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Compatibility of Kisin modules for
different uniformizers

By Tong Liu at West Lafayete

Abstract. Let p be a prime and T a lattice inside a semi-stable representation V . We
prove that Kisin modules associated to T by selecting different uniformizers are isomorphic
after tensoring a subring in W.R/. As consequences, we show that several lattices inside the
filtered .';N /-module of V constructed from Kisin modules are independent on the choice of
uniformizers. Finally, we use a similar strategy to show that the Wach module can be recovered
from the .'; OG/-module associated to T when V is crystalline and the base field is unramified.

1. Introduction

Let k be a perfect field of characteristic p,W.k/ its ring of Witt vectors,K0 D W.k/Œ 1p �,
K=K0 a finite totally ramified extension, GK WD Gal.K=K/.

To understand the p-adic Hodge structure of GK-stable Zp-lattices in semi-stable rep-
resentations, the method of Kisin modules is powerful. Recall the definition of Kisin modules
in the following: We fix a uniformiser � 2 K with Eisenstein polynomial E.u/. Put

S WD W.k/JuKI

S is equipped with a Frobenius endomorphism ' via u 7! up and the natural Frobenius
onW.k/. A Kisin module of height r is a finite free S-module M with '-semi-linear endomor-
phism 'M WM!M such that E.u/rM � h'M.M/i, where h'M.M/i is the S-submodule
of M generated by 'M.M/. By the result of Kisin [9], for any GK-stable Zp-lattice T inside
a semi-stable representation V with Hodge–Tate weights in ¹0; : : : ; rº, there exists a unique
Kisin module M.T / of height r attached to T (see Section 2.1 for more precise meaning of
this sentence).

It is obvious that the construction of Kisin modules depends on the choice of the uni-
formizer � . If we choose another uniformizer � 0 of K, then we get another M0.T /. A natural
question is: what is the relationship between M.T / and M0.T /?

It turns out that each choice of uniformizer � determines an embedding S ,! W.R/ via
u 7! Œ�� (see Section 2.1 for details of the definition of W.R/ and Œ��). We denote by S�
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2 Liu, Compatibility of Kisin modules for different uniformizers

and S� 0 the image of embedding determined by � and � 0, respectively. By the main result
of [12], there exists a GK-action on W.R/˝';S� M.T / which commutes with 'M. In this
paper, we prove the following:

Theorem 1.0.1. There exists a W.R/-linear isomorphism

W.R/˝';S� M.T / ' W.R/˝';S�0 M0.T /

compatible with '-actions and GK-actions on the both sides.

In fact, W.R/ in the above isomorphism can be replaced by a much smaller ring QS�;� 0 ,
and an even smaller ring S�;� 0 when V is crystalline. See Theorem 2.2.1 for more details. It
turns out that we can extend Theorem 1.0.1 to discuss the relation between Kisin modules and
Wach modules ([2]). Assume that K D K0 is unramified and let T be a GK-stable Zp-lattice
inside a crystalline representation. Then we can attach the Wach module N.T / and the Kisin
module M.T / to T . Let �pn be a primitive pn-th root of unity. SetKp1 WD

S1
nD1K.�pn/ and

Hp1 WD Gal.K=Kp1/. The following theorem describes a direct relation between the Kisin
module and the Wach module.

Theorem 1.0.2. We have N.T / ' . OR˝';S M.T //Hp1 .

Here OR � W.R/ is a subring constructed in [12, Section 2.2] and it was proved that
OR˝';S M � W.R/˝';S M is GK-stable ([12, Section 2.2], also see Section 2.1).

Theorem 1.0.1 can be used to understand lattices in the filtered .';N /-modules attached
to semi-stable representations ofGK . More precisely, let V be a de Rham representation ofGK
and T � V a GK-stable Zp-lattice. It is well known ([1]) that V is semi-stable over a finite
extension K 0=K. By using the Kisin module attached to T jGK0 , we can construct various lat-
tices in either Dst;K0.V / WD .V

_ ˝Qp Bst/
GK0 or DdR.V / WD .V

_ ˝Qp BdR/
GK , where V _

denotes the dual of V . One consequence of Theorem 1.0.1 is that the constructions of such
lattices are independent of the choice of � . In the end, we also discuss several lattices (inside
the filtered .';N /-module) whose constructions are independent of Kisin’s theory. But they
are useful to discuss the p-adic Hodge properties for (p-adic completion of) the direct limit
of de Rham representations. In particular, we hope these will be useful to understand those
representations discussed in [6] and [5].

The arrangement of this paper is as follows: In Section 2, we setup notations and sum-
marize the facts needed for the proof of Theorem 1.0.1 and give a more precise version of
Theorem 1.0.1. We give the proof of Theorems 1.0.1–1.0.2 in Section 3. We also show that the
compatibility of Kisin modules when base changes (Theorem 3.2.1). Section 4 is devoted to
discuss various lattices inside filtered .';N /-modules attached to potentially semi-stable rep-
resentations. We show that two types of lattices constructed from Kisin’s theory do not depend
on the choice of uniformizers and they are compatible with base change. In Section 4.3, we
show that several lattices (constructed without using Kisin’ theory) may help us to understand
the p-adic completion of direct limit of de Rham representations. In particular, we hope that our
strategy is useful to those representations studied in [6]. The last section is the erratum of [13].
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Liu, Compatibility of Kisin modules for different uniformizers 3

2. Preliminary and main results

2.1. Kisin modules and .'; OG/-modules. We set up notations and recall some facts
on (integral) p-adic Hodge theory in this subsection. We fix a nonnegative integer r throughout
the paper. Let V be a semi-stable representation of GK with Hodge–Tate weights in ¹0; : : : ; rº.
Write V _ for the dual of V . By the well-known theorem of Fontaine and Colmez, the functor

V 7! Dst.V / WD .V
_
˝Qp Bst/

GK

induces an anti-equivalence between the category of semi-stable representations with Hodge–
Tate weights in ¹0; : : : ; rº and the category of weakly admissible filtered .';N /-modules
.D; ';N;¹FiliDKº/with Fil0DK DDK and FilrC1DK D ¹0º. HereDK WDK˝K0D as usual.
The readers should be careful that we use the contravariant version ofDst, which were denoted
by D�st in many papers. But the current version of Dst is more convenient for integral theory.

Let R D lim
 �

OK=p, where the transition maps are given by Frobenius. By the universal
property of the Witt vectors W.R/ of R, there is a unique surjective projection map

� W W.R/! OOK

to the p-adic completion OOK of OK , which lifts the projectionR! OK=p onto the first factor
in the inverse limit. We denote by Acris the p-adic completion of the divided power envelope
of W.R/ with respect to Ker.�/. As usual, we write BCcris D AcrisŒ

1
p
� and denote by BCdR the

Ker.�/-adic completion of W.R/Œ 1
p
�. For any subring A � BCdR, we define a filtration on A by

FiliA D A \ .Ker.�//iBCdR.
Now select a uniformizer � of K. Let E.u/ 2 W.k/Œu� be the Eisenstein polynomial

of � . Let �n 2 K be a pn-th root of � such that .�nC1/p D �n; write � D .�n/n�0 2 R
and let Œ�� 2 W.R/ be the Techmüller representative. We embed the W.k/-algebra W.k/Œu�
intoW.R/ � Acris by the map u 7! Œ��. Recall S D W.k/ŒŒu��. This embedding extends to the
embedding S ,! W.R/ which are compatible with Frobenious endomorphisms.

We denote by S the p-adic completion of the divided power envelope of W.k/Œu� with
respect to the ideal generated by E.u/. Write SK0 WD SŒ

1
p
�. There is a unique map (Frobenius)

'S W S ! S which extends the Frobenius on S. We write NS for the K0-linear derivation on
SK0 such thatNS .u/ D �u. Let FilnS � S be the p-adic completion of the ideal generated by


i .E.u// WD
E.u/i

i Š

with i � n. One can show that the embedding W.k/Œu�! W.R/ via u 7! Œ�� extends to the
embedding S ,! Acris compatible with Frobenius ' and filtration (note that E.Œ��/ is a gener-
ator of Fil1W.R/). We set BCst WD B

C
crisŒu� � B

C
dR with u WD log.Œ��/.

Let

K1 WD

1[
nD0

K.�n/

and OK its Galois closure over K. Then OK D
S1
nD1K1.�pn/ with �pn a primitive pn-th root

of unity. Write

G1 WD Gal.K=K1/; Kp1 WD

1[
nD1

K.�pn/; Gp1 WD Gal. OK=Kp1/;

HK WD Gal. OK=K1/; OG WD Gal. OK=K/:
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4 Liu, Compatibility of Kisin modules for different uniformizers

For any g 2 GK ,

�.g/ WD
g.�/

�

is a cocycle with value in R. Set � WD .�pi /i�0 2 R and t WD � log.Œ��/ 2 Acris as usual.
As a subring of Acris, S is not stable under the action of GK , though S is fixed by G1.

Define a subring inside BCcris:

RK0 WD

´
x D

1X
iD0

fi t
¹iº
W fi 2 SK0 and fi ! 0 as i !C1

µ
;

where t ¹iº D t i

p Qq.i/ Qq.i/Š
and Qq.i/ satisfies i D Qq.i/.p�1/C r.i/ with 0 � r.i/ < p�1. Define

OR WD W.R/ \RK0 :

One can show that RK0 and OR are stable under the GK-action and the GK-action factors
through OG ([12, Section 2.2]). Let ICR be the maximal ideal of R and IC OR D W.ICR/ \ OR.
By [12, Lemma 2.2.1], one has OR=IC OR ' S=uS D W.k/.

Recall that a Kisin module of height r is a finite free S-module M with '-semi-linear
endomorphism 'M WM!M such that

E.u/rM � h'M.M/i;

where h'M.M/i is the S-submodule of M generated by 'M.M/. A morphism between two
Kisin modules is just an S-linear map compatible with Frobenius. As a subring of Acris via
u! Œ��, S and S are not stable under the action of GK , but stable under G1. This allows
us to define a functor TS from the category of Kisin modules to the category of finite free
Zp-representations of G1 via the following formula:

TS.M/ WD HomS;'.M; W.R//:

See [10, Section 2.2] for more details on TS. In particular, by [10, Proposition 2.2.1], we can
change Sur to W.R/ in the definition of TS.

Let us review the theory of .'; OG/-modules, which is a variation of that of Kisin modules.
Following [12], a finite free .'; OG/-module of height r is a triple .M; '; OG/, where

(1) .M; 'M/ is a finite free Kisin module of height r ,

(2) OG is a OR-semi-linear OG-action on OM WD OR˝';S M,

(3) OG commutes with ' OM on OM, i.e., for any g 2 OG, g' OM D ' OMg,

(4) regard M as a '.S/-submodule in OM, then M � OMHK ,

(5) OG acts on W.k/-module M WD OM=IC OR OM 'M=uM trivially.

A morphism between two finite free .'; OG/-modules is a morphism of Kisin modules
that commutes with OG-action on OM’s. For a finite free .'; OG/-module OM D .M; '; OG/, we can
associate a ZpŒGK �-module:

(2.1.1) OT . OM/ WD Hom OR;'.
OR˝';S M; W.R//;

where GK acts on OT . OM/ via g.f /.x/ D g.f .g�1.x/// for any g 2 GK and f 2 OT . OM/.
By [10, Example 2.3.5], there exists an element t 2 W.R/ such that t modp 6D 0 and

'.t/ D c�10 E.u/t, where c0p is the constant term of E.u/. Such a t is unique up to Z�p . The
following theorem summarizes the main results in [12].
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Liu, Compatibility of Kisin modules for different uniformizers 5

Theorem 2.1.1 ([12]). The following statements hold:

(1) OT induces an anti-equivalence between the category of finite free .'; OG/-modules of
height r and the category of GK-stable Zp-lattices in semi-stable representations of GK
with Hodge–Tate weights in ¹0; : : : ; rº.

(2) OT induces a natural W.R/-linear injection

(2.1.2) O� W W.R/˝';S M! OT _. OM/˝Zp W.R/

such that O� is compatible with Frobenius and GK-actions on both sides. Moreover,

.'.t//r. OT _. OM/˝Zp W.R// � O�.W.R/˝';S M/:

(3) There exists a natural isomorphism TS.M/
�
�! OT . OM/ of ZpŒG1�-modules.

2.2. A refinement of Theorem 1.0.1. The theory described by Theorem 2.1.1 depends
on the choice of uniformizer � in K. Fix a GK-stable Zp-lattice T inside a semi-stable rep-
resentation V ; if we select another uniformizer � 0, then we obtain M0 and O�0 in (2.1.2). As
indicated in the introduction, one main goal of this paper is to understand the relation between
M and M0. Let S� (resp. S� ) denote the image of embedding S ,! W.R/ (resp. S ,! Acris)
via u 7! Œ��. Write � 0 D �� with � D .�n/n�0 2 R. Note that �0 is a unit. So log.Œ��/ 2 BCcris.

We denote by S� 0 and S� 0 the subrings of W.R/ and Acris, respectively, via u 7! Œ� 0�.
Let QS�;� 0 be the smallest ring inside BCcris containing S� Œ 1p �, S� 0 Œ

1
p
� and log.Œ��/. Set

QS�;� 0 WD W.R/ \ QS�;� 0 :

Similarly, let S�;� 0 be the smallest ring inside BCcris containing S� Œ 1p � and S� 0 Œ 1p � and set

S�;� 0 WD W.R/ \ S�;� 0 :

Theorem 2.2.1. Notations as above, we have

O�. QS�;� 0 ˝';S� M/ D O�0. QS�;� 0 ˝';S�0 M0/

as submodules of T _ ˝Zp W.R/.
If V is crystalline, then QS�;� 0 in the above equation can be replaced by S�;� 0 .

Remark 2.2.2. (1) Let � D �=� 0. If � 2 W.k/�, then we can arrange � 0n so that

Œ�� D Œ N��Œ� 0�

with N� D �modp 2 k�. Hence S�;� 0 D S� D S� 0 .
(2) If � 62 W.k/�, then the situation could be more complicated. So far we do not have

a good description for QS�;� 0 , even for S�;� 0 . We warn the readers that S�;� 0 may be larger
than the smallest ring containing S� and S� 0 . For example, let QE.u/ be the Eisenstein poly-
nomial of � 0. Then QE.Œ� 0�/=E.Œ��/ is a unit in W.R/, because Fil1W.R/ is a principal ideal
and E.Œ��/ and QE.Œ� 0�/ are generators of Fil1W.R/. Hence

x D '. QE.Œ� 0�/=E.Œ��// D QE.Œ� 0�p/=E.Œ��p/ 2 W.R/:

But E.Œ��p/=p is a unit in S� . Therefore, x 2 S�;� 0 . In general, x is not in the smallest ring
containing S� and S� 0 . See the following example.
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6 Liu, Compatibility of Kisin modules for different uniformizers

Example 2.2.3. Let K D Qp.�p/. Let � D �p � 1 and � 0 D �p� . We can choose �
and � 0 such that � 0 D ��0 with �0p D �. Then the smallest ring QS containing S� and S0� is
inside W.k/ŒŒŒ��; Œ�0� � 1��. If x is in QS, then

'.x/ 2 W.k/ŒŒŒ��; Œ�� � 1�� � RK0 \W.R/ D
OR:

On the other hand, because '2.E.Œ��//=p is a unit in S� , we can write '.x/ as a series
inK0ŒŒŒ��; Œ���1��. It is easy to see that this series is not inW.k/ŒŒŒ��; Œ���1��. But by [10, Lem-
ma 7.1.2], for any y 2 RK0 , there is only one way to expand y in a series in K0ŒŒŒ��; Œ�� � 1��.
So '.x/ is not in W.k/ŒŒŒ��; Œ�� � 1��. Contradiction and '.x/ 62 QS.

Notations 2.2.4. We will reserve ' and N to denote Frobenius action and monodromy
action on many different rings and modules. To distinguish them, we sometime add subscripts
to indicate over which those structures are defined. For example, 'M is the Frobenius defined
on M. We always drop these subscripts if no confusions arise. As we have indicated as before,
Kisin’s theory (and its related theory, like the theories of Breuil modules and .'; OG/-modules,
which will be used below) depends on the choice of the unformizer � , or more precisely,
depends on the choice of �n and hence the embedding S ,! W.R/ via u 7! Œ��. We add sub-
scripts � to subrings inW.R/ to denote subrings (like S; S) whose embeddings toBCdR depends
on the embedding S ,! W.R/ via u 7! Œ��. But we always drop subscripts when we just dis-
cuss the general theory where the embedding S ,! W.R/ via u 7! Œ�� is always fixed. Finally,

i .x/, Md�d .A/ and Id denote the standard divided power x

i

iŠ
, the ring of d � d -matrices with

coefficients in ring A and the identity map, respectively; V _ denotes the dual of a representa-
tion V .

2.3. Some facts on the theory of Breuil modules. We will use extensively the theory
of Breuil modules, which we review in this subsection. Following [3], a filtered '-module over
SŒ 1
p
� is a finite free SŒ 1

p
�-module D with

(1) a 'S -semi-linear morphism 'D W D ! D such that the determinant of 'D is invertible
in SŒ 1

p
�,

(2) a decreasing filtration over D of SK0-modules ¹Fili .D/ºi2Z with Fil0.D/ D D and
FiliSK0 � Filj .D/ � FiliCj .D/:

Similarly, we define filtered '-modules over S by changing SŒ 1
p
� to S everywhere in the

above definition, but we still require that the determinant of ' is in SŒ 1
p
�.

A Breuil module is a filtered '-module D over SŒ 1
p
� with the following extra mono-

dromy structure: a K0-linear map (monodromy) ND W D ! D such that

(1) for all f 2 SK0 and m 2 D , ND.f m/ D NS .f /mC fND.m/,

(2) ND' D p'ND ,

(3) ND.FiliD/ � Fili�1D :

A filtered .';N /-module D is called positive if Fil0DK D DK . It turns out that the
category of positive filtered .';N /-modules and the category of Breuil modules are equivalent.
More precisely, for any positive filtered .';N /-module .D; ';N; FiliDK/, we can associate
a Breuil module D by defining

D D S ˝W.k/ D; 'D WD 'S ˝ 'D; ND WD NS ˝ IdC Id˝ND:
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Liu, Compatibility of Kisin modules for different uniformizers 7

Define Fil0D WD D and by induction

FiliC1D WD ¹x 2 D W N.x/ 2 FiliD and f�.x/ 2 FiliC1DKº;

where f� W D � DK is defined by s.u/˝ x 7! s.�/x.
In [3, Section 6], Breuil proved the above functor D W D ! S ˝W.k/ D is an equiva-

lence of categories. Furthermore, D and D.D/ give rise to the same Galois representations
([4, Proposition 4.1.1.2]), namely, there is a natural isomorphism

HomW.k/;';N;Fili .D;B
C
st / ' HomS;';N;Fili .D.D/; OBCst /

as QpŒGK �-modules. Here OBCst is the period ring defined in [3].

Remark 2.3.1. In the theory of Kisin and Breuil modules, we use implicitly or explicitly
the above isomorphism to connect Galois representations associated to filtered .';N /-modules
with those of Breuil modules or Kisin modules. To make the above isomorphism, one set the
monodromy N on BCst via N.u/ D 1 (see [4, Section 3.1.1]). So strictly speaking, the mon-
odromy structure on BCst may depend on the choice of uniformizer � . On the other hand, pick
another uniformizer � 0 of K. We have � D �� 0 with � a unit in OK . Hence u D u0 C ˇ with
u0 D log.Œ� 0�/ and ˇ in BCcris. So N.u0/ D 1 if and only N.u/ D 1. This shows that the mono-
dromy structure on BCst is unique when we declare N.u/ D 1 and it does not depend on the
choice of uniformizers in OK .

One can naturally extend Frobenius from D to Acris ˝S D via ' WD 'Acris ˝ 'D . We
define a semi-linear GK-action on Acris ˝S D via

(2.3.1) �.a˝ x/ D

1X
iD0

�.a/
i .� log.Œ�.�/�//˝N i .x/

for � 2 GK , x 2 D and a 2 Acris. This GK-action commutes with ' on Acris ˝S D (see
[11, Lemma 5.1.1]).

Given a Kisin module M, one can define a filtered '-module MS.M/ over S as follows.
Set M WDMS.M/ D S˝';S M and extend Frobenius 'M to M by 'M WD 'S˝'M. Define
a filtration on M via

(2.3.2) FiliM WD ¹x 2M W 1˝ 'M.x/ 2 FiliS ˝S Mº;

where 1˝ 'M WM D S ˝';S M! S ˝S M is an S -linear map.
Now let V be a semi-stable representation ofGK with Hodge–Tate weights in ¹0; : : : ; rº,

T � V aGK-stable Zp-lattice inside V ,D D Dst.V / the filtered .';N /-module attached to V
and .M; '; OG/ the .'; OG/-module attached to T via Theorem 2.1.1. Let D D D.D/ be the
Breuil module and M DMS.M/. The following theorem summarize the relations between
Breuil modules, filtered .';N /-modules and .'; OG/-modules (Kisin modules):

Theorem 2.3.2. Notations as above, the following statements hold:

(1) There exists a natural isomorphism ˛ W Qp ˝Zp MS.M/ ' D as filtered '-modules
over SŒ 1

p
�.
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8 Liu, Compatibility of Kisin modules for different uniformizers

(2) There exists a natural injection

� W Acris ˝S D ! V _ ˝Zp Acris(2.3.3)

which is compatible with Frobenius ' and GK-actions on both sides.

(3) The isomorphism ˛ induces the commutative diagram

Acris ˝S D
� // V _ ˝Zp Acris

W.R/˝';S M
O� //

?�

OO

T _ ˝Zp W.R/,
?�

OO

(2.3.4)

where the top map is equation (2.3.3) and the bottom map is equation (2.1.2). The left
vertical arrow is induced by ˛ restricted to S˝';S M and the right arrow is induced by
the injection T _ ,! V _:

Proof. Part (1) follows from the compatibility between Kisin modules and Breuil
modules. See [11, Section 3.4]. Part (2) is proved in [11, Section 5.2]. The key point is that
HomAcris;';Fili .Acris ˝S D ; BCcris/ is canonically isomorphic to V as QpŒGK �-modules. The
proof of part (3) relies on the construction of .'; OG/-modules. See [10, Theorem 5.4.2] and
[12, Proposition 3.1.3].

3. The proof of the main theorems

We will prove Theorem 2.2.1, Theorem 3.2.1 and Theorem 1.0.2 in this section. Our
strategy is almost the same as that in [12, Section 3.2].

3.1. The proof of Theorem 2.2.1. To prove Theorem 2.2.1, we first show that the injec-
tion � in equation (2.3.3) does not depend on the choices of uniformizer. More precisely, let D 0

denote the Breuil module attached to V and �0 the injection in equation (2.3.3) for the choice of
uniformizer � 0. We claim:

Lemma 3.1.1. There exists an Acris-linear isomorphism

ˇ W Acris ˝S� D ! Acris ˝S�0 D 0

which is compatible with GK-actions and Frobenius such that the following diagram com-
mutes:

Acris ˝S� D
� // V _ ˝Zp Acris

Acris ˝S�0 D 0
�0 //

ˇ o

OO

V _ ˝Zp Acris.

(3.1.1)

Proof. Let ICS D S \ uK0ŒŒu�� and D WD D=ICSD . Then D is a finite-dimensional
K0-vector space with Frobenius ' and monodromy N on D induced from that on D . It was
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Liu, Compatibility of Kisin modules for different uniformizers 9

shown in [3, Proposition 6.2.1.1] that there exists a unique .';N /-equivariant section

s W D ,! D

and that
D D S ˝W.k/ s.D/

as S -modules. By [13, Proposition 2.6],

s.D/ � V _ ˝Zp Acris � V
_
˝Qp B

C
st

has the following relation withDst.V / D .V
_˝QpB

C
st /
GK : There exists a (necessarily unique)

isomorphism i W Dst.V /! D compatible with ' and N such that the following diagram com-
mutes:

Dst.V /

io

��

� � // V _ ˝Qp B
C
st

mod u
��

s.D/
� � � // V _ ˝Qp B

C
cris,

(3.1.2)

where u D log.Œ��/ 2 BCst , and the inverse of i is given by y 7!
P1
nD0N

n.y/˝ 
n.u/. If we
fix a K0-basis Qe1; : : : ; Qed of Dst.V /, then by the above diagram, we obtain a basis e1; : : : ; ed
of s.D/ by modulo u to Qe1; : : : ; Qed , and

.e1; : : : ; ed / D . Qe1; : : : ; Qed /

1X
nD0


n.�u/. NN/n;

where NN 2 Md�d .K0/ is the matrix such that N. Qe1; : : : ; Qed / D . Qe1; : : : ; Qed / NN .
Now by changing to another uniformizer � 0, we get s0.D0/ injects to V _ ˝Qp B

C
cris.

Modulo Qe1; : : : ; Qed by u0 D log.Œ� 0�/, we get the basis e01; : : : ; e
0
d

of s0.D0/ and

.e01; : : : ; e
0
d / D . Qe1; : : : ; Qed /

1X
nD0


n.�u0/. NN/n:

Write � D �� 0 with � D .�n/n�0 2 R. Since �0 is a unit in OK , log.Œ��/ is in BCcris. Now we
get

(3.1.3) .e1; : : : ; ed / D .e
0
1; : : : ; e

0
d /

1X
nD0


n.� log.Œ��//. NN/n:

We remark the sum in the right side of the above equation is indeed a finite sum because
NN n D 0 if n is large enough. Now the lemma follows from the facts that s.D/˝W.k/ S ' D

as S -modules and that the matrix
P1
nD0 
n.� log.Œ��//. NN/n has coefficients in BCcris.

Corollary 3.1.2. Let Oe1; : : : ; Oed be an S� Œ 1p �-basis of D and Oe01; : : : ; Oe
0
d

an S� 0 Œ 1p �-basis
of D 0. Then

. Oe01; : : : ; Oe
0
d / D . Oe1; : : : ; Oed /X

with an invertible matrix X whose entries are in QS�;� 0 . If V is crystalline, then X has entries
in S�;� 0 .
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10 Liu, Compatibility of Kisin modules for different uniformizers

Now we are ready to prove Theorem 2.2.1. Let Oe1; : : : ; Oed be an S-basis of M, and
Oe01; : : : ; Oe

0
d

an S-basis of M0, respectively. Regarding M as an '.S/-submodule of D via
the isomorphism ˛ W Qp ˝Zp MS.M/ ' D by Theorem 2.3.2 (1), we can regard ¹ Oeiº as an
S� Œ

1
p
�-basis of D . Similarly, ¹ Oe0iº is an S 0� Œ

1
p
� basis of D 0. So by the above corollary, we may

write
. Oe01; : : : ; Oe

0
d / D . Oe1; : : : ; Oed /X

with X having entries in QS�;� 0 , and in S�;� 0 if V is crystalline.
Now to prove Theorem 2.2.1, it suffices to show that X has entries in W.R/. Define an

ideal
I Œ1�W.R/ WD ¹x 2 W.R/ W 'n.x/ 2 Fil1W.R/ for all n � 0º:

By [7, Proposition 5.1.3], I Œ1�W.R/ is a principal ideal. We record the following useful
lemma:

Lemma 3.1.3. Let a be a generator of I Œ1�W.R/ and x 2 BCcris. If ax 2 W.R/, then
x 2 W.R/.

Proof. See [12, proof of Lemma 3.2.2]. Note that '.t/ is also proved to be a generater
of I Œ1�W.R/ there.

Note that the construction of t also depends on the choice of � . So we denote t0 for the
choice of � 0. By Theorem 2.1.1 (2), we have O�. Oei / 2 T _ ˝Zp W.R/ and then .'.t0//r O�. Oei / is
in O�0.W.R/˝';S�0 M0/. Then parts (2)–(3) of Theorem 2.3.2 imply that .'.t0//rX has entries
in W.R/. Then X must has entries in W.R/ by the above lemma. This completes the proof of
Theorem 2.2.1.

3.2. Compatibility of basis change. Assume that T is a GK-stable Zp-lattice in semi-
stable representation V of GK with .M; '; OG/ the corresponding .'; OG/-module via the fixed
uniformizer � . Let K 0 be a finite extension of K and .M0; '; OG/ the .'; OG/-module corre-
sponding to T jGK0 via the fixed uniformizer � 0 of OK0 . We would like to compare M and M0.

Let k0 be the residue field of OK0 and let K 00 WD W.k
0/Œ 1
p
�. Suppose that � D �� 0m,

where � D .�n/n�0 2 R with �0 2 O�K0 a unit. Let QS�;� 0 � BCcris be the smallest K0-algebra
containing S� Œ 1p �, S� 0 Œ

1
p
� and log.Œ��/, and QS�;� 0 DW.R/\ QS�;� 0 . Further, let S�;� 0 �BCcris be

the smallest K0-algebra containing S� Œ 1p �, S� 0 Œ
1
p
�, and S�;� 0 D W.R/ \ S�;� 0 . The follow-

ing result is very similar to Theorem 2.2.1.

Theorem 3.2.1. Notations as above, we have

O�. QS�;� 0 ˝';S� M/ D O�0. QS�;� 0 ˝';S�0 M0/

as submodules of T _ ˝Zp W.R/.
If V is crystalline, then QS�;� 0 in the above equation can be replaced by S�;� 0 .

Proof. Here we provide a similar proof to that of Theorem 2.2.1. We first reproduce
Lemma 3.1.1. We claim that there exists an Acris-linear isomorphism

ˇ W Acris ˝S� D ! Acris ˝S�0 D 0

 - 10.1515/crelle-2015-0074
Downloaded from PubFactory at 08/18/2016 05:40:27PM

via Purdue University Libraries



Liu, Compatibility of Kisin modules for different uniformizers 11

which is compatible with GK0-action, Frobenius such that the following diagram commutes:

Acris ˝S� D
� // V _ ˝Zp Acris

Acris ˝S�0 D 0
�0 //

ˇ o

OO

V _ ˝Zp Acris.

The only difference is that ˇ is only GK0-equivariant. To prove the claim, we use almost the
same proof as that of Lemma 3.1.1 but with extra care on the monodromy structure of BCst .
Write V 0 WD V jGK0 and D0 WD D 0=ICSD 0. We still have diagram (3.1.2) for V 0 and V . Fix
a K0-basis Qe1; : : : ; Qed of Dst.V /. Then ¹ Qeiº is a K 00-basis of Dst.V

0/. Modulo u0 D log.Œ� 0�/,
we have a basis e01; : : : ; e

0
d

of s0.D0/ and the relation

.e01; : : : ; e
0
d / D . Qe1; : : : ; Qed /

1X
nD0


n.�u0/. NN 0/n;

where NN 0 2 Md�d .K
0
0/ is the matrix such that N. Qe1; : : : ; Qed / D . Qe1; : : : ; Qed / NN 0. Note that we

use the convention N.u0/ D 1 by Remark 2.3.1.
Similarly, we obtain a K0-basis e1; : : : ; ed of s.D/ and

.e1; : : : ; ed / D . Qe1; : : : ; Qed /

1X
nD0


n.�u/. NN/n;

with NN 2 Md�d .K0/ the matrix such that N. Qe1; : : : ; Qed / D . Qe1; : : : ; Qed / NN . But the conven-
tion used here is N.u/ D 1. To find the relation between NN and NN 0, let us fix the convention
N.u/ D 1. Since � D �� 0m, we have u D mu0 C log.Œ��/ and then N.u0/ D 1

m
. Consider the

equation

.e01; : : : ; e
0
d /

1X
nD0


n.u
0/. NN 0/n D . Qe1; : : : ; Qed / D .e1; : : : ; ed /

1X
nD0


n.u/. NN/
n:

Taking monodromy on the both sides, we get NN 0 D m NN . So

1X
nD0


n.�u0/. NN 0/n D

1X
nD0


n.�mu0/. NN/n:

Hence we still obtain equation (3.1.3):

.e1; : : : ; ed / D .e
0
1; : : : ; e

0
d /

1X
nD0


n.� log.Œ��// NN n:

The remaining arguments for the proof of the claim and the theorem are the same as those
of Theorem 2.2.1.

3.3. Comparison between Wach modules and Kisin modules. Throughout this
subsection, we assume that K D K0 is unramified. We have a natural embedding W.k/ŒŒv��
to W.R/ via v 7! Œ�� � 1 and denote S� � W.R/ the ring S via the embedding v 7! Œ�� � 1.
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12 Liu, Compatibility of Kisin modules for different uniformizers

Note that � WD Gal.Kp1=K/ acts on W.k/ŒŒv�� naturally and commutes with '-action. Set
q WD '.v/=v. Following [2], a Wach module of height r is a finite free S�-module N with the
following structure:

(1) There exist semi-linear '-action and �-action on N such that 'N and �N commutes.

(2) The cokernel of linear map 1˝ 'N W S� ˝';S� N! N is killed by qr .

(3) �N acts on N=vN trivially.

For any Wach module N, we can attach a ZpŒGK �-module

TWa.N/ WD HomS�;'.N; W.R//:

For any f 2 TWa.N/, g 2 GK , g acts on f via .g ı f /.x/ D g.f .g�1x// for all x 2 N,
where GK acts on N via GK� � . We note that usually one attaches N a representation
via QT .N/ WD .N˝S� A/'D1 (as in [2, Section I.2]), where A is constructed as follows: Let
Eur
� be the maximal unramified extension of E� in W.FrR/, where FrR is the fraction field of
R and E� is the fraction field of the p-adic completion of W.k/ŒŒv��Œ1

v
�. Set A to be the p-adic

completion of the ring of integers of Eur
� . But it is well known that TWa is the dual of QT .

Let BCrig be the ring of series

1X
nD0

anv
n; an 2 K0;

such that the formal series
P1
nD0 anX

n converges for any x 2 mOK
(the maximal ideal

of OK). Let QB � RK0 be the subring containing the sequence
P1
nD0 ant

¹nº. It is easy to
check that BCrig � QB.

The theorem below is a summary of properties of Wach modules that we need from [2]:

Theorem 3.3.1. The following statements hold:

(1) The functor TWa induces an anti-equivalence between the category of GK-stable Zp-lat-
tices in crystalline representations with Hodge–Tate weights in ¹0; : : : ; rº and the cate-
gory of Wach modules of height r .

(2) Write T WD TWa.N/. Then TWa induces an injection

�Wa W W.R/˝S� N ,! T _ ˝Zp W.R/

with the corkernel killed by vr .

(3) We have
Dcris.V / D .BCrig ˝S� N/�

and .BCrig ˝S� N/=.BCrig ˝Qp Dcris.V // is killed by some power of
Q1
nD1

'n�1.q/
p

.

Proof. See [2, Theorem 2, Proposition II.2.1, Proposition III.2.1, Theorem III.3.1].

Now we can follow the similar idea of Section 3.1 to prove Theorem 1.0.2. Let Oe1; : : : ; Oed
be an S�-basis of the Wach module N and e1; : : : ; ed aK0-basis ofDcris.V /. Theorem 3.3.1 (3)
implies that

.e1; : : : ; ed / D . Oe1; : : : ; Oed /Y

with Y a matrix having entries in BCrig. Since 'n�1=.q/p is a unit in QB for n � 1, Y is an
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Liu, Compatibility of Kisin modules for different uniformizers 13

invertible matrix with Y �1 2 Md�d . QB/. On the other hand, if Oe01; : : : ; Oe
0
d

is an S� -basis of the
Kisin module M, then we have seen from Section 3.1 that

.e1; : : : ; ed / D . Oe
0
1; : : : ; Oe

0
d /Y

0

with Y 0 a matrix having entries in S� Œ 1p �. Note that both Y and Y 0 are invertible matrices
in Md�d .RK0/. Therefore

. Oe1; : : : ; Oed / D . Oe
0
1; : : : ; Oe

0
d /X

with X D Y 0Y �1. On the other hand, Theorem 3.3.1 (2) implies that

vr.O�. Oe01; : : : ; Oe
0
d // � �Wa.W.R/˝S� N/:

Therefore vrX has entries inW.R/. It is well known that v D Œ���1 is a generator of I Œ1�W.R/.
So Lemma 3.1.3 implies that X has entries in W.R/. Similarly, we can show that X�1 has
entries in W.R/.

Now we conclude that

O�. OR˝';S M/ D �Wa. OR˝S� N/:

To prove Theorem 1.0.2, it suffices to show that S� D . OR/
Hp1 . Since it is easy to show that

QB \W.R/ D S�;

it suffices to check that .RK0/
Hp1 D QB.

Note that the GK-actions on RK0 factors through OG. We have the following results
on Gp1 and G1-invariants of RK0 :

Lemma 3.3.2. We have .RK0/
Gp1 D QB and .RK0/

G1 D SŒ 1
p
�.

Proof. We first show that .RK0/
Gp1 D QB. First let p > 2. Since OG ' Gp1 ÌHK by

[11, Lemma 5.1.2], we can pick a � 2 Gp1 such that � is a topological generator of Gp1 and
Œ�.�/� D exp.�t /. For any x 2 RK0 , by the definition of RK0 , we may write

x D

1X
iD0

fiu
i ; fi 2 QB:

It suffices to show that fi D 0 for any i > 0. Note that � acts on QB trivially and

�.u/ D uŒ�.�/� D u exp.�t /:

Hence

�.x/ D

1X
iD0

fi .exp.�t //iui :

So by [10, Lemma 7.1.2], x 2 .RK0/
Gp1 implies that fi .exp.�t //i D fi for all i . Therefore

fi D 0 unless i D 0. If p D 2, then [12, Section 4.1] shows that we can pick a � 2 Gp1 such
that Œ�.�/� D exp.�2t/. The remaining proof follows the same steps as before.

For the proof of the equality .RK0/
G1 D SŒ 1

p
�, we use the essentially the same idea.

For any x 2 RK0 , we can write

x D

1X
jD0

fj t
j ; fj 2 SŒ

1
p
�:

For any g 2 G1, g.u/ D u and g.t/ D �p.g/t , where �p is the p-adic cyclotomic character.
Then the statement that .RK0/

G1 D SŒ 1
p
� again follows [10, Lemma 7.1.2].
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14 Liu, Compatibility of Kisin modules for different uniformizers

4. Applications to de Rham representations

4.1. Various lattices in Dst.V / . Let T be a GK-stable Zp-lattice inside a semi-stable
representation V of GK with Hodge–Tate weights in ¹0; : : : ; rº. By using Kisin modules or
its variation, we can attach the following '-stable W.k/-lattices (related to T ) in Dst.V /: Let
OMD .M; '; OG/ be the .'; OG/-module attached to T , D D SŒ 1

p
�˝';SM andD WD D=ICSD .

Recall there exists a unique .';N /-equivariant section s WD ! D . By [13, Proposition 2.6],
there exists a unique isomorphism ofW.k/-modules i WDst.V /' s.D/ to make diagram (3.1.2)
commutes. Now we can define

Mst.T / WD .i
�1
ı s/.M=uM/ � Dst.V /

as in [13, Section 2.3]. On the other hand, set M DMS .M/ D S ˝';S M � D , we can define

QMst.T / WD i
�1.s.D/ \M/:

Let $ 2 OK and $ D .$n/ 2 R with $n a pn-th root of $ . Set v WD log.Œ$�/ and
ACst WD AcrisŒv�. It is obvious that ACst Œ

1
p
� D BCst and the construction depends on the choice

of v. If we define the monodromy operator N on BCst via N.v/ D 1, then we see that ACst is
GK-stable, '-stable and N -stable inside BCst . Define

Minv.T / WD .T
_
˝Zp A

C
st /
GK :

If V is crystalline, then Minv.T / D .T
_ ˝Zp Acris/

GK and the construction of Minv.T / does
not depend on the choice of $ in this case.

Remark 4.1.1. According to Remark 2.3.1, the integral theory via Kisin modules or
Breuil modules uses the conventionN.u/ D 1. So if we setN.v/ D 1 as above, then we change
the monodromy setting of Breuil–Kisin theory. But luckily, the construction of Minv does not
depend on Breuil and Kisin’s theory.

The following proposition summarizes some properties of these lattices.

Proposition 4.1.2. The following statements hold:

(1) QMst.T / �Mst.T /. There exists a constant c1 depending on e D ŒK W K0� and r such that
pc1Mst.T / � QMst.T /.

(2) Assume that V is crystalline. Then QMst.T / �Minv.T /. There exists a constant c2 depend-
ing on e and r such that pc2Minv.T / � QMst.T /.

(3) Mst.T / is N -stable inside D. So is QMst.T / if p > 2.

(4) Minv.T / is '-stable and N -stable inside Dst.V /.

(5) The functor Minv W T 7!Minv.T / is left exact.

(6) If e D 1, r � p � 2 and V is crystalline, then Mst D QMst DMinv.

Proof. (1) Write QM D QMst.T /, q W D � D and M D s ı q.M/. It is easy to check
that M=uM D q.M/ inside D. So it suffices to show that QM �M . Note that s ı q.x/ D x
for any x 2 s.D/: Since QM �M, we see that QM D s ı q. QM/ � s ı q.M/ DM . To show
the existence of the constant c1, it suffices to show that there exists a constant c1 such that
pc1M �M and this has been proved in [10, Lemma 7.3.1].

 - 10.1515/crelle-2015-0074
Downloaded from PubFactory at 08/18/2016 05:40:27PM

via Purdue University Libraries



Liu, Compatibility of Kisin modules for different uniformizers 15

(2) We regard D as a submodule of V _ ˝Zp Acris via the injection

� W Acris ˝S D ,! V _ ˝Zp Acris

by Theorem 2.3.2 (2). It is easy to check that M � T _ ˝Zp Acris by Theorem 2.3.2 (3). By
the construction of isomorphism i in diagram (3.1.2), s.D/ D Dcris.V / if V is crystalline. So
we have that QMst.T / �Minv.T /. Let e1; : : : ; ed be a W.k/-basis of QM D QMst.T /. For any
x 2Minv.T / we may write

x D
X
i

aiei ; ai 2 K0:

By [10, Lemma 5.3.4], trx 2 Acris ˝S M. By [14, proof of Proposition 2.4.1], we see that
there exists a constant c3 depending on e and r such that pc3Acris ˝S M � Acris ˝W.k/M .
By (1), we may assume that pc3Acris ˝S M � Acris ˝W.k/ QM . That is,

pc3 trx D
X
i

aip
c3 trei 2 Acris ˝W.k/ QM:

So pc3 trai 2 Acris. Let c4 be the largest integer depending on r such that tr=pc4 2 Acris. Then
we see that c2 D c3 C c4 is the required constant.

(3) These are consequences of [13, Proposition 2.15 and Proposition 2.13]. Note that
[13, Proposition 2.13] requires p > 2.

Parts (4) and (5) are obvious from the construction. We note that (5) is different from
statement (3) because we change the N -structure on BCst by setting N.v/ D 1.

(6) In this situation, the GK-stable Zp-lattices can be studied by Fontaine–Laffaille’s
theory in [8]. Let us recall that a strongly divisible W.k/-lattice .L;FiliL; 'i / is a finite free
W.k/-module L with the following structures:
� a filtration FiliL � L such that Fil0L D L, Filp�1L D ¹0º and L=FiliL is torsion free,
� 'i W FiliL! L is a Frobenius semi-linear map such that 'i jFiliC1L D p'iC1,
�

Pp�2
iD0 'i .FiliL/ D L.

Since pi j'.FiliAcris/ inAcris for 0 � i � p � 1, one can define 'i WD '=pi W FiliAcris ! Acris.
By the main result in [8], there exists a strongly divisible W.k/-lattice .L;FiliL; 'i / such that
HomW.k/;Fili ;'i

.L;Acris/ ' T andLŒ 1
p
� D Dcris.V / as filtered .';N /-modules (we can define

' on L by ' D '0). On the other hand, define

L WD S ˝W.k/ L; FilrL WD
rX
iD0

FiliS ˝ Filr�iL;

and a semi-linear map

'r WD

rX
iD0

'i;S ˝ 'r�i;L W FilrL! L;

where 'i;S WD 'S=pi W FiliS ! S and 'r�i;L D 'r�i W Filr�iL! L. It is easy to check that
.L;FilrL; 'r/ is a quasi-strongly divisible S -lattice1) inside D in the sense of [11, Defi-
nition 2.3.3]. On the other hand, M DMS.M/ is also a quasi-strongly divisible S -lattice
inside D , which is the key point in [11, Section 3.4]. For any quasi-strongly divisible S -lattice
N inside D , [11, Proposition 3.4.6] shows that the functor

Tcris W N 7! HomS;Filr ;'r .N ; Acris/

1) Here we use “S -lattices” to distinguish strongly divisible W.k/-lattices in Fontaine–Laffaille’s theory.
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16 Liu, Compatibility of Kisin modules for different uniformizers

establishes an anti-equivalence between the category of quasi-strongly divisible S -lattices and
the category of G1-stable Zp-lattices inside semi-stable representations with Hodge–Tate
weights in ¹0; : : : ; rº. Now we claim that Tcris.L/ ' Tcris.M/ as ZpŒG1�-modules and conse-
quently L 'M. Indeed, it is straightforward to check that

Tcris.L/ ' HomW.k/;Fili ;'i
.L;Acris/jG1 ' T jG1 :

On the other hand, combing [10, Lemma 3.3.4] and Theorem 2.1.1 (3), we see that

Tcris.M/ ' TS.M/ ' OT . OM/jG1 D T jG1 :

Hence Tcris.L/ ' Tcris.M/. In summary, there is an S -linear isomorphism M ' S ˝W.k/ L

compatible with '-structures. Recall that s W D ! D is unique '-equivariant section for the
projection D � D. So we conclude that s ı q.M/ D L DMst.T / D QMst.T /.

It remains to show that Minv.T / DMst.T /. The idea is the same as the proof of exis-
tence of c2 (c2 D 0 in this case). Let e1; : : : ; ed be a W.k/-basis of L D QMst.T /. For any
x 2Minv.T /we may write x D

P
i aiei with ai 2 K0. It was shown in [10, Lemma 5.3.4] that

trx 2 Acris˝S M D Acris˝W.k/L. Hence trx D
P
i ai t

rei 2 Acris˝W.k/L. So trai 2 Acris.
As r � p � 2, ai has to be in W.k/ to make ai tr 2 Acris.

Remark 4.1.3. The functor Mst enjoys some nice properties. For example, it is useful
to study torsion representations discussed in [13] and [14], and it is compatible with tensor
products. But Mst does not have good exact properties where Minv is left exact. And this is
important for Section 4.3.

Example 4.1.4. Unfortunately, the functorMst is not left exact as claimed in [13, Theo-
rem 2.3] (the remaining of the theorem is still correct). Indeed, [13, Example 2.21] just serves
the example thatMst neither left exact nor right exact. For convenience of the readers, we repeat
the example here. Let K D Qp.�/ with �p�1 D p. Set E.u/ D up�1 � p: Let M be the
rank-2 Kisin module given by '.e1/ D e1 and '.e2/ D ue1 CE.u/e2 with ¹eiº an S-basis
of M. Let S� D S � e be the rank-1 Kisin module with e the basis and '.e/ D E.u/e: Consider
the sequence of Kisin modules

(4.1.1) 0! S�
i
!M

f
! S! 0;

where f and i is induced by f.e1/ D p and f.e2/ D u and i.e/ D ue1 � pe2. It is easy to check
that the sequence is a left exact sequence of Kisin modules with height 1 and the sequence is
exact after tensoring OE , which is the p-adic completion of SŒ 1

u
�. As explained in [13, above

Example 2.20, Lemma 2.19], [9, Theorem (0.4)] implies that the above sequence of Kisin
modules can be extended naturally to a sequence of .'; OG/-modules, and OT of the sequence
is an exact sequence of GK-stable Zp-lattices in crystalline representations with Hodge–Tate
weights in ¹0; 1º:

0! Zp ! T ! Zp.1/! 0:

Now modulo u to the sequence in (4.1.1), we get the sequence of W.k/-modules

0! W.k/ � Ne
i
!M

f
! W.k/! 0;

where M DM=uM 'Mst.T /. We can easily check that the above sequence is not exact
on M and W.k/. Hence the functor Mst is not left exact according to the construction of Mst.
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Liu, Compatibility of Kisin modules for different uniformizers 17

4.2. Various lattices in DdR.V /. Let V be a de Rham representation of GK with
Hodge–Tate weights in ¹0; : : : ; rº and T a GK-stable Zp-lattice inside V . It has been proved
that V is potentially semi-stable ([1]). Let us assume that V is semi-stable over K 0, which is
a finite and Galois over K. Let k0 be the residue field of K 0 and K 00 WD W.k

0/Œ 1
p
�.

Set

DdR.V / WD .V
_
˝Qp B

C
dR/

GK and Dst;K0 WD .V
_
˝Zp B

C
st /
GK0 :

It is well known that

DdR;K0.V / WD .V
_
˝Qp B

C
dR/

GK0 D K 0 ˝K00
Dst;K0.V /

andDst;K0 has a semi-linear Gal.K 0=K/-action. LetM�;K0.T / � Dst;K0.V / denote the lattices
Mst, QMst and Minv constructed in Section 3.1 for T jGK0 .

We define one more lattice before discussing the properties of M�;K0 . Let .M; '; OG/,
M � D and D denote the data attached to T jGK0 as in the beginning of Section 3.1. Since
D D S ˝W.k/ s.D/ via section s and D is isomorphic to Dst;K0.V / via the isomorphism i in
diagram (3.1.2), we may identify D=Fil1SD with DdR;K0.V /. Set

MdR;K0.T / WDM=Fil1SM � D=Fil1SD ' DdR;K0.V /

and
MdR.T / WD DdR.V / \MdR;K0.T /:

The following proposition shows that the constructions of Mst;K0 and MdR;K0 do not
depend on the choice of uniformizer � 2 OK0 .

Proposition 4.2.1. Notations as above, the constructions of Mst;K0 and MdR;K0 do not
depend on the choice of uniformizer � 2 OK0 . If V is potentially crystalline then QMst;K0 and
Minv;K0 also do not depend on the choice of uniformizer � 2 OK0 .

Proof. Since we only use GK0-structure in the following proof, without loss of general-
ity, we may assume thatK D K 0. Suppose that we select another uniformizer � 0 2 OK and the
embedding S � W.R/ via u 7! Œ� 0�. We add 0 to all data for the chosen uniformizer � 0 and the
embedding S � W.R/ via u 7! Œ� 0�. We note that the embedding s W D � D � T _ ˝Zp B

C
cris

indeed depends on such choice because the isomorphism i�1 W s.D/ ' Dst.V / is given by
y 7!

P1
nD0N

i .y/˝ 
i .u/, unless N D 0 or, equivalently, V is crystalline. So we label the
isomorphisms i� W Dst.V / ' s.D/ and i� 0 W Dst.V / ' s

0.D0/ to distinguish them. Recall that
ICR � R is the maximal ideal of R. Let � W W.R/! W. Nk/ be the projection induced by
modulo W.ICR/. It was shown in [13, Section 2.3] that the projection � can be extended nat-
urally to � W BCst !

QK0 such that �.u/ D 0, where QK0 D W. Nk/Œ 1p �. We write IC WD Ker.�/.
From the construction of Mst, we have the following commutative diagram:

Dst.V /

oi

��

� � // BCst ˝S D

mod u
����

mod IC
// // QK0 ˝K0 Dst.V /

s.D/
� � s // D

� � // BCcris ˝S D
mod IC

// // QK0 ˝K0 D

M
?�

OO

� � // W.R/˝';S M



44

?�

OO

mod IC
// // W. Nk/˝W.k/ M=uM.

?�

OO
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18 Liu, Compatibility of Kisin modules for different uniformizers

Here 
 is just the composite of the maps

W.R/˝';S M
mod IC
�����! W. Nk/˝W.k/ M=uM

and
W. Nk/˝W.k/ M=uM ,! QK0 ˝K0 D:

Let us write ˛ for the composite of maps in the first row of the above diagram. It is obvious that
the first row (hence ˛) does not depend on the choice of uniformizer � , while the second and
third rows do. The above diagram and the construction of Mst.T / D i

�1 ı s.M=uM/ shows
that Mst.T / D .˛

�1 ı 
/.W.R/˝';S M/.
Now we select another uniformizer � 0 2OK0 and the embedding S�W.R/ via u 7! Œ� 0�.

We still get the above diagram and

M 0st.T / D .˛
�1
ı 
 0/.W.R/˝';S�0 M0/:

By Theorem 1.0.1, we have

W.R/˝';S�0 M0 D W.R/˝';S� M

as submodules of T _ ˝Zp W.R/. Hence


.W.R/˝';S� M/ D 
 0.W.R/˝';S�0 M0/:

Since ˛ is independent of the choice of � , we conclude that Mst.T / DM
0
st.T /.

We use a similar idea as above to show thatMdR.T / does not depend on the choice of � .
For any subring B � BCdR, recall that Fil1B D Fil1BCdR \ B . For any ring A � BCst such that
W.k/ � A, we have a natural map

� W A˝W.k/ OK � B
C
st ˝K0 K � B

C
dR ! BCdR=Fil1BCdR D Cp

induced by modulo Fil1. Now according to the construction of MdR.T /, we can modify the
above diagram as follows:

DdR.V /

oi

��

� � // K ˝K0 B
C
st ˝S D

mod u
����

mod Fil1 // // Cp ˝K DdR.V /

K ˝K0 s.D/
� � sK // K ˝K0 D

� � // BCcris ˝S .K ˝K0 D/
mod Fil1// // Cp ˝K .K ˝K0 D/

M
?�

OO

� � // Acris ˝S M


K
55

?�

OO

mod Fil1 // // OCp ˝OK M=Fil1M.
?�

OO

We see that the map ˛K in the first row is still independent of the choice of uniformizer � and
MdR.T / WD .˛

�1
K ı 
K/.Acris ˝S M/. Now repeat the proof of thatMst does not depend on the

choice of � , we conclude that MdR.T / does not depend on the choice of � .
When V is crystalline (as we assume that K 0 D K), we see that s.D/ D Dcris.V / which

does not depend on choice of � . It is clear from the construction of QMst that

QMst.T / D s.D/ \ .Acris ˝S M/:

SinceAcris˝';S�0M
0 D Acris˝';S�M as submodules of T _˝ZpW.R/ by Theorem 1.0.1, we

conclude that QMst does not depend on the choice of uniformizer � . Finally, it is obvious from
the construction that Minv.T / does not depend on the choice of � or $ if V is crystalline.
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Liu, Compatibility of Kisin modules for different uniformizers 19

We would like to discuss the formation of those functors when base changes. LetK 00=K 0

be a finite extension, k00 the residue field of K 00 and OK00 the ring of integers.

Proposition 4.2.2. The following statements hold:

(1) Mst;K00.T / D W.k
00/˝W.k0/Mst;K0.T /:

(2) MdR;K00.T / D OK00 ˝OK0
MdR;K0.T /.

Proof. To prove (1) and (2), we use almost the same ideas as in the proof of the above
proposition. By the first commutative diagram in the above proof,

Mst;K00.T / D .˛
�1
ı 
/.W.R/˝';S M00/ � Dst;K00.V /:

By Theorem 3.2.1,
W.R/˝';S�00 M00 D W.R/˝';S�0 M0

as submodules of T _˝ZpW.R/. Hence we haveMst;K0.T / is just .˛�1ı
/.W.R/˝';S M00/

restricted to Dst;K0.V /. That is,

Mst;K0.T / DMst;K00.T / \Dst;K0.V /:

AsMst;K0.T / is aW.k0/-lattice insideDst;K0.V / andDst;K00.V / D W.k
00/˝W.k0/Dst;K0.V /,

we get W.k00/˝W.k0/Mst;K0.T / �Mst;K00.T /. But

W. Nk/˝W.k0/ M0=Œ� 0�M0 D W.R/˝';S�0 M0modW.ICR/

D W.R/˝';S�00 M00modW.ICR/

D W. Nk/˝W.k00/ M00=Œ� 00�M00:

Hence Mst;K0.T / must generate Mst;K00.T / as W.k00/-modules and then we conclude

W.k00/˝W.k0/Mst;K0.T / DMst;K00.T /:

The proof of (2) proceeds similarly.

If V is semi-stable non-crystalline, then Minv;K in general does depend on the choice
of $ . To study de Rham representations of GK in the next subsection, we fix a uniformizer $
of OK to define Ast from now. Set

QMinv.T / WD DdR.V / \ .OK0 ˝W.k0/Minv;K0.T // D .OK0 ˝W.k0/Minv;K0.T //
Gal.K0=K/:

It is easy to see that QMinv.T / is an OK-lattice in DdR.V / but lose the .';N /-action. The
following lemma summarizes the useful properties of QMinv.

Lemma 4.2.3. The following statements hold:

(1) Let K 00=K 0 be a finite extension with the residue field k00. Then

Minv;K00.T / D W.k
00/˝W.k0/Minv;K0.T /:

(2) The construction of QMinv does not depend on the choice of K 0.

(3) The functor QMinv is left exact.

(4) Assume that T _1 ,! T _2 is an injection of two GK-stable Zp-lattices of de Rham rep-
resentations. If pa kills the torsion part of T _2 =T

_
1 , then pa kills the torsion part of

QMinv.T2/= QMinv.T1/.

 - 10.1515/crelle-2015-0074
Downloaded from PubFactory at 08/18/2016 05:40:27PM

via Purdue University Libraries



20 Liu, Compatibility of Kisin modules for different uniformizers

Proof. (1) It is clear that Minv;K00.T /Œ
1
p
� ' W.k00/˝W.k0/Minv;K0.T /Œ

1
p
�. So we have

W.k00/˝W.k0/Minv;K0.T / �Minv;K00.T /

as lattices insideMinv;K00.T /Œ
1
p
�. Hence to prove (1) it suffices to assume thatK 00=K 0 is Galois.

Write

D00 WDMinv;K00.T /Œ
1
p
�; D0 WDMinv;K0.T /Œ

1
p
�; K 000 WD W.k

00/Œ 1
p
�; K 00 WD W.k

0/Œ 1
p
�:

We see that D00 has a semi-linear Gal.K 00=K 0/-action and

D00 ' K 000 ˝K00
D0

as Gal.K 00=K 0/-modules, where Gal.K 00=K 0/ acts on D0 trivially. Furthermore, it is obvious
that the Gal.K 00=K 0/-action factors through � WD Gal.K 000=K

0
0/,Minv;K00.T / � D

00 is �-stable
and Minv;K0.T / DMinv;K00.T /

� . Then Minv;K00.T / D W.k
00/˝W.k0/Minv;K0.T / by the étale

descent.
(2) Suppose thatK 00 is another Galois extension ofK such that V is semi-stable overK 00.

Let k00 be the residue field of K 00. We need to show that

(4.2.1) .OK0 ˝W.k0/Minv;K0.T //
Gal.K0=K/

D .OK00 ˝W.k00/Minv;K00.T //
Gal.K00=K/:

Without loss of generality, we can assume that K 0 � K 00. As Gal.K 00=K/-module, (1) shows
that

OK00 ˝W.k00/Minv;K00.T / ' OK00 ˝OK0
.OK0 ˝W.k0/Minv;K0.T //:

Note that Gal.K 00=K 0/ acts on .OK0 ˝W.k0/Minv;K0.T // trivially, we obtain

.OK00 ˝W.k00/Minv;K00.T //
Gal.K00=K0/

D .OK00/
Gal.K00=K0/

˝W.k0/Minv;K0.T /

D OK0 ˝W.k0/Minv;K0.T /:

Then equation (4.2.1) follows by taking Gal.K 0=K/-invariants by the both sides of the above
equation.

(3) Suppose that we are given an exact sequence

0! T 0 ! T ! T 00 ! 0:

Applying functor Minv;K0 , we obtain a left exact sequence

0!M 00 !M
f
!M 0

by Proposition 4.1.2 (5). We can decompose the above sequence into two sequences

0!M 00 !M
g
! N ! 0 and N

i
,!M 0

such that the first sequence is exact. We note that N is a finite free W.k0/-module as N is
a submodule ofM 0. In the following, we denoteAK0 WD OK0 ˝W.k0/ A for aW.k0/-moduleA.
Since OK0 is flat over W.k0/, we still get the exact sequence

0 ��!M 00K0 ��!MK0
gK0
��! NK0 ��! 0 and NK0

iK0
,�!M 0K0 :

Taking Gal.K 0=K/-invariants, we obtained a left exact sequence

0 ��! QMinv.T
00/ ��! QMinv.T /

gK0
��! .NK0/

Gal.K0=K/ and .NK0/
Gal.K0=K/ ,�! QMinv.T

0/:
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Liu, Compatibility of Kisin modules for different uniformizers 21

Write fK0 W QMinv.T /! QMinv.T
0/. We can easily check that Ker.fK0/ D Ker.gK0/. Hence the

sequence
0! QMinv.T

00/! QMinv.T /! QMinv.T
0/

is left exact.
(4) Since QMinv is left exact, without loss of generality, we can assume that T _2 =T

_
1 is

killed by pa. It is obvious from the construction ofMinv;K0 to see thatMinv;K0.T2/=Minv;K0.T1/

is killed by pa. After tensoring OK0 and taking Galois invariants, it is trivial to check that pa

kills QMinv.T2/= QMinv.T1/.

It is easy to see that

QMinv.T / � .T
_
˝Zp Ast ˝W. Nk/ OK/

GK :

But we do not know how to prove that

QMinv.T / D .T
_
˝Zp Ast ˝W. Nk/ OK/

GK :

4.3. The direct limit of de Rham representations. Let I be a partial order set and
let ¹Liºi2I be a family of GK-stable Zp-lattices in de Rham representations Vi of GK with
Hodge–Tate weights in ¹�r; : : : ; 0º (r is independent on i ). Let

L WD lim
�!
i2I

Li

be the direct limit. Fix a uniformizer$ 2 OK as the last subsection to define Ast and QMinv. We
define a covariant version of QMinv via QM �inv.T / WD

QMinv.T
_/. Set

Mi D QM �inv.Li / and M WD lim
�!
i2I

Mi :

Recall that L is p-adically separated if L injects into the p-adic limits OL of L, or equivalently,T1
nD1 p

nL D ¹0º.

Proposition 4.3.1. If L is p-adically separated, then M is p-adically separated.

Proof. Write fij WLi ! Lj and gij D QM �inv.fij / WMi !Mj . Note thatLj =fij .Li / and
Mj =gij .Mi /may not be torsion free. Pick a y 2Mi such that gi .y/ 6D 0, where gi WMi !M

is the natural map. We need to show that gi .y/ 62
T1
nD1 p

nM . Suppose to the contrary that
gi .y/ 2

T1
nD1 p

nM . Then there exists a subset J D ¹jnº � I with jn < jnC1 and yn 2Mjn
such that pnyn D gijn.y/. Consider the space Ker.fijn/ � Li , which is an increasing sequence
of saturated finite free OK-modules inside Li . So they have to be stable after deleting finite
many jn. Hence without loss of generality, we may assume that all Ker.fijn/ are the same and
then fijn.Li / are all isomorphic. Now we decompose fijn W Li ! Ljn into

Li
Qfn
��! fijn.Li /

˛n
,�! Ljn

and apply the functor QM �inv. Then we get the map

Mi
Qgn
��! QM �inv.fijn.Li //

Q̨n
,�!Mjn ;

 - 10.1515/crelle-2015-0074
Downloaded from PubFactory at 08/18/2016 05:40:27PM

via Purdue University Libraries



22 Liu, Compatibility of Kisin modules for different uniformizers

where Qgn D QM �inv.
Qfn/ and Q̨n D QM �inv.˛n/. Note that Q̨n is an injection because QMinv is left

exact. Since gijn D Q̨n ı Qfn, if pan (resp. pbn) kills the torsion part of QM �inv.fijn.Li //= Qgn.Mi /

(resp.Mjn= Q̨n. QM
�
inv.fijn.Li ///), then panCbn kills the torsion part ofMjn=gijn.Mi /. Now we

claim that there exists an integer mi such that pmi kills the torsion part of Ljn=fijn.Li / for
all n. Let us first accept the claim. Then Lemma 4.2.3 (4) proves that pmi kills the torsion part
of Mjn= Q̨n. QM

�
inv.fijn.Li ///. Since the exact sequences

0 �! Ker.fijn/ �! Li
Qfn
�! fijn.Li / �! 0

are isomorphic for all n, we see that an is independent of n. Hence there exists an m0i inde-
pendent of n such that pm

0
i kills the torsion part of Mjn=gijn.Mi /, and this contradicts the

existence of yn. Hence gi .y/ has to be 0 and M is p-adically separated.
Now it suffices to settle the claim. Since all fijn.Li / are isomorphic, without loss of gen-

erality, we may assume that fijn are injective for all n. Hence we may regardLi as a submodule
of Ljn via fijn . Let Tn D .Qp ˝Zp Li / \ Ljn . Then Tn are increasing finite free Zp-lattices
inside Qp ˝Zp Li . It suffices to show that Tm D TmC1 ifm is sufficiently large. In fact, if Tn is
keeping increasing its size, then it is easy to show there must be a x 2 Li such that x D plynl
for a ynl 2 Tnl � Lnl for l � 1. But this contradicts that L is p-adically separated.

The above proposition is actually motivated by the situations in [5, 6]. In the following,
we discuss the situation in [6, Section 7.2] and also use notations there. Fix a compact open
subgroup Kp of GL2. OZp/. We refer to Kp as the “tame level”. Fix a finite extension E of Qp
with ring of integers OE . Write

H1.Kp/OE WD lim
�!
Kp

H1.Y.KpKp/=Q;OE /;

where the inductive limit is taken over all open subgroups Kp of GL2.Zp/, Y.KpKp/ is the
modular curve determined by KpKp and the cohomology is étale cohomology. By [6, Lem-
ma 7.2.1], H1.Kp/OE is torsion free and p-adically separated. Set OH1.Kp/OE to be the p-adic
completion of H1.Kp/OE and

OH1.Kp/E WD E ˝OE
OH1.Kp/OE :

Due to [6, Lemma 7.2.5], OH1.Kp/E is an admissible unitary representation of GL2.Qp/.
Since we are only concerned with the local properties at p, we restrict all the above Galois

modules (they are ZpŒGal.Q=Q/�-modules) to Gal.Qp=Qp/ but still use the same notations.
Now apply the functor QM �inv to H1.Y.KpKp/=Q;OE / and set

MKpKp WD
QM �inv.H

1.Y.KpKp/=Q;OE //:

By the comparison theorem, MKpKp is obviously a Zp-lattice in the de Rham cohomology
H1dR.Y.K

pKp/Qp ; E/: Proposition 4.3.1 implies that

MKp WD lim
�!
Kp

MKpKp

is p-adic separated. Define OH1dR.K
p/ to be the p-adic completion of MKp and

OH1dR.K
p/E WD E ˝OE

OH1dR.K
p/:

By the construction of QMinv, we easily see that OH1dR.K
p/E has a continuous action of GL2.Qp/.
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Liu, Compatibility of Kisin modules for different uniformizers 23

Question 4.3.2. It is natural to ask the following questions:

(1) What we can say about the GL2.Qp/-action on OH1dR.K
p/E? Is it an admissible unitary

representation of GL2.Qp/?

(2) Is there any relation between OH1.Kp/E and OH1dR.K
p/E? Could we build a comparison

theorem to compare them?

Let T be a GK-stable Zp-lattice inside a de Rham representation. We may define

MW. Nk/
inv .T / WD lim

�!
F

Minv;F .T
_/;

where F runs through all finite extensions of K. It is easy to see that MW. Nk/
inv .T / is a finite free

W. Nk/-module with a .';N;GK/-action and the GK-action factors through a finite quotient
of GK . We note that Proposition 4.3.1 is still valid after replacing QMinv by MW. Nk/

inv , because
the proof only uses Lemma 4.2.3 (3) and (4), and it is easy to check that these are still valid
for MW. Nk/

inv . If we apply the functor MW. Nk/
inv to H1.Kp/OE , then the direct limit of

MW. Nk/
inv .H1.Y.KpKp/=Qp;OE //

is separated and can be completed. Denote this completion by OH1;W. Nk/st .Kp/OE , which has
a natural .';N;GK/-action and a GL2.Qp/-action. It is natural ask Question 4.3.2 (1) for
OH1;W. Nk/st .Kp/OE again and the following:

Question. What are relations between OH1;W. Nk/st .Kp/OE , OH1.Kp/E and OH1dR.K
p/E?

Finally, we may define

MW. Nk/
st .T / WD lim

�!
F

Mst;F .T
_/;

which is another W. Nk/-lattice inside Qp ˝Zp M
W. Nk/
inv .T / which is .';N;GK/-stable. Though

the functor MW. Nk/
st enjoys many good properties (e.g., Mst;F .H1.Y.KpKp/=Qp;OE // does

have a geometric interpretation if Y.KpKp/ has a good reduction over F ), we do not know
whether the direct limit of MW. Nk/

st .H1.Y.KpKp/=Qp;OE / is p-adic separated as the functor
Mst in general is not left exact. Hence its p-adic completion may contain few information to
understand OH1.Kp/E .

5. Erratum for [13]

Theorem 2.3 in [13] claimed that the functor Mst is left exact. Unfortunately, this is false
as Example 4.1.4 explains. Given an exact sequence of lattices in semi-stable representations
0! T 0 ! T ! T 00 ! 0, [13, Lemma 2.19] showed that the associated sequence of Kisin
module 0!M00 !M!M0 ! 0 is left exact. But it is not true in general that the sequence

0!M00=uM00 !M=uM!M0=uM0 ! 0

is exact on M=uM. This is exactly the mistake ([13, sentence right before Lemma 2.19]) in
the proof that Mst is left exact.

Except this claim, [13, Theorem 2.3] is still correct and we have not used this claim
in [13] and our other papers.
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