A NOTE ON POTENTIAL DIAGONALIZABILITY OF
CRYSTALLINE REPRESENTATIONS

HUI GAO, TONG LIU

ABSTRACT. Let Ko/Qp be a finite unramified extension and Gk, denote the
Galois group Gal(@p /Ko). We show that all crystalline representations of G,
with Hodge-Tate weights C {0,--- ,p — 1} are potentially diagonalizable.
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1. INTRODUCTION

Let p be a prime, K a finite extension over Q, and G denote the absolute Ga-
lois group Gal(@p/K). In [BLGGT10] §1.4, potential diagonalizability is defined for
a potential crystalline representation of G. Since the potential diagonalizability
is the local condition at p for a global Galois representation in the automorphic
lifting theorems proved in [BLGGT10] (cf. Theorem A, B, C), it is quite inter-
esting to investigate what kind of potential crystalline representations are indeed
potentially diagonalizable. Let Ky be a finite unramified extension of QQ,. By using
Fontaine-Laffaille’s theory, Lemma 1.4.3 (2) in [BLGGT10] proved that any crys-
talline representation of Gk, with Hodge-Tate weights in {0, ..., p—2} is potentially
diagonalizable.

In this short note, we show that the idea in [BLGGT10] can be extended to
prove the potential diagonalizability of crystalline representations of Gk, if Hodge-
Tate weights are in {0,...,p — 1}. Let p : Gg, — GLd(@p) be a crystalline
representation with Hodge-Tate weights in {0,...,p — 1}. To prove the potential
diagonalizability of p, we first reduce to the case that p is irreducible. Then p
is nilpotent (see definition in §2.2). Note that Fontaine-Laffaille’s theory can be
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extended to nilpotent representations. Hence we can follow the similar idea in
[BLGGT10] to conclude the potential diagonalizability of p.

Acknowledgement: It is pleasure to thank David Geraghty and Toby Gee
for very useful conversations and correspondence.

NOTATIONS

Throughout this note, K is always a finite extension of Q, with the absolute
Galois group Gk := Gal(Q,/K). Let Ky be a finite unramified extension of Q,
with the residue field k. We denote W (k) its ring of integers and Frobyy () the
arithmetic Frobenius on W (k). If E is a finite extension of Q, then we write O
the ring of integers, w its uniformizer and F = O/wO its residue field. If A is
a local ring, we denote m,4 the maximal ideal of A. Let p : Gx — GL4(A) be a
continuous representation with the ambient space M = @2 ; A. We always denote
p* the dual representation induced by Hom (M, A). Let p: Gx — GLq(Q,) be a
de Rham representation of Gx. Then Dgr(p*) is a graded K ®q, @p-module. For

any embedding 7 : K — @p, we define the set of 7-Hodge-Tate weights
HT,(p) = {i € Zlgr'(Dan(p")) ®es, 5, (K ©xc.- y) # 0},

In particular, if € denotes the p-adic cyclotomic character then HT, (e) = {1} (here
our convention is slightly different from that in [BLGGT10]).

2. DEFINITIONS AND PRELIMINARY

2.1. Potential Diagonalizability. We recall the definition of potential diagonal-
izability from [BLGGT10]. Given two continuous representations pi,ps : Gx —
GLd(O@p), we say that p; connects to pa, denoted by p1 ~ po, if:
e the two reductions p; := p; mod mo@p are equivalent to each other;
e both p; and py are potentially crystalline;
e for each embedding 7 : K — Q,, we have HT,(p1) = HT+(p2);
e p; and po define points on the same irreducible component of the scheme
Spec(RE1 ,{HTT(pl)}’K,_Cris[%]) for some sufficiently large field extension K’ /K.
Here R'ﬁjl’ (HT (p1)}, K -cris is the quotient of the framed universal deforma-
tion ring REl corresponding to liftings p with HT,(p) = HT.(p;) for all
7 and with p |g,, crystalline. The existence of Rpgl,{HTT(pl)},K’—criS is the
main result of [Kis08].
A representation p : G — GLd((’)@p) is called diagonalizable if it is crystalline

and connects to a sum of crystalline characters y1 @ - - - ® xq4. It is called potentially
diagonalizable if p |, , is diagonalizable for some finite extension K'/K.

Remark 2.1.1. By Lemma 1.4.1 of [BLGGT10], the potential diagonalizability is

well defined for a representation p : G — GLd(Qp) because for any two G i-stable
Og -lattices L and L', L is potentially diagonalizable if and only if L’ is potentially

diagonalizable.
Lemma 2.1.2. Suppose p : Gg — GL4(Q,) is potentially crystalline. Let Fil® be

a Gg-invariant filtration on p. Then p is potentially diagonalizable if and only if
®,gr'p is potentially diagonalizable.
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Proof. We can always choose a G x-stable (9@ -lattice M inside the ambient space
P

of p such that Fil’p N M is the Og -summand of M and the reduction M is semi-
simple. Then the lemma follows (7) on page 20 of [BLGGT10]. O

2.2. Nilpotency and Fontaine-Laffaille Data. Let O := Op for a finite exten-
sion £ over Q, and W (k)o := W (k) ®z, O. Following [FL82], let MFo denote
the category of finite W (k)o-modules M with

e a decreasing filtration Fil’M by W (k)o-submodules which are W (k)-direct
summands with Fil’M/ = M and Fil’ M = {0};
e Frobyy () ® l-semi-linear maps ¢; : Fil'M — M with ¢; it ar= PPit+1
and >, o (Fil'M) = M.
The morphisms in MFo are W (k)o-linear morphisms that compatible with ¢;
and Fil’ structures. We denote MF, 0.tor the full sub-category of MFo consisting
objects which are killed by some p-power, and denote MFo s the full category
of MFp whose objects are finite W (k)o-free. Obviously, if M € MFp g then
M/w™M is in MFo o for all m.

It turns out that the category MF o tor is abelian (see §1.10 in [FL82]). An object
M in MFo tor is called nilpotent if there is no nontrivial subobject M' C M such
that Fil' M’ = {0}. Denote the full subcategory of nilpotent objects by MFS tor-
An object M € MFoy is called nilpotent if M/w™M is nilpotent for all m.
Denote by MFp g, the full subcategory of MFo  whose objects are nilpotent.

Let Repp(Gk,) be the category of finite O-modules with continuous O-linear
G k,-actions. We define a functor T, from the category MFp ., (resp. MFg g )
to Repp (G, ):

oris(M) = HomW(k),w,Fil"'(Mv Acris ®z, (QP/ZP)) it M € MFo tor,

and
* (M) = Homw(k%SOhFﬂi(M, Acris) if M e M\/—'.Oyfr.

cris

Let Rep[EO’i)r_isl] (Gk,) denote the category of continuous E-linear G g, -representations

on finite dimensional E-vector spaces V such that V are crystalline with Hodge-Tate
weights in {0,...,p—1}. Anobject V € Rep?~ 1) (Gk,) is called nilpotent if V' does

E,cris

not admit nontrivial unramified quotient 2. We denote by Repggf&:]’n(G K,) the

category of Gg,-stable O-lattices in nilpotent representations in Rep[EOfr_isl] (Gk,)-
We gather the following useful results from [FL82] and [Laf80].

Theorem 2.2.1. (1) The contravariant functor T, from MF 5 4o, to Repo(Gr,)
is exact and fully faithful.
(2) An object M € MFo g is nilpotent if and only if M/wM is nilpotent.
(3) The essential image of Tt from MF( o, is closed under taking sub-objects
and quotients.
(4) Let V be a crystalline representation of Gg,. V is nilpotent if and only if
Vg, is nilpotent for any unramified extension K'/Kj.
(5) T induces an anti-equivalence between the category MF ¢, and the cat-
egory Repy 2 (Grcy)-

O,cris

21t is easy to check that V' admits a nontrivial unramified quotient as Q,-representations if and
only if V' admits a nontrivial unramified quotient as E-representations. See the proof of Theorem
2.2.1 (4).
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Proof. (1) and (2) follow from Theorem 6.1 in [FL82]. Note that Ug in [FL82] is just
T% s here. To prove (3), we may assume that O = Z, and it suffices to check that
T sends simple objects in MF, 4, to simple objects in Repy (Gk, ) (see Property
6.4.2 in [Car06]). And this is proved in [FL82], §6.13 (a). (4) is clear because V is
nilpotent if and only if (V*)/50 = {0} where Iy, is the inertia subgroup of G, .
(5) has been essentially proved in [FL82] and [Laf80] but has not been recorded in
literature. So we sketch the proof here. First, by (1), it is clear that T (M) is
a continuous O-linear G'i,-representation on a finite free O-module T'. Using the
totally same proof for the case when FilP ' M = {0} in [FL82] (using Theorem in
[FL82] §0.6 and (1)), we has rankp (1) = ranky ), M = d. It is easy to see that
M is a W (k)-lattice in Depis(V*) where V' = Q, ®z, T. Hence V is crystalline
with Hodge-Tate weights in {0,...,p — 1}. To see V is nilpotent, note that V has
a unramified quotient V is equivalent to that there exists an M’ C M such that
M'OFil' M = {0} and M /M’ has no torsion (just let M’ := Denis(V*)NM). So M
is nilpotent implies that V' is nilpotent. Hence by (1), T/, is an exact, fully faithful
functor from MFp , to Reply? 71]’“(G ko). To prove the essential surjectiveness

O,cris
of TZ,., it suffices to assume that O = Z, (indeed, suppose that T' is an object

in Repgfgsl]’n(GKo) with d = rankoT. Let V = Q, ®z, T and D = Deis(V*).
It is well-known that D is a finite free £ ®q, Ko-module with rank d. If there
exists an M € MFy . such that T3 (M) ~ T as Zp[G]-modules. By the full
faithfulness of T, M is naturally a W(k)o-module. Since D is E ®q, Ko-free,
it is standard to show that M is finite W (k)o-free by computing O;-rank of M,

where M; := M ®w ), O; and W(k)o ~ [], O;). Now suppose that T is an
object in Repy” 1" Let V.= @, ®z, T and D = Deis(V*). By [Laf80] §3.2,

Zy,cris

there always e)gists a W(k)-lattice M € MFz, g inside D. We has to show that
M is nilpotent. Suppose that M := M/pM is not nilpotent. Then there exists
N C M such that Fil'N = {0}. Consequently ¢o(Fil’N) = ¢o(N) = N. By
Fitting lemma, (1, (o)™ (M) # {0}. So N,,(¢0)™ (M) # {0} which means that
V = Qp ®z, Tg;(M) must has a unramified quotient. This contradicts that V' is
nilpotent and hence M has to be nilpotent by (2). It remains to show that other
Gk,-stable Zy-lattices L' C V' is also given by an object M" € MF7 . Let L :=
TZ.(M). Without loss of generality, we can assume that L’ C L. So for sufficient
large m, we have the exact sequence 0 — f,,(L') — L/p™L — L/L’" — 0 where f,,
is the map L' < L — L/p™L. It easy to check that L/p™L ~ T, (M/p™M). By
(3), there exists an object M, € MFp i, such that T3, (M;,) =~ f,(L'). Finally
M’ =lim My, is the required object in MFg p,. O

Contravariant functors like 7%,
we define a covariant variant for T7,..
precisely,

are not convenient for deformation theory. So
Define Teyis(M) := (T} (M))*(p — 1), more

cris

Teris(M) := Homo (T5;(M), E/O)(p — 1) it M € MF 4y,
and
Tcris(M) = HOID@( c*ris(M)7 O)<p - 1) it M e M ?Q,fr'

Let p : Gk, — GL4(O) be a continuous representation such that there exists

an M € MFpy, satisfying Teis(M) = p. Then Teys(M) = p := p mod wO
where M := M /@M. Let C(f9 denote the category of Artinian local O-algebras for
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which the structure map O — R induces an isomorphism on residue fields. Define
a deformation functor D7, (R) := {lifts p : Gk, — GLq(R) of p such that there

exists an M € MFg i, satisfying Teis(M) ~ p}.

Proposition 2.2.2. Assume that W (k) C O. Then D, is pro-represented by a
formally smooth O-algebra R:

p,cris”

Proof. By (1) and (3) in Theorem 2.2.1, D2,  is a sub-functor of the framed Galois

cris

deformation functor of p and pro-represented by an O-algebra R} ;. The formal
smoothness of R} ., is totally the same as that in Lemma 2.4.1 in [CHT08]. Indeed,

suppose that R is an object of C(f9 and I is an ideal of R with mgrI = (0). To prove
the formal smoothness of R ., we have to show that any lift in Dg; (R/I) admits
a lift in D2 (R). Then this is equivalent to lift the corresponding N € MFo tor
(note that any lift N of M will be automatically in MFg, . by Theorem 2.2.1
(3)). And this is just the same proof in Lemma 2.4.1 in [CHT08]. Note that the
proof did not use the restrictions (assumed for §2.4.1 loc. cit.) that Fil?~'M = {0}
and dimk(griGgl(ﬂGFﬁ)) ®op, 7 O < 1.

(]

3. THE MAIN THEOREM AND ITS PROOF

Theorem 3.0.3 (Main Theorem). Suppose p: Gx, — GL4a(Q,) is a crystalline

representation, and for each T : Ky — @p, the Hodge-Tate numbers HT,(p) C
{ar,...,ar +p— 1}, then p is potentially diagonalizable.

Proof. We may assume that p factors through GL4(O) for a sufficient large O. By
Lemma 2.1.2, we can assume that p is irreducible and hence p*(p — 1) is nilpotent.
Just as in the proof of Lemma 1.4.3 of [BLGGT10], we can assume a, = 0 for
all 7. Then we can choose an unramified extension K’, such that p |g,, has a
G g-invariant filtration with 1-dimensional graded pieces. By Theorem 2.2.1 (4),
p*(p—1) is still nilpotent when restricted to Gx,. Without loss of generality, we can
assume that Ko = K’. Now there exists an M € MF{ g such that Teis(M) =~ p.
Then M := M/wM is nilpotent and Tis(M) =~ p. Note that M has filtration
with rank-1 F ®z,,7 k-graded pieces to correspond to the filtration of p. Now
by Lemma 1.4.2 of [BLGGT10], we lift M to M’ € MFo s which has filtration
with rank-1 W (k)o-graded pieces (note the proof of Lemma 1.4.2 did not use the
restriction that HT,(p) C {0,...,p —2}). Hence M’ is nilpotent by Theorem 2.2.1
(3). Then p = T¢is(M') is crystalline and has a Gk, -invariant filtration with 1-
dimensional graded pieces by Theorem 2.2.1 (5). Then part 1 of Lemma 1.4.3 of
[BLGGT10] implies that p’ is potentially diagonalizable. Now it suffices to show
that p connects to p’. But it is obvious that R} . is a quotient RE{HTT(p)},K—criS‘
By Proposition 2.2.2, we see that p and p’ must be in the same connected component
of Spec(RE{HTT(p)LK_CﬂS[%]). Hence p ~ p' and p is potentially diagonalizable. -
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