4.6, there exists a quasi-strongly
divisible lattice M in D such that Teis(M) = T|g., and there exists an M € Mod(/P6
such that M = Mg(I).

Proposition 3.5.1. Notations as the above. If N(M) c M, then (M, ¢, Fil' M,N) is a
strongly divisible lattice in D and Tee(M) = T.

Proof. M s clearly a strongly divisible lattice in D. It suffices to prove that Tst(M) =
T. By Proposition 2.3.4,

Ta(M) = Hom,y v (M, As) C V(D) = Vae(D) = V

is a G-stable Z,,-lattice. As in (3.4.3), the canonical projection ;l:t — Agis defined
by sending y;(X) — 0 induces a natural map

(351)  Ta(M) =Hom,y (M, Ax) = Homiygoqr (M, Acris) = Teis(M).
Then we have the following commutative diagram:

HOm,Mod(;JS,N (M, Ast)(—> Hom'MOd(féN (D, Ast[l/p])

J/ (35.1) : J/ (34.3)

Hom’Mod}’}s (M/ Acris)% I_IOITLM()d/‘{]S (D/ B+ )

cris

TC v

Thus it suffices to show that (3.5.1) is an isomorphism of Z,-modules. This has
been proved in §2.3.1, [Bre99a]. O

Corollary 3.5.2. The functor T in the Main Conjecture 1.0.1 is fully faithful.

Proof. Let M, M’ be strongly divisible lattices, D = M ®z, Q), D' = M ®z, Q,
and Ts(M), Tsy(M') G-stable Z,-lattices in V(D), Vi (D') respectively. Suppose
that f : T(M) — T4(M’) is a morphism of Z,[G]-modules. Tensoring by Q,,
there exists an f : ' — D such that Vg(f) = f ®z, Q,. It suffices to show that
f(M’) € M. Select an n such that p"f(M’) € M. Then g := p"f is a morphism of
strongly divisible lattices and Ts(g) = p"f. Note that (3.5.1) is an isomorphism
of Zy[G]-modules. So if g is regarded as a morphism of quasi-strongly divisible
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lattices, we have Tis(g) = Ts(g) = p"f. On the other hand, by Proposition 3.4.6,
Tuis is fully faithful, there exists a morphism ¢’ : M’ - M in Mod(fS such that
Tuis(9') = f. Therefore p"g’ = g = p"f. Then{ = ¢’ and f{(M’) = g’(M’) c M. O

Also we reduce the proof of the essential surjectivity of T to the following

Lemma 3.5.3. Notations as the above, If T is G-stable then N(M) c M.

We will devote the next two sections to prove this Lemma. Combining with
Proposition 3.5.1, Corollary 3.5.2 and Proposition 3.4.6, we prove the Main Theorem
(Theorem 2.3.5) and the following

Theorem 3.5.4. The functor Teis induces an anti-equivalence between the category of
quasi-strongly divisible lattices of weight r and the category of Geo-stable Z.,-lattices inside
semi-stable Galois representations with Hodge-Tate weights in {0, ...,r}. Furthermore, a
quasi-strongly divisible lattice M is strongly divisible if and only if T.is(M) is G-stable.

4. Cartier DuaL AND A THEOREM TO CONNECT M WITH Teris (M)

In this section, we extend a theorem of Faltings (cf. Theorem 5, [Fal99]) to a
more general setting to connect filtered p-modules over S with their associated
Z,,-representations of Go,. This theorem is one of technical keys to prove Lemma
3.5.3. For this purpose, we need more explicit structure of Fil" M and a notion of
Cartier dual for M € Mod(/PS. Luckily, such Cartier dual has been available from the
thesis of Caruso [Car05]. In the following two section, we always regard W(k)[u]
and S as subrings of Aqis via u + [11], and denote the identity matrix by I.

4.1. Structure of filtration of quasi-strongly divisible lattice.

Lemma4.1.1. Let A be a dxd matrix with coefficients in W(k)[u]. Suppose that there exist
matrices B’ and C with coefficients in S and Fil’ S respectively such that AB" = E(u)'I+C.
Then

(1) There exists a matrix B with coefficients in S such that AB = E(u)"I.
(2) Letaj € Ais fori = 1,...,d. If (a1,...,a0)A is in Fil' Ays, then there exists
bi € Auris and ¢; € FilP Auyis fori = 1,...,d such that

(@a1,...,a0) = (b1,...,ba)B+ (c1, ..., Ca).

Proof. Note that for any f € S, we can always write f = fy + fi with fy € W(k)[u]
and f; € Fil’S. So B’ = By + By with By’s coefficients in W(k)[u] and B;’s coefficients
in Fil’S. Therefore, E(u)'I = ABy + C; with Cy’s coefficients in W(k)[u] N Fil’'S =
E(u)?W(k)[u]. Thus C; = E(u)PC, with C,’s coefficients in W(k)[u]. Now we have
E(u)'I = ABy + E(u)’C,. Since E(u)" — 0 p-adically in S whenn — oo, I — E(u)'"C;
is invertible. Thus
(4.1.1) E(u)'I = ABo(I - E(u)P"Cy)™ .
Let B = Bo(I — E(u)P"C,)~! and we settle (1).

For (2), write (ay, ...,a5) = (), ..., b;)+(C1, ..., cq) with b]’. € W(R)and ¢; € FilP Ags
fori=1,...,d. It suffices to prove that there exists b; € Aujs such that (b7, ..., b;) =
(by,...,b;)B. Note that

@1,...,a0)A=,...,b)A+(c,...,ca)A € Fil' Aue.
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Then (b}, ...,b)A € Fil'Aqis N W(R) = E(u)"W(R). So there exists b; € W(R) such
that (b’,...,b;)A = E(u)'(b1,...,bs). Multiplying by B on both sides, we get
v, . ..,b;)AB = E(u) (b1, ...,bs)B. Finally, (bi,...,b;) =(by,...,bs)Basrequired. O

Proposition 4.1.2. Let M e Mod‘fs. There exists ay, . .., a4 € Fil" M such that

d
(1) Fi'M = @ Sa; + (FilPS)M.

i=1

d
(2) Euy M C @ Sa; and (¢,(a1), . .., pr(aq)) is a basis of M.
i=1

Proof. Considering M/pM, by Proposition 2.2.1.3 in [Bre99a], M/pM has a “base
adaptée”, i.e., there exists a basis (ey, . ..,ez) of Mand ay, ..., a, € Fil"”M such that

d
4.1.2) Fil' M/pFil M = EP) $13; + Fil’S; (M/pM)
i=1
such that (ay,...,a4) = (u"ey,..., u"e;) with 0 < r; < er, where 51 = 5/pS and a;,
d
g; is the image of a;, ¢; in M/pM respectively. Let M = €P Sa; + (Fil’'S)YM. Then
i=1
M c Fil’ M. We claim that the natural map
f: M/FilP'SM — Fil' M/FilPSM
is surjective. To see the claim, note that S/Fil’'S — W(k)[u]/(E(u)P) is Noetherian.
By Nakayama'’s lemma, it suffices to show that f mod p is a surjection. Note that
Fil' M/FilP'SM  mod p = (Fil' M), /(Fil' SM),

where (Fil"M); = Fil’ M/pFil’ M and (FiP'SM); = Fil’'SM/pFil’'SM. By (4.1.2), we
see that f mod p is surjective and thus prove the claim. Then

d
(4.1.3) Fil' M = M= (P Sai + (FiIPHM.
i=1
Let (a1,...,a4) = (e1,...,e4)A where A is a d X d matrix with coefficients in S.
Write A = Ay + Ay with Ag’s coefficients in W(k)[u] and A1’s coefficients in Fil’S.
Replacing (a1, ..., a4) by (e1, ..., es)Ao, we can always assume that A’s coefficients
are in W(k)[u]. By (4.1.3), there exists d X d matrices B’, C with coefficients in S, Fil’S
respectively such that E(u)'] = AB’ + C. Then by Lemma 4.1.1, there exists a B with

d
coefficients in S such that AB = E(u)'I. Therefore E(u)’ M C € Sa;. Since ¢,(Fil’ M)
i=1
generates M and one always has plp,(Fil’S), we see that (p,(a1), . . ., ¢,(a2)) is a basis
of M. O

Let D € M¥F (¢, N) be a filtered (¢, N)-module over S. Following §3 in [Bre97],
we define

.
(4.1.4) Fil' (Aqis ®s D) = Z Im(Fil" Aqis ®s Fil'D),

i=0
where Im(Fil' ™A s ®s Fil'D) is the image of Fil' ™ Agis ®s Fil'D in Ais ®s D. We
also define Fil" (Acris ®s M) = Fil" (Acis ®5 D) N (Acris ®5 M).
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Corollary 4.1.3. Notations as Proposition 4.1.2,

d
Fil'(Acris ®5 M) = (1) Acris ® i + Fill Acric ® M.

i=1
Proof. Since we always have Fil'™'S - Fil'D c Fil'D, it is easy to see that
Fﬂr(Acris ®s Z)) = Acis ®s Fil'D.
Then the corollary follows the fact that Fil'’ M = Fil'D n M. ]

By the above corollary, we can @4, -semi-linearly extend ¢, of M to

Qr Fﬂr(Acris ®s M) — Acris ® M
and we see that (Auis ®5 M, Fil' (Acris ®s M), @,) is an object in ’Mod(/”s.

4.2. Cartier dual on Mod(/ps. In this subsection, we recall the construction of Cartier
dual on Mod(/pS from [Car05]. Let M € Mod(/‘)s. Define M* := Homs(M, S),
Fil' M := {f € M|f(Fil’ M) c Fil'S}
and
@, : FIM" — M, for all x € Fil' M, ¢, (f)(¢:(x)) = @r(f(x)).
Note that ¢,(f) is well defined because ¢, (Fil" M) generates M.

Theorem 4.2.1 (Caruso). The functor M — M induces an exact anti-equivalence on
Mod‘/"s and (M) = M.

Proof. Proposition V 3.3.1 in [Car(05] proved the theorem on the category of strongly
divisible lattices. But the same proof also works on Mod(fs if we ignore monodromy.
O

Example 4.2.2. Let S* be the Cartier dual of S. Then S* is the S-rank-1 quasi-strongly
divisible lattice with Fil'S* = S and ¢,(1) = 1.

4.3. Application to Galois representations. Let M € Mod(fS and M its Cartier
dual. The canonical perfect pairing M x M* — S in the construction of Cartier
dual is compatible with filtration and Frobenius on both sides. Taking Cartier dual
on both sides, note that (M*)* = M by Theorem 4.2.1, we have a map

i:S > M XMy 2 MxM
and i induces a pairing
(4.3.1) i: Homuyjoqr, (M, Acris) X Homupoqr (M, Acric) = Homs (S, Acris)-

Lemma 4.3.1. The above pairing induces a perfect paring of Z,,-representations of Geo:
(4.3.2) Teris(M) X Teris (M) = Teris(S*) = Zp(1).

Proof. This has been essentially proved in Chapter 5, §4 of [Car05]. The proof
consists of two steps. The first step is to check the image ofiisin Hom,Modfs (5%, Acris)-
This is basically a direct check by the definition of Cartier dual. The proof of the
perfectness of the paring (4.3.2) is non-trivial. It suffices to show that the pairing
is perfect by modulo p, and the proof is contained in the proof of Theorem V.



ON LATTICES IN SEMI-STABLE REPRESENTATIONS: A PROOF OF A CONJECTURE OF BREUIL 21

4.3.1 in [Car05]. (Although the hypotheses of Theorem 4.3.1 require er < p — 1,
the statement is always valid for any e if we only consider the paring induced by
filtered p-modules over S killed by p, as explained in Caruso’s remark in the end
of proof.) ]

We use A7 . to denote Ais with non-canonical filtration Pil’A;ris = Aqis and
Frobenius ¢,(1) = 1.

Lemma 4.3.2. There are natural isomorphisms of Z,[Ge]-modules:

HomAcris,Fil',(p (A’F Acris ®s M*) = Filr(Acris ®s M*)(Pr:l = Hom’Mod‘;’S (Mr Acris)'

cris”

Proof. While the first isomorphism is totally trivial to check, the second isomor-
phism needs some arguments. Let ay,...,a; € Fil’ M constructed in Proposition
412, (e1, ..., e1) = (pr(a1), ..., pr(ag)) a basis of M and (e],...,e;) the dual basis.
Write (a1,...,a4) = (e1,...,e4)A where A is a d by d matrix with coefficients in S.
By the argument after formula (4.1.3), we may assume that all A’s coefficients are
in W(k)[u]. By Lemma 4.1.1, there exists a matrix B with coefficients in S such that
AB = BA = E(u)'l. Put (a],...,a}) = (e’i,...,e;)Bt (Here t means transpose). It is
easy to check that a} € Fil' M fori=1,...,d.

Forgetting filtration and Frobenius structure for a while, since M is S-finite free,

d d
we can identify Acis ®s M* with Homs(M, Auis) by sending ). a; ® e to ) a;e;. For
i=1 i=1

any f € Fil"(Acis ®5 M) = Agis ®s Fil' M (Lemma 4.1.3), write f = Y ;a; ® f; with

a; € Aais and f; € Fi' M*. Then for any x € Fil' M, f(x) = ¥,;aifi(x) € FilI'S - Auis C

Fil"A.is. Thatis, f isa map from M to As preserving filtration. On the other hand,

let f be an S-linear map from M to As preserving filtration. Then f(«;) € Fil" Acyis

foralli=1,...,d. Denote a; = f(e;), i = 1,...,d. We have (a1,...,a5)A € Fil"Ais

where A is the matrix constructed in the first paragraph. By Lemma 4.1.1, we have
(a1,...,a9) = (b1,...,b5)B +(c1,...,cq)

with b; € Aeis and ¢; € FilPAq fori=1,...,d. So we have
d d d
f=Y aie =) b+ ) cie} € Fil'(Aais @ M).
i=1 i1 =1

Therefore, we have f € Homgs(M, Auis) preserves filtration if and only of f €
Fil' (Acris ®5 M*). Now suppose that f € Homg(M, Ais) also preserves Frobenius,
that is, f(,(x)) = @,(f(x)) for all x € Fil’ M. Then

Pr()e) = @r()prai))) = pr(f(a)) = flpr(ai)) = flen), Yi=1,....d.
Therefore, ¢,(f) = f. On the other hand, if f € (Auis ®s MHP=1 reversing the
above argument shows that f € Hom,MOd(/nS (M, Agris). ]

By the above Lemma, we get
(4.3.3) Teris(M) = Fil' (Acris ®s M*)(pFl = Agis ®s M.

So we also have T js(M*) — Agqis @5 M.
Recall that t is a generator of Z,(1) = (FillAcris)‘Pl:1 C Acris-
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Corollary 4.3.3. The following diagram commutes
Teris(M) X Teris(M) = Acris @5 M X Aris ®5 M

(4.3.4) l(m.z) l
Zp (1’) Ladl Acris

where the top row is induced by (4.3.3) and the right column is induced by the canonical
pairing Mx M* — S.

Proof. This follows the fact that (4.3.2) is induced by taking dual of the canonical
pairing Mx M* — S. o

Now we can construct the following theorem to compare M ®s Aqis with

TV (M) ®Zp Acris'

cris
Theorem 4.3.4. There exist Aqis-linear injections

A TV (M)(T’) ®Zp A - Acris ®s M/ L: Acris ®s M - Tv

cris cris cris

(M) ®Zp Acris

such that « and * are compatible with Ge.-actions, Frobenius and filtration. Furthermore,
torr=Id®t".

Remark 4.3.5. (1) Suppose that M is further a strongly divisible lattice. Let
D = M®z, Q, and D € MF"(p, N) such that D = D(D). In [Bre97], Breuil

extended the classical isomorphism D ®k, Bs: = V(D) ®q, Bst to the By-
version: g : D®5§; ~ stt(l))®@p§; where B; = Aq[1/p, 1/t]. Note that B

isa E;—algebra after modulo X. Itisnot hard to see that g ®g Bst =~ 1®4_. Bg.
Therefore, t may be seen as an integral version of ts. ’

(2) There exists a geometric interpretation of the above theorem. Conjecturally,
the log-crystalline cohomology of certain varieties satisfies the axioms of
strongly divisible modules, but it is not conjectured that any strongly di-
visible module can be seen as a log-crystalline cohomology group. See §4
in [Bre02] for the exposé of this direction.

(3) If M comes from an M € Mod(fg, ie., M= Mg(Wt), then we have a similar
result as the above theorem without restriction of r. See §5.3, [Liu06] for
details.

cris

Proof. We use the same idea as the proof of Theorem 5 (ii) in [Fal99]. First an easy
computation shows that Teris(M) = Homy_, rir o (Acris ®s M, Agis). Then we get a
map:

(435) r: Tcris (M) X Acris ®s M - Acris
Therefore, we get a natural map

L :Acris ®s M- TV

cris

(M) ®Zp Acris,
and it is easy to check that | preserves Gu.-actions, Frobenius and filtration. On the
other hand, by (4.3.3) and Lemma 4.3.1, we get

£t Tos(M) @z, A%y = T (M) 87, A

cris cris cris

= Acris ®s M/
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and Lemma 4.3.2 shows that the above map is compatible with Ge,-actions, Frobe-
nius and filtration. Combining * with (4.3.5), it suffices to show the following
diagram commutes:

Tcris(M) X Tcris(M*) ®Zp A & cris(M) X Acris Qs M

cris
l(4.3.2)®ld l(4.3.5)
% 1-t"
Zp(r) ®z, A Acris

cris

Note that we have an injection Tyis(M) <= Acris ®s M by (4.3.3). So the commuta-
tivity of the above diagram follows the commutativity of diagram (4.3.4), and this
is proved in Corollary 4.3.3. o

Letay,..., a4 € Fil' Mas in Proposition4.1.2 and ey, ..., e; € M abasis of M. Let
eq,..., ¢4 be abasis of T". (M). By Theorem 4.3.4, we have

cris
L(all .. /ad) = (ed/ crty ed)Cl

where C is a d X d-matrix with coefficients in Fil" Ays.

Lemma 4.3.6. There exists a d x d-matrix C’ with coefficients in Aqis such that coefficients
of C'C — t'I are all in FilP Ayis.

Proof. Forgetting Ge-actions, Frobenius and filtration structures, we may identify
T (M) ®z, Acis with T, (M)(r) ®z, AL, as finite free Acis-modules. In particular,

weregard (ey, ..., ¢q) asabasis of T (M)(r). Then "ot makes sense and "ot = t'®Id

by Theorem 4.3.4. Therefore, we get
(4.3.6) fay,...,aq) = olay,...,a) =1"(e1,...,¢5)C

Note that Fil'A* . = Agis, 50 (e1,...,¢3) € Fil'(TY. (M)(r) ®z, A

cris cris cris

(e, ... ¢g) is in Fil'(M ®g Acris). By Corollary 4.1.3, we have
(437) L*(e1, ey ed) = ((Xl, . ,ocd)C’ + (81, e ,Ed)D

whereey, ..., e; is a basis of M, C’ and D are d X d-matrices with coefficients in A
and Fil’ A respectively. Write (a1,...a4) = (e1,...,e4)A with A a d X d-matrix.
Combining (4.3.6) and (4.3.7), we have

A =AC'C+DC.

), and then

By Lemma 4.1.2, there exists a d X d-matrix B with coefficients in S such that
AB = BA = E(u)’], we get E(u)’(#'I-C’'C) = BDC. Note that the coefficients of C and
D arein Fil"As and Fil’ A s respectively. Thus the coefficients of E(u)"(#'I-C’C) are
in Fil""? Aois. By Lemma 3.2.2, the coefficients of C'C — '] are all in the FilP Ayis. O

5. Tue Proor orF LEmMA 3.5.3

In this section, we will show how to recover monodromy N on M by the G-
action on T and then prove Lemma 3.5.3. Recall that T is a G-stable Z,-lattice
in a semi-stable p-adic Galois representation V, M = Mg(M) the quasi-strongly
divisible lattice such that Tesis(M) = Tlc,, (Proposition 3.4.6) and O := M ®z, Qy €
MF™ (@, N) to correspond V. We first construct a G-action on Ayis ®s D by using
NonD.
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5.1. G-action on Agis ®s D. We already have a natural semi-linear G-action on
Adris ®s D induced from the G-action on Acis. We extend this to a G-action by

U([%D. For any a ® x € Auis ®s D, define

using N on D. For any o € G, recall (o) =

e8]

(5.1.1) o@a®x) = Z o(a)yi(~1og(e(0))) ® Ni(x).

i=0
where y;i(x) = j‘—, is the standard divided power. Note thatif o € G, thenlog(e(o)) =
0 and o(a ® x) = 0(a) ® x. Thus G-action defined above (if it is well defined) is
compatible with the natural Ge-action on Agis ®s D.

Lemma 5.1.1. The above action is well defined Aqis-semi-linear G-action on Aqis ®s D
and compatible with Frobenius and filtration.

Proof. Infact, this result has been explicitly or non-explicitly used in several papers,
e.g., §4 in [Fal99]. To see the series in the right side of (5.1.1) converges, note that
D = D ®wp S and N is nilpotent on D. It suffices to show that y;(—log(e(0))) — 0
when i — oo. This is a well-known result. See for example, §5.2.4 in [Fon94a].

For any f(u) € S, x € O and o, T € G, we need to check that
(1) o(1® f(u)x) = o(f([z]) ® %) = f(o([r])) ® 0 (x)
(2) o(t(1®x)) = (oo 1)1 ®x).
(3) the G-action preserves filtration and commutes with ¢.

It is fairly standard direct calculations to check these equations combining with
facts that Fil'S - N(Fil'D) c Fil'D, log(e(0)) € Fil' Ais and N = ppN in D. O

One the other hand, given the G-action on Ais ®s D defined via (5.1.1), we want
to define a certain logarithm of the G-action to recover N. (We should be careful at
this point because the G-action is not linear). A technical result is needed to define
such a logarithm.

For any field extension F over Q,, denote Fy= = J,2; F((y») with (pn a p'-th
primitive root of unity. Thus Kep~ = Up—; K( VT, () is Galois. So we have the
following field extensions

Koo po

SN
Ko Ky
N

Let Hx = Gal(K,~/K) C Gal(Q~/Qp) ~ Z;j. So Hx may be identified as a closed
subgroup of Zj.

Lemma 5.1.2. (1) K= NKo =K.
(2) Gal(Keop~/Keo) = Hy and Gal(Keo p /[ Kp) = Z(1).
(3) Gal(Kup~/K) = Gal(Ke peo /Kpew) ¢ Gal(Keo po / Koo) = Zp(1) = Hg. Hy acts on
Z,(1) by the cyclotomic character.

Proof. We only need to prove (1). For any n > 0, let F, = K(7,,) N K~ and denote
K(m,) by K. We prove that F,, = Kby an induction on n. The case n = 0 is trivial.
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Now suppose that F, = K and F,,;1 # K. We first show that {, € K. Note that
[F11+1 ‘K, : Kn] | [Kn+1 :Kn] =p and F1- K, # K,

wehave [F11-K, : K] = pand Fy41-K,, = K;141. Moreover, sinceK C F,.1NK, CF, =
K, K,+1/K,, is Galois and hence Gal(K,,;1/K;) ~ Gal(F,+1/K). Let 0 € Gal(K,+1/K},)
be a nontrivial element, then 0(7,+1)/mn+1 € Ky41 is nontrivial p-th root of unity. So
Cp € Kyi41. Note that

[Kn(Cp) :Ky]<p-1 and [Kn(Cp) t Kall[Kis1 : Ku] = p,

we have K;(C,) = K, and C, € K;,. By the induction that F,, = K, C, € K.

Now Gal(K,~/K) is a closed subgroup of Gal(Q,,~/Q,(Cp)) = 1 +pZ, (Note that
this fails if p = 2). Since [F,4+1 : K] = p, there must exist an m such that (,n € K,
Conn € K and F,;1 = K(Cpns1). In particular, Gal(K,+1/K},) = Gal(K(Cpn1)/K(Cpm)) =
Z/pZ. Choose ¢ € Gal(K,;1/K;) such that 6(Cyn1) = CpCpna. Then o(m,41) = Cf,n,,ﬂ

p=1
for some b € (Z/pZ)*. Write Cynn = i>—:6 aitt  witha; € Ok,. Then

p-1 p-1
. bi i
CPCP”’H = O(Cpmﬂ) = O-(Z aln;+l) = Z aicpln;+l.
i=0 i=0

Thus we have a9 = (a9 and ap = 0. Then (ywn is not a unit. Contradiction.
Therefore F,,1 has to be K. O

Remark 5.1.3. The above Lemma fails if p = 2 in general. For example, let K = Q,
and 7 = 2. Then Q»( V2) C Q,(Cy).

Fix a topological generator 7 of Gal(Ke p~/Kp~), the above Lemma shows that
—log(e(7)) is a generator of (Fil' Aris)?=1. So from now on, we fix t := — log(e(1)).
Note that 7 acts trivially on €(7), thus on t. Therefore, for any n > 0 and x € D, an
easy induction on n shows that

(5.12) (r—l)"(x)=2[ Y l.l,f’ffin!]yMt)@Nm(x)

m=n \iy+-+iy=m,i;>1

In particular, (7 — 1)"(x) € Fil"B!, ®s D and (T_nl)n (x) = 0 p-adically as n — oo (in

fact, it is easy to show that y,(t)/n — 0 p-adically, see §5.2.4, [Fon94a]). So we can
define

00

(5.1.3) log(r)(x) = Y_(-1)""!

n=1

(r-1"
(1)

and a direct computation shows that

(5.1.4) log(7)(x) = t ® N(x).

5.2. A Q,-version of Theorem 4.3.4. Let D € MF" (¢, N) be a weakly admissible

filtered (¢, N)-module and D = D(D) := D ®w) S € MF (¢, N). By Lemma 3.4.3,
the map

cris

(5.2.1) Va(D) = Hom,y o (D, Agl1/p]) — Homuyoar (D, BL).
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induced by the canonical projection ;l:t — Aqis defined by sending y;(X) — 0Ois an
isomorphism compatible with Ge.-action. On the other hand,

(5.2.2) Homygoqr (D, Bi,) = Homu, it (Acsis ®5 D, B,).

cris

By Lemma 5.1.1, we have a natural G-action on Acis ®s D via (5.1.1). So there exists
a G-action on the right side of (5.2.2) defined by

a(f)x) = o(f(0™' (x))) for any x € Acis ® D.
Combining (5.2.1) with (5.2.2) together, we have

Lemma 5.2.1. The map

Vae(D) = Hom,yy o5 (D, Aul1/p]) = Homa,, pir g (Aces ®s D, B)

cris

induced by (5.2.1) and (5.2.2) is a G-equivariant isomorphism.

Proof. Lemma 3.4.3 has proved the above map is a Q,-linear bijection. So we

only need to check the G-equivariance. For any f € Hom,, .~(D, Ast[1/p]), let
/S

fo € Homeod‘fS (D, Bt ) be its image of the map defined in (5.2.1). It suffices to

check for any x € D, 0 € G, o(f)o(x) = 0(fo(0™1(x))). Using (3.4.4) and the fact that
0(X) = €(0)X + €(0) — 1, we have:

Y o (fo(N'(x))yi(log(1 + a(X)))

i>0

Y (AN'()) Y 7i-10g(e(@))y;(log(1 + X))
j=0

i>0

a(f(x)

Modulo X, then we get

oM@ = Y a(fhNI())yilogle(@))

20

a(fo()_, yj(log(o™'e(0))) & N/(x)))

720

o(folo™ (x)))-

Corollary 5.2.2. The B!, -linear injections:

L Bz, Qp D Acis ® D — V;/t(@) ®z, Acriss

C®z,Q,: VAUDNY) ®z, Al = Acris @5 D.

*
cris

are compatible with G-actions, where t and (* are constructed in Theorem 4.3.4.
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5.3. Proof of the Main Theorem. Using notations in §3.5 and Lemma 3.5.3. Recall
that T is a G-stable Z,-lattice in a semi-stable p-adic Galois representation V, and
M the quasi-strongly divisible lattice such that Teis(M) = Tlg,, (Proposition 3.4.6).
Also recall that 7 is the fixed topological generator of Gal(Ke,p=/Kp~) discussed in
§5.1. We will use Lemma 4.3.6 and Corollary 5.2.2 to prove N is stable on M by
two steps. The first step is to show that Auis ®s M is G-stable in Aqis ®s D. More
generally, we have the following;:

Lemma 5.3.1. Notations as in Theorem 4.3.4. Let M, M’ € Mod‘/‘)s. Suppose that we
have the following commutative diagram:

Adis ®s M i> T (M,) ®Z,, Adris

cris

(5.3.1) \Lf i f
Acris ®s M i> T (M) ®Z,, Acris

cris

where f and f are Ais-linear or T-semi-linear morphisms compatible with Frobenius and
filtration. If p|f then plf.

Proof. We only prove the case that f and f are Ayis-linear. The proof for 7-semi-
linear case is totally the same.

Let d’ be the S-rank of M’, af,..., &, € Fil’ M’ such that pr(a)), ..., pr(al,) is
a basis of M'. Since f preserves filtration, f(a},...,a/,) € [Fil'(Auis ®s M)J4. By
Corollary 4.1.3, we have

d
(5.3.2) Fil (Acris ®5 M) = () Acris ® t; + Fil’ Acris 5 M.
i=1
with (e1,...,e1) = (pr(a1),..., @) a basis of M. Therefore there exist d x d’-
matrices X, W with coefficients in Ay, Fil’ Auis respectively such that

(533) f(ai,...,a['i,) = (al,...,ad)X-i- (61,...,€d)w

We claim that coefficients of X are in Fil'Aqs + PAcris.-
To see the claim, applying i on the both sides of (5.3.3), we have

imofay,...,al) = imla, ..., a))X + e, ... ea)W = (eq, ..., eq)(CX + W),

where ¢4, ..., ¢; is a basis of chris(M) as in Lemma 4.3.6 and C, W’ are matrices with
coefficients in Acs, Fil’Auis respectively such that ip(ay, ..., aq) = (e1,...,¢7)C
and tpq(er, ..., e)W = (¢1,...,¢5)W'. On the other hand, since diagram (5.3.1) is
commutative and p[f, all the coefficients of CX + W’ are in pAqis. By Lemma
4.3.6, there exists a matrix C’ such that the coefficients of C'C — #'T are in Fil’ Ais.
Thus coefficients of X are in Fil’Ayis + pAcis. To show the claim, it suffices
to show that if x € Aujs and X € pAuis + FilPAgis then x € Fil'Agis + pAcris.
Recall R = yLnOK/p constructed in §2.2. For any (4;)i>0 € R with a; € Ok/p, let

4; € Ok be a lift of a;, then a® = lim (4,)"" is well defined and independent of the

choice of 4;. We define the valuation on R by vr((2:)is0) = v(a®) where v(-) is the
standard valuation of O (§1.2.2 and §1.2.3, [Fon94a]). Let Fil'R be the image of
Fil'(W(R)) under the reduction mod p. We see that Fil'R = {x € Rlvg(x) > 1} and
Acris/ (pAris + FilP Acris) =~ R/FilPR. Let ¥ and f be the image of x and t in R/Fil’'R
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respectlvely Note that vr(f) = UR(T(H) 1=

. Since I'x € Fil’R, vg(f'X) > p. But
or(t) = ’H <p—1becauser <p—-2. Therefore, vr(X¥) > land x € Fil! Aqis mod p.
Now since f is compatible with Frobenius, by (5.3.3) we have
(@), - prap) = @, ..., a0)X + (e, ...ea) W)
= (e1,...,en)p(X) + (e, ..., eq)p(W)

Since coefficients of X are in Fil'As + PAcris, we have plp(X). Note that ple,.(W)
because W’s coefficients are in Fil’ A;s. Finally, since pray), ..., qor(a;,) is a basis
of M, we get plf. m]

Proof of Lemma 3.4.7. It suffices to prove that M’ C M. Choose a smallest integer
n such that p" M’ ¢ M. Then p" : M’ - M is a morphism in Mod(/PS. Use Lemma
5.3.1 for f =p" and f = p". Then we see that  has to be 0. ]

Combining Theorem 4.3.4 with Corollary 5.2.2, we have the following commu-
tative diagram:

[®Zp Qp

(5.3.4)

V:t(D) ®ZP Acris

cris

ACI‘IS ®s M — =T

cris

(M) ®Zp Acris

where the top row map is compatible with G-action and the bottom row map is
compatible with Ge-action. We claim that Ais ® M is stable under G. To check
this, it suffices to check Auis ® M is stable under 7. Since TV = Ty, (M) is a
G-stable Z,-lattice, we see that T ®z, Aais is stable under 7. Choose 1 such that
P T (Acris ®5 M) C Adis ® M. Now using Lemma 5.3.1 for f = p"7 on Auis ®5 M
and f = p"t on T}, (M) ®z, Acris, We have T(Auis ®s M) C Acris ®s M.

Now we are ready to show that M is stable under N. By (5.1.4), for any
x € M, t ® N(x) = log(7)(x). We claim that t ® N(M) C Auis ® M by proving
that log(t)(M) C Acis ®s M. It suffices to show that @(M) C Acis ®s M for
all n > p. Let (ay,...,a4) € Fil' M constructed in Proposition 4.1.2, (ey,...,e1) =
(@r(a1), ... @r(aq)) a basis of M. Using (5.1.2), we see that

(t = 1)"(a1, ..., aq) € [Fil"BE, (Acis ®s M)].
Since (M) C (Aais ®s M), we get
(T = 1)1, .., aa) € [Fil"Ais(Aais ®5 M)]".
Therefore,
(t=1)"e1, ..., ea) = pl(r = 1)@, ..., ag)) € [@(Fil" Acris) - (Acris @5 M)]".

Now it suffices to check that for any n > p and x € Fil"Ais, @,(X)/n € Acris. We

can further reduce the problem to check if (”(E(Zﬂ € Sforallm > n > p. Note

that c; = @(E(u))/p is a unit in S. So it is equivalent to show that £ ¢ Z,, for all
m > n > p and we include the computation in the lemma below. Thus we prove
the claim that t ® N(x) € Agis ®s M.

Lemma5.3.2. fm>n2p>2andr <p-—1,thenm—r—vy(nm!) > 0.
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Proof. Since n > p, v,(n) < % < %. Hence

m m mp*-3p+1)  p*-3p+1 1
d=m-v,mm)>m—- — — — = > =p_2_ .
plom) p-1 p  pp-1) p-1 P
Since d is an integer, it follows thatd > p -2 > r. o

Finally, suppose that we have
N((El, Ce ,ed)) = (61, .. .,ed)W
with coefficients of W in Sk, . Select the smallest number # such that all coefficients
of p"W are in S. Then p"N(M) c M. Since E(u)N(Fil"D) c Fil'D, we have
(5.3.5) Ewp"N((aq,...,a0) = (a1,...,a)X + (e, ..., ea)Y
with coefficients of X, Y in S, Fil’S respectively. On the other hand, note that
t®@N(M) C Aqis ®s M and t ® N(Fil' M) C Fil" (Auis ®s M), we have
(5.3.6) IN((a1, ..., a9)) = (a1, ..., 00)X + (e1,...,e3)Y’
with coefficients of X’, Y’ in Agis, Fil’ Aqis respectively. Combining (5.3.5) with
(5.3.6), we have
A(X —E)p"X’) = tY — E(u)p"Y’
where (a1, ..., a4) = (e1,...,e4)A. By Lemma 4.1.2, there exists a d X d-matrix B with
coefficients in S such that BA = AB = E(u)'I, we have

E(u) (tX — E(u)p"X’) = tBY — E(u)p"BY’
Note that the right hand side is in Fil' Acyis - FilP Asis. By Lemma 3.2.2, we get
E) 1 (tX — E(u)p"X’) € Fil’ Awris. Modulo Fil’ Auis + pAcris both sides, we get the
coefficients of E(u) ~tX are in Fil’ Aqis + pAcris (here we may assume thatn > 1). An
almost the same argument as in the proof of Lemma 5.3.1 shows that the coefficients
of X are in Fil'S + pS.
Now consider

cip"N((er, ..., eq))

cip"N(pH(an), . .., pa(aq))
= p"o(E@N(a,...,aq)))
Pr((ar, ..., a)p(X) + p((er, - - -, ea))pr(Y)

But plp(X) and pl@,(Y) in Aqis. This contradicts to the selection of # unless n = 0.
That is, W has all its coefficients in S and then N(M) c M.
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