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Compatibility of Kisin modules for
different uniformizers

By Tong Liu at West Lafayete

Abstract. Let p be a prime and 7T a lattice inside a semi-stable representation V. We
prove that Kisin modules associated to 7" by selecting different uniformizers are isomorphic
after tensoring a subring in W(R). As consequences, we show that several lattices inside the
filtered (¢, N)-module of V' constructed from Kisin modules are independent on the choice of
uniformizers. Finally, we use a similar strategy to show that the Wach module can be recovered
from the (¢, G)-module associated to 7 when V is crystalline and the base field is unramified.

1. Introduction

Let k be a perfect field of characteristic p, W(k) its ring of Witt vectors, Koy = W(k)[%],
K /K a finite totally ramified extension, Gx := Gal(K/K).

To understand the p-adic Hodge structure of Gg-stable Z,-lattices in semi-stable rep-
resentations, the method of Kisin modules is powerful. Recall the definition of Kisin modules
in the following: We fix a uniformiser 7 € K with Eisenstein polynomial £ (u). Put

& := W(k)[ul:

@& is equipped with a Frobenius endomorphism ¢ via u + u? and the natural Frobenius
on W (k). A Kisin module of height r is a finite free ©-module 91t with ¢-semi-linear endomor-
phism @gy : Nt — I such that E(u)" M C (@gn(IN)), where (pgp () is the ©-submodule
of M generated by gy (N). By the result of Kisin [9], for any Gg-stable Zp-lattice T inside
a semi-stable representation V' with Hodge—Tate weights in {0, ..., r}, there exists a unique
Kisin module M (T") of height r attached to T (see Section 2.1 for more precise meaning of
this sentence).

It is obvious that the construction of Kisin modules depends on the choice of the uni-
formizer 7. If we choose another uniformizer 7’ of K, then we get another I (7). A natural
question is: what is the relationship between 9%(7") and N/ (T')?

It turns out that each choice of uniformizer 7 determines an embedding © — W(R) via
u — [r] (see Section 2.1 for details of the definition of W(R) and [z]). We denote by G,
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2 Liu, Compatibility of Kisin modules for different uniformizers

and G,/ the image of embedding determined by z and z’, respectively. By the main result
of [12], there exists a Gg-action on W(R) ®, e, M(T) which commutes with ¢gp. In this
paper, we prove the following:

Theorem 1.0.1. There exists a W(R)-linear isomorphism

W(R) ®p,c, M(T) = W(R) ®y,c,, M (T)

I

compatible with @-actions and G g -actions on the both sides.

In fact, W(R) in the above isomorphism can be replaced by a much smaller ring @Ll/,
and an even smaller ring @5 - when V' is crystalline. See Theorem 2.2.1 for more details. It
turns out that we can extend Theorem 1.0.1 to discuss the relation between Kisin modules and
Wach modules ([2]). Assume that K = K is unramified and let 7" be a Gg-stable Z ,-lattice
inside a crystalline representation. Then we can attach the Wach module 9¢(7") and the Kisin
module MN(T') to T'. Let {,» be a primitive p”-th root of unity. Set Kpoo := 5= ; K({pn) and
Hpoo = Gal(K/K poo). The following theorem describes a direct relation between the Kisin
module and the Wach module.

Theorem 1.0.2.  We have N(T) ~ (R ®,.c M(T))Hr>.

Here R C W(R) is a subring constructed in [12, Section 2.2] and it was proved that
R ®e,6 M C W(R) ®y e N is Gg-stable ([12, Section 2.2], also see Section 2.1).

Theorem 1.0.1 can be used to understand lattices in the filtered (¢, N )-modules attached
to semi-stable representations of G . More precisely, let V' be a de Rham representation of Gg
and T C V a Gg-stable Z-lattice. It is well known ([1]) that V' is semi-stable over a finite
extension K’/ K. By using the Kisin module attached to T'|g,,, we can construct various lat-
tices in either Dy x/(V) := (VY ®q, By)®k" or Dgr(V) := (VY ®Q, Bar)9%, where V'V
denotes the dual of V. One consequence of Theorem 1.0.1 is that the constructions of such
lattices are independent of the choice of r. In the end, we also discuss several lattices (inside
the filtered (¢, N )-module) whose constructions are independent of Kisin’s theory. But they
are useful to discuss the p-adic Hodge properties for (p-adic completion of) the direct limit
of de Rham representations. In particular, we hope these will be useful to understand those
representations discussed in [6] and [5].

The arrangement of this paper is as follows: In Section 2, we setup notations and sum-
marize the facts needed for the proof of Theorem 1.0.1 and give a more precise version of
Theorem 1.0.1. We give the proof of Theorems 1.0.1-1.0.2 in Section 3. We also show that the
compatibility of Kisin modules when base changes (Theorem 3.2.1). Section 4 is devoted to
discuss various lattices inside filtered (¢, N )-modules attached to potentially semi-stable rep-
resentations. We show that two types of lattices constructed from Kisin’s theory do not depend
on the choice of uniformizers and they are compatible with base change. In Section 4.3, we
show that several lattices (constructed without using Kisin’ theory) may help us to understand
the p-adic completion of direct limit of de Rham representations. In particular, we hope that our
strategy is useful to those representations studied in [6]. The last section is the erratum of [13].
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Liu, Compatibility of Kisin modules for different uniformizers 3
2. Preliminary and main results

2.1. Kisin modules and (¢, G)-modules. We set up notations and recall some facts
on (integral) p-adic Hodge theory in this subsection. We fix a nonnegative integer r throughout
the paper. Let V' be a semi-stable representation of Gg with Hodge—Tate weights in {0, ..., r}.
Write V'V for the dual of V. By the well-known theorem of Fontaine and Colmez, the functor

V> Dy(V) = (VY ®q, By~

induces an anti-equivalence between the category of semi-stable representations with Hodge—
Tate weights in {0,...,r} and the category of weakly admissible filtered (¢, N)-modules
(D, ¢, N,{Fil' Dg}) with Fil® Dg = Dg and Fil" ! Dg = {0}. Here Dk := K®k, D as usual.
The readers should be careful that we use the contravariant version of D, which were denoted
by D in many papers. But the current version of Dy is more convenient for integral theory.

Let R = lim O/ p, where the transition maps are given by Frobenius. By the universal
property of the Witt vectors W(R) of R, there is a unique surjective projection map

6: W(R) — Og

to the p-adic completion @f of O, which lifts the projection R — O/ p onto the first factor
in the inverse limit. We denote by A5 the p-adic completion of the divided power envelope
of W(R) with respect to Ker(6). As usual, we write Bc‘"ris = Acris[%] and denote by le; the
Ker(6)-adic completion of W(R)[%]. For any subring A C B(ﬁ;, we define a filtration on A by
Fil' A = AN (Ker(0))' B

Now select a uniformizer = of K. Let E(u) € W(k)[u] be the Eisenstein polynomial
of 7. Let m, € K be a p"-th root of 7 such that (7,41)? = m,; write 7 = (Tn)n>0 € R
and let [r] € W(R) be the Techmiiller representative. We embed the W(k)-algebra W (k)[u]
into W(R) C Acsis by the map u — [rr]. Recall © = W (k)[u]. This embedding extends to the
embedding @ < W(R) which are compatible with Frobenious endomorphisms.

We denote by S the p-adic completion of the divided power envelope of W (k)[u] with
respect to the ideal generated by E(u). Write Sk, := S [%]. There is a unique map (Frobenius)
¢s : S — S which extends the Frobenius on &. We write Ng for the K-linear derivation on
Sk, such that Ng(u) = —u.LetFil"S C S be the p-adic completion of the ideal generated by

1
pE) =
with i > n. One can show that the embedding W(k)[u] — W(R) via u + [rr] extends to the
embedding S < A5 compatible with Frobenius ¢ and filtration (note that £ ([rz]) is a gener-
ator of Fil' W(R)). We set B} := B;S[u] C B;l; with u := log([z]).
Let

Koo == ) K(mn)
n=0

and K its Galois closure over K. Then K = Un=1 Koo({pn) with {pn a primitive p”-th root
of unity. Write
> A
Goo = Gal(K/Koo). Kpoo := | J K(Gpn). Gpoo 1= Gal(K/Kpeo).
n=1

Hg := Gal(K/Kso). G := Gal(K/K).
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4 Liu, Compatibility of Kisin modules for different uniformizers

For any g € Gk,

g(x)
€(g) == z
is a cocycle with value in R. Set € := ({,i)i>0 € Rand 7 := —log([€]) € Aqis as usual.

As a subring of Agss, S is not stable under the action of Gk, though S is fixed by Geo.

Define a subring inside ch

oo
Ry = {x = Zfit{i} c fi€eSk,and f; > 0asi — +oo},
i=0

where 11} = Wiq(i)' and g (i) satisfiesi = g(i)(p—1)+r(i) with0 < r(i) < p—1. Define

R 1= W(R) N Rk,
One can show that Rk, and R are stable under the Gg-action and the Gg-action factors
through G ([12, Section 2.2]). Let I+ R be the maximal ideal of R and I+¢7A? =W({+R)N R.
By [12, Lemma 2.2.1], one has R/I 4 R ~ G/u® = W(k).
Recall that a Kisin module of height r is a finite free ©-module 9N with ¢@-semi-linear
endomorphism ¢gy : 98 — I such that

E@)" M C (pgn(M)).

where (@gn (1)) is the GS-submodule of Mt generated by gy (Nt). A morphism between two
Kisin modules is just an &-linear map compatible with Frobenius. As a subring of A4 via
u — [z], © and S are not stable under the action of G, but stable under G. This allows
us to define a functor Tg from the category of Kisin modules to the category of finite free
Z p-representations of G via the following formula:

T (M) := Homg , (M, W(R)).

See [10, Section 2.2] for more details on 7. In particular, by [10, Proposition 2.2.1], we can
change @™ to W(R) in the definition of Tz.

Let us review the theory of (¢, G)—modules, which is a variation of that of Kisin modules.
Following [12], a finite free (¢, G)-module of height r is a triple (IN, ¢, G), where

(1) (N, pgp) is a finite free Kisin module of height r,

2) G is a R-semi-linear G-action on 9N := R ®e,c M,

3) G commutes with Pgyp ON Eﬁ?, ie., foAr any g € G, gfpsfn = O8>
(4) regard M as a ¢(&)-submodule in N, then M c MK,

(5) G acts on W(k)-module M := Eﬁ?/brﬁiﬁt ~ IN/uR trivially.

A morphism between two ﬁmte free (¢, G) modules is a morphlsm of Kisin modules
that commutes with G-action on 90¥’s. For a finite free (¢, G) module It = N, ¢, G) we can
associate a Z,[Gg]-module:

2.1.1) T() := Homy, (R @6 M, W(R)),

where G acts on f’(ifl?) viag(f)(x) = g(f(g_l(x))) forany g € Gg and f € f‘(ifﬂ).

By [10, Example 2.3.5], there exists an element t € W(R) such that t mod p # 0 and
p(t) = 60_1 E(u)t, where cq p is the constant term of E(u). Such a t is unique up to Z;. The
following theorem summarizes the main results in [12].
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Liu, Compatibility of Kisin modules for different uniformizers 5

Theorem 2.1.1 ([12]). The following statements hold:

(1) T induces an anti-equivalence between the category of finite free (¢, é)-modules of
height r and the category of Gk-stable Zy-lattices in semi-stable representations of Gk
with Hodge—Tate weights in {0, ...,r}.

() T induces a natural W(R)-linear injection
(2.12) 11 W(R) ®pe M — TV @z, W(R)
such that T is compatible with Frobenius and G g -actions on both sides. Moreover,
() (T () ®z, W(R)) C UWV(R) ®pc M).

(3) There exists a natural isomorphism Tg(IN) — f"(iﬁl) of Zp|Goo]-modules.

2.2. A refinement of Theorem 1.0.1. The theory described by Theorem 2.1.1 depends
on the choice of uniformizer 7 in K. Fix a Gg-stable Z-lattice T inside a semi-stable rep-
resentation V; if we select another uniformizer 7', then we obtain 9 and ’ in (2.1.2). As
indicated in the introduction, one main goal of this paper is to understand the relation between
M and M. Let &, (resp. Sy) denote the image of embedding G < W(R) (resp. S — Acris)
viau > [z]. Write z’ = vz withv = (vu)n>0 € R. Note that vy is a unit. So log([v]) € B:rris.

We denote by &, and S,/ the subrings of W(R) and A, respectively, via u +— [z'].
Let Sg,z’ be the smallest ring inside B:rris containing Sg[%L Sg’[%] and log([v]). Set

élsl/ = W(R) m S~ly£/'
+

Similarly, let Sy 5/ be the smallest ring inside B_;  containing S [%] and Sz’[%] and set

GE’E/ = W(R) m SE’E/'

Theorem 2.2.1. Notations as above, we have
2(@1,1/ ®(o’@l EUE) == z/(ég,l/ ®¢7,@E, gﬁ/)

as submodules of TV ®z,, W(R).
If V is crystalline, then @5 5 in the above equation can be replaced by G5 7.

Remark 2.2.2. (1) Letv = /7’ If v € W(k)*, then we can arrange 7, so that

[7] = [¥][=’]

with b = vmod p € k*. Hence G5 5/ = &5 = ©y.

(2) If v &€ W(k)™, then the situation could be more complicated. So far we do not have
a good description for &, 5, even for @, 5. We warn the readers that @,/ may be larger
than the smallest ring containing G, and ©,/. For example, let E (u) be the Eisenstein poly-
nomial of 7’. Then E([z'])/E([x]) is a unit in W(R), because Fil' W(R) is a principal ideal
and E([r]) and E ([z']) are generators of Fil' W(R). Hence

x = @(E(z'])/E([z])) = E([z]")/E([z]") € W(R).

But E([z]?)/p is a unit in S;. Therefore, x € G 5. In general, x is not in the smallest ring
containing G, and ©. See the following example.
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6 Liu, Compatibility of Kisin modules for different uniformizers

Example 2.2.3. Let K = Qp(¢p). Let m =, — 1 and 7'[: = {pm. We can choose
and 7’ such that 7’ = me’ with €’ = €. Then the smallest ring & containing © and &} is
inside W(k)[[x], [¢] — 1]. If x is in &, then

p(x) € W(k)[[z].[€] - 1] € Rk, N W(R) = R.

On the other hand, because ¢?(E([x]))/p is a unit in S;, we can write ¢(x) as a series
in Ko[[[], [e]—1]. Tt is easy to see that this series is not in W(k)[[r], [e]—1]. But by [10, Lem-
ma 7.1.2], for any y € Rg,, there is only one way to expand y in a series in Ko[[[r], [¢] — 1]
So ¢(x) is not in W(k)[[[x]. [e] — 1]. Contradiction and ¢(x) & &.

Notations 2.2.4. We will reserve ¢ and N to denote Frobenius action and monodromy
action on many different rings and modules. To distinguish them, we sometime add subscripts
to indicate over which those structures are defined. For example, ¢gy is the Frobenius defined
on NMt. We always drop these subscripts if no confusions arise. As we have indicated as before,
Kisin’s theory (and its related theory, like the theories of Breuil modules and (¢, G)—modules,
which will be used below) depends on the choice of the unformizer &, or more precisely,
depends on the choice of ;, and hence the embedding © — W(R) via u +— [x]. We add sub-
scripts z to subrings in W(R) to denote subrings (like ©, §) whose embeddings to B;l'z depends
on the embedding @ < W(R) via u + [r]. But we always drop subscripts when we just dis-
cuss the general theory where the embedding © < W/(R) viau > [r] is always fixed. Finally,
yi(x), Mgxq(A) and Id denote the standard divided power %, the ring of d x d-matrices with
coefficients in ring A and the identity map, respectively; V'V denotes the dual of a representa-
tion V.

2.3. Some facts on the theory of Breuil modules. We will use extensively the theory
of Breuil modules, which we review in this subsection. Following [3], a filtered ¢-module over
S [%] is a finite free S [%]—module D with

(1) a pg-semi-linear morphism ¢gp : O — O such that the determinant of ¢ g is invertible

: 1

in S[],

(2) a decreasing filtration over O of Sk,-modules {Fil' (D)};ez with Fil°(D) = O and

Fil' Sk, - Fil/ (D) C Fil'*/ (D).

Similarly, we define filtered ¢-modules over S by changing § [%] to S everywhere in the
above definition, but we still require that the determinant of ¢ is in § [%]

A Breuil module is a filtered ¢-module D over S [%] with the following extra mono-
dromy structure: a Ko-linear map (monodromy) Ng : £ — O such that

(1) forall f € Sk, andm € O, No(fm) = Ns(f)m + fNgo(m),
(2) Nop = peNo,
(3) No(Fi' D) C Fill~1D.
A filtered (¢, N)-module D is called positive if Fil®Dg = Dg. It turns out that the
category of positive filtered (¢, N)-modules and the category of Breuil modules are equivalent.

More precisely, for any positive filtered (¢, N )-module (D, ¢, N, Fil' Dg), we can associate
a Breuil module O by defining

D=85wx) D. ¢p:=¢s®¢p, Np:=Ns®Id+1d® Np.
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Liu, Compatibility of Kisin modules for different uniformizers 7

Define Fil’D := D and by induction
Fil''lD := {x € D : N(x) € Fil' D and fr(x) € Fil' T Dg),

where f; : D — Dg is defined by s(u) ® x — s()x.

In [3, Section 6], Breuil proved the above functor D : D — S Q) D is an equiva-
lence of categories. Furthermore, D and D (D) give rise to the same Galois representations
([4, Proposition 4.1.1.2]), namely, there is a natural isomorphism

Homy, ) o, v g (D- BsT ) =~ Homg , n i (D(D), BsT )
as Qp[Gk]-modules. Here é;{ is the period ring defined in [3].

Remark 2.3.1. In the theory of Kisin and Breuil modules, we use implicitly or explicitly
the above isomorphism to connect Galois representations associated to filtered (¢, N )-modules
with those of Breuil modules or Kisin modules. To make the above isomorphism, one set the
monodromy N on BJ via N(u) = 1 (see [4, Section 3.1.1]). So strictly speaking, the mon-
odromy structure on Bs'i' may depend on the choice of uniformizer 7. On the other hand, pick
another uniformizer 7" of K. We have 7 = vz’ with v a unit in Og. Hence u = u’ + f with
u’ = log([z']) and B in BX . So N(u’) = 1 if and only N(u) = 1. This shows that the mono-
dromy structure on By is unique when we declare N(11) = 1 and it does not depend on the
choice of uniformizers in Ok .

One can naturally extend Frobenius from D to Ags ®g D via ¢ 1= @4
define a semi-linear Gg-action on A5 ®g D via

® ¢pp. We

cris

o0

23.1) ola®x) =) o(a)yi(—log(le(0)]) ® N’ (x)

i=0

for 0 € Gg, x € D and a € Agis.- This Gg-action commutes with ¢ on Agis ®s D (see
[11, Lemma 5.1.1]).

Given a Kisin module I, one can define a filtered ¢p-module Mg (Jt) over S as follows.
Set M := Mg (M) = § ®,,c N and extend Frobenius ggy to M by ¢4 := @5 ® @gp. Define
a filtration on M via

(2.3.2) Fill M = {x € M : 1 ® ggn(x) € Fil' S @ M},

where 1 ® pgp : M = § ®y M — § ®g N is an S-linear map.

Now let V be a semi-stable representation of Gx with Hodge-Tate weights in {0, ..., r},
T C V aGg-stable Zp-lattice inside V', D = D(V') the filtered (¢, N )-module attached to V'
and (N, ¢, G) the (¢, G)—module attached to 7 via Theorem 2.1.1. Let D = D(D) be the
Breuil module and M = Mg (It). The following theorem summarize the relations between
Breuil modules, filtered (¢, N )-modules and (¢, G)—modules (Kisin modules):

Theorem 2.3.2. Notations as above, the following statements hold:

(1) There exists a natural isomorphism o : Qp ®z, Mg(MM) = D as filtered p-modules
over S [%].
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8 Liu, Compatibility of Kisin modules for different uniformizers

(2) There exists a natural injection
(2.3.3) L Agis ®s D = VY ®7,, Acis
which is compatible with Frobenius ¢ and Gk -actions on both sides.
(3) The isomorphism o induces the commutative diagram
Acris ®5 D ——— VY ®z,, Acis
(2.3.4)
W(R) ®y.6 M —— TV @z, W(R),

where the top map is equation (2.3.3) and the bottom map is equation (2.1.2). The left
vertical arrow is induced by a restricted to © ® . g I and the right arrow is induced by
the injection TY — V'V,

Proof. Part (1) follows from the compatibility between Kisin modules and Breuil
modules. See [11, Section 3.4]. Part (2) is proved in [11, Section 5.2]. The key point is that
Hom, gy (Aeris ®s D, BT ) is canonically isomorphic to V as Qp[Gk]-modules. The

cris s cris

proof of part (3) relies on the construction of (¢, é)—modules. See [10, Theorem 5.4.2] and
[12, Proposition 3.1.3]. O

3. The proof of the main theorems

We will prove Theorem 2.2.1, Theorem 3.2.1 and Theorem 1.0.2 in this section. Our
strategy is almost the same as that in [12, Section 3.2].

3.1. The proof of Theorem 2.2.1. To prove Theorem 2.2.1, we first show that the injec-
tion ¢ in equation (2.3.3) does not depend on the choices of uniformizer. More precisely, let D’
denote the Breuil module attached to V and ¢ the injection in equation (2.3.3) for the choice of
uniformizer ’. We claim:

Lemma 3.1.1. There exists an Ais-linear isomorphism
:B : Acris ®S1 D — Acris ®S£/ D’

which is compatible with Gg-actions and Frobenius such that the following diagram com-
mutes:

Acris ®Sl D —L> |78 ®Zp Acris

(3.1.1) ﬂ}

L/
Acris ®Sl’ D —— VY ®ZP Acris-

Proof. Let I+S = S NuKolu]] and D := D/1+SD. Then D is a finite-dimensional
Kp-vector space with Frobenius ¢ and monodromy N on D induced from that on D. It was
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Liu, Compatibility of Kisin modules for different uniformizers 9

shown in [3, Proposition 6.2.1.1] that there exists a unique (¢, N )-equivariant section
s:D—=D

and that
D=S QW (k) s(D)

as S-modules. By [13, Proposition 2.6],
s(D) C VY ®z, Auis C VY ®q, By

has the following relation with D (V) = (V' ®q, B.N)CK: There exists a (necessarily unique)
isomorphism i : Dy (V) — D compatible with ¢ and N such that the following diagram com-
mutes:

Dy(V)—— VV ®q, Bf

(3.1.2) Zli lmod u

s(D)—— VY ®q, BE..
where 1 = log([x]) € B, and the inverse of i is given by y Y o N"(y) ® yn(u). If we
fix a Ko-basis €1, ...,¢é4 of Dg(V), then by the above diagram, we obtain a basis ey, ..., e4
of s(D) by modulou to éy, ..., €4, and

(€1.....eq) = (E1.....2q) Y _ ya(—)(N)",

n=0

where N € My 4(Ko) is the matrix such that N(éy,...,84) = (1,...,é4)N.
Now by changing to another uniformizer 7/, we get s'(D’) injects to VV ®q, B
Modulo &, ...,é4 by u’ = log([x']), we get the basis ¢/, ..., e/, of s"(D’) and

(€. nel) = (E1.....82) Y ya(—0)(N)".

n=0

+

oris- INOW we

Write # = v’ with v = (v,)n>0 € R. Since vg is a unit in Ok, log([v]) is in B
get

(3.1.3) (e1.....eq) = (€}.....e) Y yn(—log())(N)".

n=0

We remark the sum in the right side of the above equation is indeed a finite sum because
N™ = 0if n is large enough. Now the lemma follows from the facts that s(D) Qw ) S >~ D

as S-modules and that the matrix Y pe o ¥n(— log([v]))(NV)" has coefficients in B;ris. |
Corollary 3.1.2. Letéy,...,éq bean SE[%]-basis of Dandé', ... e/ an Sy [%]-basis
of D'. Then

@1.....¢)) =(1.....e0)X

with an invertible matrix X whose entries are in Sz,z’- If V is crystalline, then X has entries
in Sﬂal/'
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10 Liu, Compatibility of Kisin modules for different uniformizers

Now we are ready to prove Theorem 2.2.1. Let é1,...,é4 be an S-basis of I, and
é},...,e/, an @-basis of I, respectively. Regarding M as an ¢(&)-submodule of D via
the isomorphism « : Q) ®z, Mg(M) >~ D by Theorem 2.3.2 (1), we can regard {¢;} as an
S [%]—basis of D. Similarly, {¢} is an S, [%] basis of D’. So by the above corollary, we may
write

(@1.....¢)) =(1.....é0)X

with X having entries in S 7.z and in Sy 5 if V' is crystalline.
Now to prove Theorem 2.2.1, it suffices to show that X has entries in W(R). Define an
ideal
TMW(R) := {x € W(R) : ¢"(x) € Fil' W(R) for all n > 0}.
By [7, Proposition 5.1.3], 1 Mw(R) is a principal ideal. We record the following useful

lemma:

Lemma 3.1.3. Let a be a generator of I'MW(R) and x € BT
x € W(R).

If ax € W(R), then

cris’

Proof.  See [12, proof of Lemma 3.2.2]. Note that ¢(t) is also proved to be a generater
of ITNW(R) there. o

Note that the construction of t also depends on the choice of 7. So we denote t’ for the
choice of /. By Theorem 2.1.1(2), we have i(¢;) € T ®z, W(R) and then (¢(t'))"(é;) is
in'(W(R) ®¢,a,, M'). Then parts (2)—(3) of Theorem 2.3.2 imply that (¢(t'))” X has entries
in W(R). Then X must has entries in W(R) by the above lemma. This completes the proof of
Theorem 2.2.1.

3.2. Compatibility of basis change. Assume that 7" is a Gg-stable Z-lattice in semi-
stable representation V of G with (I, ¢, G) the corresponding (¢, G)-module via the fixed
uniformizer 7. Let K’ be a finite extension of K and (M, ¢, G) the (¢, G) module corre-
sponding to T'|g ., via the fixed uniformizer 7" of O . We would like to compare )t and )¢,

Let k" be the residue field of Ok and let K := W(k' )[ ]. Suppose that 7 = v'™,
where v = (v,,)n>0 € R with vg € O % g @ unit. Let S,, ' C B"' be the smallest Ky-algebra

Ccris

containin S,, S,T/ and lo and @,, ,T/ =W(R ﬂS,, 7. Further, let Sy 7 C Bt be
g 7 g 7,7

Cris

the smallest K- algebra contammg S,,[ I, Sn/[ ], and &5 = W(R) N Sz 5. The follow-
ing result is very similar to Theorem 2.2. 1

Theorem 3.2.1. Notations as above, we have
“éz,z’ Q.G m) = 2/(@L1’ Ry, m’)

as submodules of T ®z,, W(R).
If V is crystalline, then @5 5 in the above equation can be replaced by © 5 7.

Proof. Here we provide a similar proof to that of Theorem 2.2.1. We first reproduce
Lemma 3.1.1. We claim that there exists an Ajs-linear isomorphism

:8 . Acris ®Sl D — Acris ®Sl’ :D/
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Liu, Compatibility of Kisin modules for different uniformizers 11

which is compatible with G g-action, Frobenius such that the following diagram commutes:

Acris ®S£ D % VY ®Z1, Acris

2t
L

Acris ®S1’ D' —— VY ®Zp Acris-

The only difference is that § is only Gg--equivariant. To prove the claim, we use almost the
same proof as that of Lemma 3.1.1 but with extra care on the monodromy structure of B}
Write V' := V|g,, and D’ := D'/1;SD’. We still have diagram (3.1.2) for V" and V. Fix
a Ko-basis €1,...,84 of Dy(V). Then {¢;} is a Ky-basis of Dy (V). Modulo u’ = log([z']),
we have a basis e}, ..., e/, of s'(D’) and the relation

(€ evey) = @1, 8a) ) ya(—u)(N)",
n=0

where N’ € My x4 (K}) is the matrix such that N(1,...,é4) = (é1,...,é4)N’. Note that we
use the convention N(u’) = 1 by Remark 2.3.1.
Similarly, we obtain a Ky-basis ey, ..., ez of s(D) and

(€1.....eq) = (B1.....2q) Y yn(—1)(N)",

n=0

with N € M,4(Kp) the matrix such that N(é;,...,é4) = (é1,....é4)N. But the conven-
tion used here is N(1) = 1. To find the relation between N and N, let us fix the convention
N(u) = 1. Since 7 = va’™, we have u = mu’ + log([v]) and then N (1) = % Consider the
equation

o0 o0
(e].....ey) Z Yn( (N = (&1,...,84) = (e1,....eq) Z yn()(N)".
n=0 n=0
Taking monodromy on the both sides, we get N/ = mN . So

D ()N = ya(—mu')(N)".

n=0 n=0

Hence we still obtain equation (3.1.3):

(e1.....eq) = (¢].....eq) ) yn(=log([h)N".
n=0

The remaining arguments for the proof of the claim and the theorem are the same as those
of Theorem 2.2.1. o

3.3. Comparison between Wach modules and Kisin modules. Throughout this
subsection, we assume that K = K¢ is unramified. We have a natural embedding W (k)[v]
to W(R) via v +— [€] — 1 and denote ©. C W(R) the ring & via the embedding v — [e] — 1.
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12 Liu, Compatibility of Kisin modules for different uniformizers

Note that I' := Gal(Kpe/K) acts on W(k)[[v] naturally and commutes with g-action. Set
q := ¢(v)/v. Following [2], a Wach module of height r is a finite free Gc-module Jt with the
following structure:

(1) There exist semi-linear ¢-action and I'-action on 9t such that ¢g and 'y, commutes.
(2) The cokernel of linear map 1 ® ¢ : G¢ ®yp e, I — N is killed by ¢".
(3) T'yy acts on It /v trivially.

For any Wach module t, we can attach a Z,[G g ]-module
Twa() := Homg_ (N, W(R)).

For any f € Tw.(M), g € Gk, g acts on f via (go f)(x) = g(f(g™'x)) for all x € N,
where Gk acts on 0t via Gg — ['. We note that usually one attaches 9! a representation
via T(N) := N ®e, A)?=! (as in [2, Section 1.2]), where A is constructed as follows: Let
&' be the maximal unramified extension of &¢ in W(FrR), where FrR is the fraction field of
R and & is the fraction field of the p-adic completion of W(k)ﬂv]][%]. Set A to be the p-adic
completion of the ring of integers of &;'. But it is well known that Ty is the dual of 7'.
Let Br"i'g be the ring of series
o0
Zanv", a, € Ky,
n=0

such that the formal series Y -, a, X" converges for any x € m@, (the maximal ideal
of Og). Let B C Rk, be the subring containing the sequence Y 2, ant™ 1t is easy to
check that B:{g C B.

The theorem below is a summary of properties of Wach modules that we need from [2]:
Theorem 3.3.1. The following statements hold:

(1) The functor Tw, induces an anti-equivalence between the category of Gk-stable 7.,-lat-
tices in crystalline representations with Hodge—Tate weights in {0, ..., r} and the cate-
gory of Wach modules of height r.

2) Write T := Tywa.(N). Then Tw, induces an injection
twa : W(R) ®g, N — TV ®z, W(R)
with the corkernel killed by v".

(3) We have
Deis(V) = (BIg ®6§ En)r
n—1
and (B:i_g ®c, ER)/(B:i'g ®qQ, Deris(V)) is killed by some power of | bl (pT@.

Proof. See [2, Theorem 2, Proposition II.2.1, Proposition II1.2.1, Theorem II1.3.1]. ©

Now we can follow the similar idea of Section 3.1 to prove Theorem 1.0.2. Letéq,...,é
be an ©¢-basis of the Wach module Jt and ey, . .., e4 a Ko-basis of Dis(V'). Theorem 3.3.1 (3)
implies that
(61,...,€d) = (é],...,éd)Y

with ¥ a matrix having entries in B;’i'g. Since ¢"~!/(¢)p is a unit in B for n > 1, Y is an
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Liu, Compatibility of Kisin modules for different uniformizers 13

invertible matrix with Y ~! € My 4 (B). On the other hand, if ¢/, . . ., e’ is an Gy -basis of the
Kisin module 9N, then we have seen from Section 3.1 that

(81, .. .,ed) = (é/l, .. .,éd)Y,
with Y/ a matrix having entries in Sy [%] Note that both Y and Y’ are invertible matrices
in Mgxq(Rk,). Therefore
(C1,....6q) = (é1.....eX
with X = Y'Y 1. On the other hand, Theorem 3.3.1 (2) implies that
v (i(e, . ... €)) Ciwa(W(R) Rc, ).

Therefore v” X has entries in W(R). It is well known that v = [¢]—1 is a generator of [ W(R).
So Lemma 3.1.3 implies that X has entries in W(R). Similarly, we can show that X ~! has
entries in W(R).

Now we conclude that

(R g6 M) = twa(R ©c, N).
To prove Theorem 1.0.2, it suffices to show that & = (JA%)HP“’. Since it is easy to show that
BN W(R) = &,

it suffices to check that (;RKO)HP"<> =B.
Note that the Gg-actions on Rk, factors through G. We have the following results
on Gpoe and Geo-invariants of Rk,

Lemma 3.3.2. We have (Rk,)%»> = B and (Rk,)%> = S[%]-

Proof. 'We first show that (ﬁKO)GPO" = B. First let p > 2. Since G ~ Gpo~ x Hg by
[11, Lemma 5.1.2], we can pick a T € Gpoeo such that 7 is a topological generator of Gpco and
[e(7)] = exp(—t). For any x € Rg,, by the definition of Rg,, we may write

o0
x:Zf,-ui, f; € B.
i=0

It suffices to show that f; = 0 for any i > 0. Note that 7 acts on B trivially and

t(u) = ule(r)] = uexp(—1).

Hence

o0
(x) = ) filexp(=1)'u’.

i=0
So by [10, Lemma 7.1.2], x € (R KO)GP°° implies that f;(exp(—t))’ = f; for all i. Therefore
Ji =Ounlessi = 0.If p = 2, then [12, Section 4.1] shows that we can pick a t € Gpoe such
that [e(7)] = exp(—2t). The remaining proof follows the same steps as before.

For the proof of the equality (R KO)GOO =S [%], we use the essentially the same idea.

For any x € Rg,, we can write

x=Y fit/, feSEl
j=0

For any g € Goo, g(u) = u and g(t) = yxp(g)t, where x,, is the p-adic cyclotomic character.
Then the statement that (R KO)GOO =S [%] again follows [10, Lemma 7.1.2]. |
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14 Liu, Compatibility of Kisin modules for different uniformizers

4. Applications to de Rham representations

4.1. Various lattices in Dy (V). Let T be a Gg-stable Zp-lattice inside a semi-stable
representation V' of Gg with Hodge-Tate weights in {0, ..., r}. By using Kisin modules or
its variation, we can attach the following ¢-stable W (k)-lattices (related to 7) in Dy (V'): Let
M = (M, e, G) be the (¢, G)—module attachedto 7', D = S[%]@w,@zm and D := D/I1LSD.
Recall there exists a unique (¢, N)-equivariant section s : D — 9. By [13, Proposition 2.6],
there exists a unique isomorphism of W (k)-modules i : Dy (V') >~ s(D) to make diagram (3.1.2)
commutes. Now we can define

M(T) := (i ™" o5)(M/uM) C Dy (V)
asin [13, Section 2.3]. On the other hand, set M = Mg (M) = § ®, e M C O, we can define
My(T) := i~ (s(D) N M).

Let w € Og and @ = (w,) € R with @w, a p"-th root of @w. Set v := log([w]) and
A} := Acig[v]. Tt is obvious that A7 [%] = B} and the construction depends on the choice
of v. If we define the monodromy operator N on B via N(v) = 1, then we see that AJ is

G g-stable, p-stable and N -stable inside B;{ . Define
Min,(T) := (TV ®z, AT)X.

If V is crystalline, then Miy(T) = (TY ®z » AcriS)GK and the construction of M, (7") does
not depend on the choice of @ in this case.

Remark 4.1.1. According to Remark 2.3.1, the integral theory via Kisin modules or
Breuil modules uses the convention N(u) = 1. So if we set N(v) = 1 as above, then we change
the monodromy setting of Breuil-Kisin theory. But luckily, the construction of Mj,, does not
depend on Breuil and Kisin’s theory.

The following proposition summarizes some properties of these lattices.

Proposition 4.1.2. The following statements hold:

(1) ]\;IS[(T) C My(T). There exists a constant ¢ depending on e = [K : Ko] and r such that
P My(T) C M(T).

(2) Assume that V is crystalline. Then Mst(T)~C Miny (T). There exists a constant ¢, depend-
ing on e and r such that p2 Min,(T) C My(T).

(3) My(T) is N -stable inside D. So is M(T) if p > 2.

(4) Min(T) is p-stable and N -stable inside Dy (V).

(5) The functor My, : T +— M (T) is left exact.

©) Ife =1,r < p—2andV is crystalline, then My = Mst = M.

Proof. (1) Write M = M(T), g : D — D and M = 5 0 g(M). It is easy to check
that I /uIN = ¢(M) inside D. So it suffices to show that M C M. Note that s o g(x) = x
for any x € s(D). Since M C M, we see that M = s oq(M) Csoqg(M)= M. To show
the existence of the constant ¢y, it suffices to show that there exists a constant ¢; such that
p°'M C M and this has been proved in [10, Lemma 7.3.1].
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Liu, Compatibility of Kisin modules for different uniformizers 15

(2) We regard O as a submodule of V'V ®7 » Acris via the injection
1 Agis ®5 D — VY ®Zp Acris

by Theorem 2.3.2 (2). It is easy to check that M C T ®z, Acris by Theorem 2.3.2 (3). By
the construction of isomorphism 7 in diagram (3.1.2), s(D) = D;is(V) if V' is crystalline. So
we have that My(T) C Min(T). Let ey, ..., ez be a W(k)-basis of M = Mg(T). For any
X € Min(T) we may write
X = Zaiei, a; € Kop.
1

By [10, Lemma 5.3.4], t"x € Auis ®s M. By [14, proof of Proposition 2.4.1], we see that
there exists a constant ¢3 depending on e and r such that p®3 Ay ® s M C Acris Qwk) M-
By (1), we may assume that p3 Agis ® s M C Acris k) M . That is,

Pt x = Zaipc3frei € Aeris ®wey M.
1

So p©tTa; € Aeis. Let ¢4 be the largest integer depending on r such thatt” / p4 € As. Then
we see that ¢p = ¢3 + ¢4 is the required constant.

(3) These are consequences of [13, Proposition 2.15 and Proposition 2.13]. Note that
[13, Proposition 2.13] requires p > 2.

Parts (4) and (5) are obvious from the construction. We note that (5) is different from
statement (3) because we change the N-structure on B by setting N(v) = 1.

(6) In this situation, the Gg-stable Z,-lattices can be studied by Fontaine—Laffaille’s
theory in [8]. Let us recall that a strongly divisible W (k)-lattice (L,Fil' L, ¢;) is a finite free
W(k)-module L with the following structures:

« a filtration Fil' L C L such that Fil°L = L, Fil?~'L = {0} and L/Fil’ L is torsion free,
@i Fil' L — L is a Frobenius semi-linear map such that @; | i+1; = p@i+1,
« Y P 2o(FIl'L) = L.
Since pi |(p(FiliAcris) in Agis for0 <i < p — 1, one can define ¢; := go/pi : F.iliAcriS — Acris.
By the main result in [8], there exists a strongly divisible W (k)-lattice (L, Fil' L, ¢;) such that

Homy, ) gy g, (L, Acris) ~ T and L[%] = D is(V) as filtered (¢, N)-modules (we can define
@ on L by ¢ = ¢g). On the other hand, define

,
£:=8®wu L. Fil'&:=) FI'SQFI 'L,
i=0
and a semi-linear map

,
¢r=Y ¢is®¢ L Fil'& > &,
i=0
where ¢; 5 1= gog/pi Fil'S — S and Or—i,L = Qr—j : Fil' 'L — L.1Itis easy to check that
(. Fil" &, ¢,) is a quasi-strongly divisible S-lattice? inside £ in the sense of [11, Defi-
nition 2.3.3]. On the other hand, M = Mg(IMN) is also a quasi-strongly divisible S-lattice
inside O, which is the key point in [11, Section 3.4]. For any quasi-strongly divisible S-lattice
N inside D, [11, Proposition 3.4.6] shows that the functor

TCI‘iS TN = HomS,Fﬂr’(pr (JV, ACI‘iS)

D) Here we use “S-lattices” to distinguish strongly divisible W (k)-lattices in Fontaine—Laffaille’s theory.
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16 Liu, Compatibility of Kisin modules for different uniformizers

establishes an anti-equivalence between the category of quasi-strongly divisible S-lattices and
the category of Go-stable Zj-lattices inside semi-stable representations with Hodge-Tate
weights in {0, ..., r}. Now we claim that Tiis(£) = Teris(M) as Zp[Goo)-modules and conse-
quently &£ =~ M. Indeed, it is straightforward to check that

Teris(£) =~ HomW(k),Fili,(p,- (L, Acris)'Goo = T|Goo .
On the other hand, combing [10, Lemma 3.3.4] and Theorem 2.1.1 (3), we see that
Teris(M) =~ Te(M) = T(MW)|64, =TG-

Hence Teis(£) = Teris(M). In summary, there is an S-linear isomorphism M >~ S Qw ) L
compatible with @-structures. Recall that s : D — D is unique ¢-equivariant section for the
projection & — D. So we conclude that s o g(M) = L = My(T) = My(T).

It remains to show that M, (T) = My(T). The idea is the same as the proof of exis-
tence of ¢z (co = 0 in this case). Let e1,...,e; be a W(k)-basis of L = Mst(T). For any
X € Miny(T) we may write x = ) ; a;e; witha; € Ko. It was shown in [10, Lemma 5.3.4] that
1"x € Agis ®§ M = Acris W (k) L.Hencet"x = Zi ait’e; € Agis W (k) L.Sot"a; € Agss.
Asr < p—2,a; hastobein W(k) to make a;t" € Acs. O

Remark 4.1.3. The functor M enjoys some nice properties. For example, it is useful
to study torsion representations discussed in [13] and [14], and it is compatible with tensor
products. But M does not have good exact properties where Mi,, is left exact. And this is
important for Section 4.3.

Example 4.1.4. Unfortunately, the functor My is not left exact as claimed in [13, Theo-
rem 2.3] (the remaining of the theorem is still correct). Indeed, [13, Example 2.21] just serves
the example that M neither left exact nor right exact. For convenience of the readers, we repeat
the example here. Let K = Q, () with 7771 = p. Set E(u) = u?~! — p. Let M be the
rank-2 Kisin module given by ¢(e1) = e1 and ¢(e2) = ue; + E(u)ey with {e;} an G-basis
of MN. Let ©* = @ - e be the rank-1 Kisin module with e the basis and ¢(e) = E(u)e. Consider
the sequence of Kisin modules

@.1.1) 056" Smb e o

where T and i is induced by f(e;) = p and f(e2) = u andi(e) = ue; — pes. Itis easy to check
that the sequence is a left exact sequence of Kisin modules with height 1 and the sequence is
exact after tensoring g, which is the p-adic completion of 6[%]. As explained in [13, above
Example 2.20, Lemma 2.19], [9, Theorem (0.4)] implies that the above sequence of Kisin
modules can be extended naturally to a sequence of (¢, G)—modules, and T of the sequence
is an exact sequence of Gg-stable Z-lattices in crystalline representations with Hodge—Tate
weights in {0, 1}:
0—>Zp—>T — Zp(l) = 0.

Now modulo u to the sequence in (4.1.1), we get the sequence of W (k)-modules

0= Wk)-& > M L wik) — o,

where M = M /uIt ~ My (T). We can easily check that the above sequence is not exact
on M and W (k). Hence the functor My is not left exact according to the construction of My;.
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Liu, Compatibility of Kisin modules for different uniformizers 17

4.2. Various lattices in Dgr(V). Let VV be a de Rham representation of Gg with
Hodge-Tate weights in {0,...,r} and T a Gg-stable Zp-lattice inside V. It has been proved
that V' is potentially semi-stable ([1]). Let us assume that V' is semi-stable over K’, which is
a finite and Galois over K. Let k' be the residue field of K’ and K|, := W(k’ )[%].

Set

Dwr(V) = (VY ®q, BR)® and Dy = (VY ®z, Bf)OK.
It is well known that
Dar, (V) = (VY ®q, BiR)*" = K' ®k; Dux'(V)

and Dbt k- has a semi-linear Gal(K’/ K)-action. Let My g/(T') C Dy (V') denote the lattices
Mg, Mbt and M, constructed in Section 3.1 for T'|g Xt

We define one more lattice before discussing the properties of My g’. Let (I, ¢, G)
M C D and D denote the data attached to T'|g,., as in the beginning of Section 3.1. Since
D =S Qwk) s(D) via section s and D is isomorphic to Dy, g/(V') via the isomorphism i in
diagram (3.1.2), we may identify £ /Fil! S with Dgr,x’ (V). Set

Mar x/(T) := M/Fil'!SM C D/Fil'SD ~ Dgr x/(V)
and
Mar(T) := Dar(V) N Mar,x'(T).
The following proposition shows that the constructions of M g and Myr g’ do not
depend on the choice of uniformizer 7 € Og-.

Proposition 4.2.1. Notations as above, the constructions of My g and Mgr g’ do not
depend on the choice of uniformizer m € Ok . If V' is potentially crystalline then My g+ and
My, k' also do not depend on the choice of uniformizer m € Og.

Proof. Since we only use G g-structure in the following proof, without loss of general-
ity, we may assume that K = K’. Suppose that we select another uniformizer 7’ € Ok and the
embedding © C W(R) viau > [x']. We add ' to all data for the chosen uniformizer 7" and the
embedding @ C W(R) viau > [z']. We note that the embeddings : D C D C TV ®z, Bchrls
indeed depends on such choice because the isomorphism i ! : s(D) ~ Dg(V) is given by
ye Y2 N (y) ® yi (1), unless N = 0 or, equivalently, V is crystalline. So we label the
isomorphisms iy : Dy(V) =~ s(D) and i’ : Dy(V') >~ s’(D’) to distinguish them. Recall that
IR C R is the maximal ideal of R. Let v : W(R) — W(k) be the projection induced by
modulo W (14 R). It was shown in [13, Section 2.3] that the projection v can be extended nat-
urally to v : Bjf — Ko such that v(u) = 0, where Ko = W(lg)[%]. We write 14 := Ker(v).

From the construction of My, we have the following commutative diagram:

mod /¢

Dy (V)€ Bf ®5 D ————— Ko ®k, Du(V)
ll? mod u ‘
mod I ~
$(D) s D B, ®s D s Ro®k, D
M—— W(R) ®¢, e M —» W(k) QW (k) I /uIn.
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18 Liu, Compatibility of Kisin modules for different uniformizers

Here vy is just the composite of the maps

mod I —
W(R) ®p,c M —— W(k) Qw) W/un
and . )
W(k) Qw ) IM/uIM — Ko ®k, D.

Let us write « for the composite of maps in the first row of the above diagram. It is obvious that
the first row (hence o) does not depend on the choice of uniformizer &, while the second and
third rows do. The above diagram and the construction of M (T) =i~ ! o s(IN/uIN) shows
that My (T) = (¢~ 0 p)(W(R) ®¢,c M).

Now we select another uniformizer 7’ € Qg and the embedding © C W(R) viau > [r’].
We still get the above diagram and

MU(T) = (@ oy )(W(R) @y, M).
By Theorem 1.0.1, we have
W(R) ®(p,6£/ EIR/ = W(R) ®(p,61 AL
as submodules of 7V ®z, W(R). Hence
YW(R) ®p,c, M) = 7' (W(R) ®y,c, M.

Since « is independent of the choice of 7, we conclude that M(T') = M/ (T).

We use a similar idea as above to show that Myr(7") does not depend on the choice of .
For any subring B C B;li, recall that Fil'! B = FillB;i N B. For any ring A C BST such that
W(k) C A, we have a natural map

0: A®ww) Ok C Bf ®k, K C Bjy — B /Fil' Bk = C)

induced by modulo Fil'. Now according to the construction of Mgr(T'), we can modify the

above diagram as follows:

mod Fil!

Dar(V)€ K ®k, B ®5 D Cp ®k Dar(V)

iJ/Z mod 1 H

11
K ®k, s(D)—* K ®g, D B} ®5 (K ®k, D) ™% C, @k (K ®x, D)

cris

| 2]

&, 1
M Auis ®5 M —" Oc, ® 0, M/Fil' M.

We see that the map ok in the first row is still independent of the choice of uniformizer = and
Mgr(T) := (ocl_<1 0 YK )(Acis ®s M). Now repeat the proof of that My does not depend on the
choice of 7, we conclude that M4r(7T") does not depend on the choice of 7.

When V is crystalline (as we assume that K’ = K), we see that s(D) = Ds(V) which
does not depend on choice of . It is clear from the construction of Mst that

My(T) = s(D) N (Aeis @5 M).

Since Acris®(p,@n,9ﬁ/ = Acﬁs®(p’@£§m as submodules of 7"V ®z, W(R) by Theorem 1.0.1, we
conclude that M does not depend on the choice of uniformizer . Finally, it is obvious from
the construction that M, (7") does not depend on the choice of 7 or @ if V is crystalline. o
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Liu, Compatibility of Kisin modules for different uniformizers 19

We would like to discuss the formation of those functors when base changes. Let K"/ K’
be a finite extension, k” the residue field of K” and Qg the ring of integers.

Proposition 4.2.2. The following statements hold:
(1) My g (T) = W(k") @wwry Mg,k (T).
(2) Mg, x"(T) = Ok» ®@,, Mar,x'(T).

Proof. To prove (1) and (2), we use almost the same ideas as in the proof of the above
proposition. By the first commutative diagram in the above proof,

My g (T) = (@' 0 y)(W(R) ®y,g M") C Dy,x (V).

By Theorem 3.2.1,
W(R) ®(p,6l// EIR// = W(R) ®(p,@l/ EIR/

as submodules of TV ®z, W(R). Hence we have M x(T) is just (@' o y)(W(R) Q4,6 M)
restricted to Dy g/(V'). That is,

Mg,k (T) = My,x7(T) N Dy, g (V).
As My g (T) is a W(k')-lattice inside Dy, g/(V) and Dy g7 (V) = W(k") @wry Dsi,x’(V),
we get W(k") @wxry Ms,x (T) C My g (T). But
W (k) @waen M /(21 = W(R) ®y.c_, W mod W(I4R)

= W(R) ®¢,&,, M mod W(I4R)

= W(k) @waury M"/[z"19N”.
Hence M, g/(T) must generate My g~ (T) as W(k")-modules and then we conclude

W(k") @wry Ma,x'(T) = My, k7 (T).

The proof of (2) proceeds similarly. |

If V is semi-stable non-crystalline, then M;,, x in general does depend on the choice
of @w. To study de Rham representations of Gg in the next subsection, we fix a uniformizer w
of Ok to define A from now. Set

Min(T) := Dr(V) N (O @ wiry Miny.x/(T)) = (Ok+ @p(iry Miny i (T)) S E K,

It is easy to see that Miy(7) is an Og-lattice in Dgr(V) but lose the (¢, N)-action. The
following lemma summarizes the useful properties of Mj,y.

Lemma 4.2.3. The following statements hold:
(1) Let K" /K’ be a finite extension with the residue field k”. Then
Miny, k7 (T) = W(k") ®w(ry Miny,x/(T).
(2) The construction of My, does not depend on the choice of K.

(3) The functor Minv is left exact.

(4) Assume that T\ — T, is an injection of two Gg-stable Zp-lattices of de Rham rep-
resentations. If p® kills the torsion part of T, /T, then p® kills the torsion part of

Minv(TZ)/MinV(Tl)'
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20 Liu, Compatibility of Kisin modules for different uniformizers

Proof. (1) Itis clear that Minv,K//(T)[%] ~ W(k") @wwr Minv’K/(T)[%]. So we have
W(k”) ®W(k’) Minv,K’(T) - Minv,K”(T)

as lattices inside Miyy, k7 (T)[%]. Hence to prove (1) it suffices to assume that K"/ / K’ is Galois.
Write

D" i= Minxr(D[L], D' i= My (ML Ky = WEISL, Kp:= WL
We see that D” has a semi-linear Gal(K”'/ K”)-action and
"o Y
D"~ Ki ®k; D

as Gal(K”/K')-modules, where Gal(K”/K’) acts on D’ trivially. Furthermore, it is obvious
that the Gal(K"/ K')-action factors through I := Gal(K(// K{)), Miny,x»(T) C D" is I'-stable
and Minv,K’(T) = Minv,K”(T)F- Then Minv,K”(T) = W(k”) ®W(k’) MinV,K’(T) by the étale
descent.

(2) Suppose that K” is another Galois extension of K such that V' is semi-stable over K.
Let k” be the residue field of K”. We need to show that

4.2.1) (k' ®wry Miny, x/(T) U ETE) = (O @y Miny, o (T)) KK,

Without loss of generality, we can assume that K’ C K”. As Gal(K”/K)-module, (1) shows
that

Ok ®w(ky My, k7 (T) =~ Oxr Q0. (Ok’ Qwiry Miny,x'(T)).
Note that Gal(K”/K”) acts on (Ox’ @w k) Miny,x’(T')) trivially, we obtain
Ok ®wry Miny, g (T)FETED) = (@)W EED @1y Miny 0/ (T)
= Ok’ Qwk’y Minv,x'(T).

Then equation (4.2.1) follows by taking Gal(K’/ K )-invariants by the both sides of the above
equation.
(3) Suppose that we are given an exact sequence

0T —-T—->T"—0.

Applying functor M;,,, g/, we obtain a left exact sequence

0> M > M5
by Proposition 4.1.2 (5). We can decompose the above sequence into two sequences

0->M'>M=E5N->0 and N <> M

such that the first sequence is exact. We note that N is a finite free W(k’)-module as N is
a submodule of M’. In the following, we denote Ag’ := Ok’ Qw k) A for a W(k')-module A.
Since Ok is flat over W(k'), we still get the exact sequence

EK’

0—> MY, —> Mg 25 N —> 0 and  Ngr > M.

Taking Gal(K’/ K )-invariants, we obtained a left exact sequence

0 — Miny(T") — Miny(T) 255 (Ng )UK TK)  and (N CIK 1K) s pp (T,
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Liu, Compatibility of Kisin modules for different uniformizers 21

Write fx : Miny(T) — Miny(T"). We can easily check that Ker( fx/) = Ker(gg). Hence the
sequence
0— Minv(T//) - Minv(T) - MinV(T,)
is left exact.
(4) Since Minv is left exact, without loss of generality, we can assume that TZV / Tlv is
killed by p?. It is obvious from the construction of My, g to see that Miny, k7 (12)/ Miny, k' (T1)

is killed by p“. After tensoring O~ and taking Galois invariants, it is trivial to check that p¢
kills Miny(72)/ Miny(T1). o

It is easy to see that
Min(T) C (T ®z,, Ax @iy Ox)°F
But we do not know how to prove that

Min(T) = (TV ®z, Ay Qi) Ox) %

4.3. The direct limit of de Rham representations. Let / be a partial order set and
let {L;};es be a family of Gg-stable Z,-lattices in de Rham representations V; of Gg with
Hodge-Tate weights in {—r, ..., 0} (r is independent on 7). Let

L :=1limL;
—
iel
be the direct limit. Fix a uniformizer w € Ok as the last subsection to define A and va- We
define a covariant version of Miy, via M* (T) := Miny(T"). Set

M; = M* (L;) and M := lim M;.

iel

Recall that L is p-adically separated if L injects into the p-adic limits LofL,or equivalently,
Mn=1 P"L = {0}.

Proposition 4.3.1. If L is p-adically separated, then M is p-adically separated.

Proof. Write fi; : Li — L; and g;; = M. (fij) : M; — M. Note that L; / f;;(L;) and
M; /gij (M;) may not be torsion free. Picka y € M; suchthat g;(y) # 0, where g; : M; — M
is the natural map. We need to show that g; (y) & (,—; p" M. Suppose to the contrary that
gi () € Ny=q p" M. Then there exists a subset J = {j,} C I with j, < j,+1 and y, € M;,
such that p"y, = gij, (). Consider the space Ker( f;j,) C L;, whichis an increasing sequence
of saturated finite free Qg -modules inside L;. So they have to be stable after deleting finite
many j,. Hence without loss of generality, we may assume that all Ker( f;;,) are the same and
then f;;, (L;) are all isomorphic. Now we decompose f;;, : L; — L, into

Jn On
Li = fij,(Li) = Lj,
and apply the functor Mi:v. Then we get the map

gn ~ &n
M; =— Mg (fij, (L)) — M;,,
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22 Liu, Compatibility of Kisin modules for different uniformizers
where g, = va( f,,) and &, = va((xn) Note that &, is an injection because My, is left
exact. Since 8ijn = Op 0 fn, if p%» (resp. pPn) kills the torsion part of M (fij,(Li))/&n(M;)
(resp. Mj,, /an( mv(f,jn (L;)))), then p+bn kills the torsion part of M;, /gij,(M;). Now we
claim that there exists an integer m; such that p™i Kills the torsion part of L,/ fi;, (L;) for
all n. Let us ﬁrst accept the claim. Then Lemma 4.2.3 (4) proves that p™: Kkills the torsion part
of Mj, /an( lnv( Jij.(Li))). Since the exact sequences

Fn
0 — Ker(fij,) — Li — fij,(L;) — 0

are isomorphic for all n, we see that a, is independent of 7. Hence there exists an m/ inde-
pendent of n such that p™: kills the torsion part of M;,/g;;,(M;), and this contradlcts the
existence of y,. Hence g; (y) has to be 0 and M is p-adically separated.

Now it suffices to settle the claim. Since all f;;, (L;) are isomorphic, without loss of gen-
erality, we may assume that f;;, are injective for all n. Hence we may regard L; as a submodule
of Lj, via fi;,. Let T, = (Qp ®z, Li) N Lj,. Then T, are increasing finite free Zp-lattices
inside Qp ®z,, L;. It suffices to show that T, = Ty 41 if m is sufficiently large. In fact, if T is
keeping increasing its size, then it is easy to show there must be a x € L; such that x = p VY,
foray,, € T,, C Ly, forl > 1. But this contradicts that L is p-adically separated. O

The above proposition is actually motivated by the situations in [5, 6]. In the following,
we discuss the situation in [6, Section 7.2] and also use notations there. Fix a compact open
subgroup K? of GL, (Z" ). We refer to K? as the “tame level”. Fix a finite extension E of Q,
with ring of integers O g. Write

Legp T 1 p _
H! (K)o, = limH'(Y(K”Kp)/g, OF).
Ky
where the inductive limit is taken over all open subgroups K, of GL2(Z,), Y(K? K)) is the
modular curve determined by K” K, and the cohomology is étale cohomology. By [6, Lem-

ma7.2.1], H! (K?)@,, is torsion free and p-adically separated. Set A! (K?)@,, tobethe p-adic
completion of H! (K?) g, and

H' (K?)g := E ®9, H (KP)og,.

Due to [6, Lemma 7.2.5], H (K ?) ¢ is an admissible unitary representation of GL, (Q p)-

Since we are only concerned with the local properties at p, we restrict all the above Galois
modules (they are Z [Gal(@/ @Q)]-modules) to Gal(QTp/ Qp) but still use the same notations.
Now apply the functor M.*, to H! (Y (K? Kp)/g- OF) and set

mnv
Mg, kr := Moy, (H' (Y(K? K}) /- OF)).

By the comparison theorem, Mk, g» is obviously a Zp-lattice in the de Rham cohomology
HS‘R(Y(KP Kp)@, E). Proposition 4.3.1 implies that

Mgp = h_r)nMKpr
Kp

is p-adic separated. Define ﬁéR(K P) to be the p-adic completion of Mg, and
HiR(K?)E = E ®0, HiR(K?).

By the construction of Mi,y, we easily see that ﬁéR(K ?) g has a continuous action of GL»(Q)).
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Liu, Compatibility of Kisin modules for different uniformizers 23

Question 4.3.2. It is natural to ask the following questions:

(1) What we can say about the GL3(Qp)-action on I:I(IIR(K P)g? Is it an admissible unitary
representation of GL2(Qp)?

(2) Is there any relation between H! (K?)g and IA{éR(K P)g? Could we build a comparison
theorem to compare them?

Let T' be a Gg-stable Zp-lattice inside a de Rham representation. We may define

M ((T) = %gnMinv,F(TV),
where F runs through all finite extensions of K. It is easy to see that MiK(é) (T) is a finite free
W (k)-module with a (¢, N, Gg)-action and the Gg-action factors through a finite quotient
of Gg. We note that Proposition 4.3.1 is still valid after replacing Mj,y by MiK(k), because
the proof only uses Lemma 4.2.3 (3) and (4), and it is easy to check that these are still valid

for MW 1f we apply the functor MYV &) to HY (K?)g 1> then the direct limit of

inv inv

MP®H (Y(KPK,)/Q,. OF))

mv

is separated and can be completed. Denote this completion by ﬁ:t WUE)(K ?)@ [, which has
a natural (¢, N, Gg)-action and a GL»(Qp)-action. It is natural ask Question 4.3.2(1) for
Hslt’ W) (KP)g - again and the following:

Question. What are relations between I:ISIt Wk (KP)q > HY(K?)g and IA{GllR(K Pyg?

Finally, we may define

M E(T) == lim My, F (TV),
F
which is another W (k)-lattice inside Q » Rz, MY (T which is (¢, N, Gk )-stable. Though

mv
the functor MSfV(k) enjoys many good properties (e.g., My, r (H (Y(K? K)) /@p, OF)) does
have a geometric interpretation if ¥(K” Kj) has a good reduction over F'), we do not know
whether the direct limit of Mslt'V(k) HY(Y(KPK )/ @p, OF) is p-adic separated as the functor
Mg in general is not left exact. Hence its p-adic completion may contain few information to

understand H! (K?) .

5. Erratum for [13]

Theorem 2.3 in [13] claimed that the functor My is left exact. Unfortunately, this is false
as Example 4.1.4 explains. Given an exact sequence of lattices in semi-stable representations
0—>T —T—T"—0,[13, Lemma 2.19] showed that the associated sequence of Kisin
module 0 — IN” — M — M’ — 0 is left exact. But it is not true in general that the sequence

0— M /uI’ — M/uIN — M /uM’ — 0

is exact on M /uN. This is exactly the mistake ([13, sentence right before Lemma 2.19]) in
the proof that M is left exact.

Except this claim, [13, Theorem 2.3] is still correct and we have not used this claim
in [13] and our other papers.
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