A NOTE ON LATTICES IN SEMI-STABLE REPRESENTATIONS

TONG LIU

ABSTRACT. Let p be a prime, K a finite extension over Q@ and G := Gal(K /K).

We extend Kisin’s theory on ¢-modules of finite E(u)-height to give a new clas-
sification of G-stable Zy-lattices in semi-stable representations.
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This note serves as a new idea to classify lattices in semi-stable representa-
tions. Let k be a perfect field of characteristic p, W (k) its ring of Witt vectors,
Ky = W(k)[=], K/K, a finite totally ramified extension, K a fixed algebraic clo-

1
P

sure of K and G := Gal(K/K). For many technical reasons, we are interested in
classifying G-stable Z,-lattices in semi-stable p-adic Galois representations, via lin-
ear algebra data like admissible filtered (¢, N)-modules in Fontaine’s theory. Many
important steps have been made in this direction. Examples include Fontaine
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and Laffaille’ theory [FL82] on strongly divisible W (k)-lattices in filtered (¢, N)-
modules, Breuil’s theory on strongly divisible S-lattices ([Bre02], [Liu08b]), and
Wach and Berger’s theory on Wach modules ([Wac96], [Ber04]). Unfortunately,
these classifications always have some restrictions (on the absolute ramification in-
dex, Hodge-Tate weights, etc). Based on Kisin’s theory in [Kis06], the aim of this
paper is to provide a classification without these restrictions.

More precisely, let F(u) be an Eisenstein polynomial for a fixed uniformizer m
of K, Koo = Up>1K(?Y7T), Goo = Gal(K/Kw) and & = W(k)[u]. We equip
G with the endomorphism ¢ which acts via Frobenius on W (k), and sends u to
uP. Let Mod;’ér denote the category of finite free G-modules 9 equipped with
a p-semi-linear map oy : M — MM such that the cokernel of the S-linear map
1Qpm : G®yp,e M — Mis killed by E(u)". Objects in Mod;’ér are called @-modules
of E(u)-height r or Kisin modules. In [Kis06], Kisin proved that any G..-stable
Zy-lattice T in a semi-stable Galois representation comes from a Kisin module (see
Theorem 2.1.1 for details). Obviously, extra data have to be added if one would like
to extend the classification of G.-stable lattices to the classification of G-stable
lattices. Our idea is to imitate the theory of (¢,T')-modules. But G is not a
normal subgroup of G and there is no apparent natural G-action on &. To remedy
this, we construct an G-algebra R inside W(R) (see §2.1 for the construction of
R C W(R)) such that R is stable under Frobenius and the G-action. Furthermore,
the G-action on R factors through G := Gal(K s poo / K) where Ko poo is the Galois

closure of K, over K. The construction of R allows us to define a (¢, G)-module
to be a Kisin module (9, ¢) with an extra semi-linear G-action on R Rp,e M
compatible with Frobenius (see Definition 2.2.3 for details). Our main result in
this note is that the category of G-stable Z,-lattices in semi-stable representations
with Hodge-Tate weights in {0,...,r} is anti-equivalent to the category of (¢, G)-
modules of F(u)-height 7.

Just as any integral version of p-adic Hodge theory before, (¢, G)-modules will
help us better to understand the reduction of semi-stable representations, and this
will be discussed in forthcoming work (eg. [CLO§], [Liu08a]). On the other hand,
so far we do not fully understand the structure of R. In fact, R seems quite
complicated (see Example 3.2.3). So at least at this stage, it seems that our theory
only serves as a theoretic approach. We hope we can simplify this theory in the
future by further exploring the structure of ﬁ, such that we could provide more

explicit examples or carry out some concrete computations by (¢, G)-modules.

Convention 1.0.1. We define various Frobenius structures on different rings and
modules. The symbol ¢ is reserved to denote Frobenius. We sometime add sub-
scripts to indicate on which object Frobenius is defined. For example, @gy is the
Frobenius defined on 9. We always drop these subscripts if no confusions arise.
For any finite free Z,-module T', we use T to denote its Z,-dual Homg, (T',Z,).

Finally, we denote v;(x) the standard divided power f—, and Id the identity map.

Acknowledgment: It is a pleasure to thank Xavier Caruso for very useful
comments. We also thank the referee for encouraging us to include the case p = 2.
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2. PRELIMINARY AND THE MAIN RESULT

2.1. Kisin modules. Recall that k is a perfect field of characteristic p, W (k) its
ring of Witt vectors, Ky = W(k)[%], K/Ky a finite totally ramified extension and
e = e(K/Kjy) the absolute ramification index. Throughout this paper we fix a
uniformiser 7 € K with Eisenstein polynomial F(u). Recall that & = W (k)[u] is
equipped with a Frobenius endomorphism ¢ via u +— u? and the natural Frobenius
on W(k). A p-module (over &) is an &-module 9 equipped with a ¢-semi-linear
map ¢ : I — M. A morphism between two p-modules (M1, 1), (Mo, o) is an
G-linear morphism compatible with the ;. Denote by Mod?’ér the category of ¢-

modules of E(u)-height r in the sense that 9t is finite free 2 over & and the cokernel
of ¢* is killed by E(u)", where ¢* is the S-linear map 1 ®@ ¢ : & @, M — M.

Objects in Mod;’ér are also called Kisin modules (of height 3 r).

Let R = liLnOg/p where the transition maps are given by Frobenius. By the
universal property of the Witt vectors W(R) of R, there is a unique surjective
projection map 6 : W(R) — @f to the p-adic completion of O which lifts the
projection R — Oz /p onto the first factor in the inverse limit. Let 7, € K be a
p"-th root of 7, such that (7,,41)? = m,; write 7 = (7, )n>0 € R and let (7] € W(R)
be the Teichmiiller representative. We embed the W (k)-algebra W (k)[u] into W (R)
by the map u — [x], This embedding extends to an embedding & — W(R) which
is compatible with Frobenious endomorphisms.

Denote by O¢ the p-adic completion of 6[%] Then Og¢ is a discrete valuation ring
with residue field the Laurent series ring k((u)). We write £ for the field of fractions
of Og. If FrR denotes the field of fractions of R, then the inclusion & — W(R)
extends to an inclusion Og < W(FrR). Let £ C W(FrR)[%] denote the maximal
unramified extension of £ contained in W(FrR)[%], and Ogur its ring of integers.
Since FrR can be seen to be algebraically closed (see Théoreme A 3.1.6 [Fon90]),

=

the residue field Ogur /pOgur is the separable closure of k((u)). We denote by &wr
the p-adic completion of €', and by Og; its ring of integers. & is also equal to
the closure of £"" in W(FrR)[%]. We write 8" = Oz NW(R) C W(FrR) % We
regard all these rings as subrings of W(FrR)[%].

Recall that Koo = |,>0 K(m,) and Goo = Gal(K/K). G acts continu-
ously on 6™ and £ and fixes the subring & ¢ W(R). Finally, we denote by
Rep;, (Go) the category of continuous Z,-linear representations of Gog on finite
free Z,-modules.

To any Kisin module (901, ), one can associate a Z,[G]-module:

T@ (SDT) = Homg’w(ﬁ)t Gur).

2This is a somewhat ad hoc definition because we are only concerned with finite free G-modules
here. In fact the definition of ¢-modules of finite F(u)-height works equally well if one requires
only that 9t is of finite type over &, and this more general notion is useful when one studies
p-power torsion representations.

3Throughout this paper, the height is always E(u)-height. So we always omit “E(u)”.

4The careful reader may notice that our definition of &% differs slightly from the one in [Kis06];
this is a typo in [Kis06] which has been corrected in (E.3) in [Kis08].
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One can show that Ts(90) is finite free over Z, and rankz, (Ts (9M)) = ranke (M)
(see for example, Corollary (2.1.4) in [Kis06]). Let V be a continuous linear rep-
resentation of G := Gal(K/K) on a finite dimensional Q,-vector space. V is said
to be of E(u)-height r if there exists a Goo-stable Z,-lattice T C V and a Kisin
module M € 1\/[0d7£r such that T' ~ Tg(MM). We refer [Fon94b] to the notion of
semi-stable p-adic Galois representations. The following theorem summarizes the
known results on the relation between semi-stable representations and representa-
tions of finite F(u)-height.

Theorem 2.1.1 ([Kis06]). (1) The functor Ts : Mod;’ér — Repy (G) s
fully faithful.
(2) A semi-stable representation with Hodge-Tate weights in {0,...,r} is of
finite E(u)-height r.

Remark 2.1.2. (1) Suppose that V is of E(u)-height r. Then it is easy to
show that any G.-stable Z,-lattice T C V' comes from a Kisin module
MNe Mod;’g, ie, T ~Tg(M). See the proof of Lemma (2.1.15) in [Kis06].
(2) Tt is natural to ask if the converse question for Theorem 2.1.1 (2) is true.
Unfortunately, it is not always true. See Example 4.2.1 and the refined

form of this question in the end of §4.

2.2. (¢, é)-modules. We denote by S the p-adic completion of the divided power
envelope of W (k)[u] with respect to the ideal generated by E(u). There is a unique
continuous map (Frobenius) ¢ : S — S which extends the Frobenius on &. Define
a continuous W (k)-linear derivation N : S — S such that N(u) = —u. We denote
S[1/p] by Sk,-

Recall R = lim O /p and the unique surjective map 0 : W(R) — (5? which lifts
the projection R — Oz/p onto the first factor in the inverse limit. We denote by
Agis the p-adic completion of the divided power envelope of W(R) with respect
to Ker(#) and we naturally extend 6 to 6 : Agis — @?. Recall that [7] € W(R)
is the Teichmiiller representative of @ = (m,)n>0 € R and we embed the W (k)-
algebra W (k)[u] into W(R) via u +— [x]. This embedding extends to an embedding
6 — § — A5 which is compatible with Frobenius endomorphisms. As usual, we
write BY, = Acis[1/p] and B = BL, [u] with u = log(u).

cris

oo
For any field extension F/Qp, set Fpe = |J F((pn) with (p» a primitive p™-
n=1

th root of unity. Note that Ko poo = |J K(mp,(pn) is the Galois closure of K
n=1

over K. Set K := Ko p=, G := Gal(K/K), Hr := Gal(K/Ky) and Gpe =
Gal(K/Kp») °.

For any g € G, let e(g) = g(x)/m = (€i(g))i>0 € R* where €;(g) is a p'-th root of
unity. Fix a choice of primitive p’-root of unity (pi fori > 0 and set € := ((pi)iz0 €
R and ¢ :=log([e]) € Acris- We see that g(¢t) = x(g)t with x the p-adic cyclotomic
character, and there exists an a(g) € Z, such that log([e(g)]) = a(g)t.

The projection of R to k induces a projection v : W(R) — W(k). Since

v(Ker(0)) = pW(k), the map v extends naturally to a map v : Ay — W(k),

S5Here we use a different notation from those in [Liu07] and [Liu08b], where we use Go to denote
Gpoo.
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and v : BL. — W(_)[%] Write I, B, = Ker(v) and I, A := Ker(v) N A for

Cris Cris

any subring A C B... Since v(u) = 0, it is easy to check that I, & = u& and

cris’

S=A{f= Zaiu la; € Ko, f €5}
i=
For any integer n > 0, let t{"} = tr(”)'y atn )( 1) € Agyis where n = (p—1)G(n) +
r(n) with 0 < r(n ) <p-—1landy(z) =% is the standard divided power. Define a
subring R, of B, asin §6, [Liu07]:

cris

Rk, = {Z fit{i},fi € Sk, and f; —0asi— +oo} .
i=0

Define R := Ri, NW(R) and I := I.R. The following lemma lists some useful

facts on R and R, .

Lemma 2.2.1. (1) R (resp. Ri,) is a @-stable S-algebra as a subring in
W(R) (resp. BL,).
(2) R and I (resp. Ri, and I4 R, ) are G-stable. The G-action on R and
I, (resp. Rk, and I4R,) factors though G.
(3) Ri,/Is R, ~ Ko and R/I, ~ S/1,S ~ &/u& ~ W (k).

Proof. (1) It is obvious because ¢(u) = uP and p(t) = pt.
(2) We first check that Ry, is G-stable. For any g € G since g(t) = x(g)t, it
suffices to check that g(f) € Rk, for any f € S. An easy calculation shows that

(2.2.1) ZNl —log([e(9)]))-

Note that log([e(g)]) = a(g)t for some a(g) € Z, and 7;(t) — 0 in Agis p-adically
(see §5.2.4 in [Fon94a]). So we see that R, is G-stable and the G-action on R,

factors through G. Since W (R) is G-stable as a subring of B, R is G-stable and
the G-action on R factors through G. Noting that the map v : Bl . — W(I})[%] is

G-equivariant, we see that I, B , hence It Rk, and I is G-stable.

cris?
(3) Note that u and [¢]—1 are in [y W(R),sou, t € I+ch, and hence v(Rk,) =

Ko. Then R/I; = v(R) C v(Rg,) = Ko. Note that R/ — v(W(R)) = W( )

Thus we get R/I, ~ KoNW(k) = W (k).

Remark 2.2.2. By Lemma 7.1.2 in [Liu07], Rk, C Ko[z,y] via u — z and ¢t — y.

The structure of R is much more complicated and so far we do not know how to

describe it explicitly. See Example 3.2.3.

Let (90, o) be a Kisin module of height r and 9t := R ®p,e M. Then we can
naturally extend ¢ from 90t to m by

og(a®@m) = ps(a) ® pom(m), Vae R, Vm € M.

Definition 2.2.3. A (¢, G)-module (of height ) is a triple (90, ¢, () where

(1) (DJT, ngm) is a Kisin module (of height T),
(2) G is an R-semi-linear G-action on M := R ®p,c M,
(3) G commutes with Pgyp ON M, i.e., for any g € G, 9P = P
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(4) regarding M as a (S )-submodule in 9, we have M C M«
(5) G acts on the W (k)-module M := 901/I, 0 ~ M /ud trivially.

A morphism between two (¢, G))-modules is a morphism of Kisin modules that
commutes with the G-action on M’s. We denote by Mod;’g the category of (¢, é)—

modules of height r. Let 9 = (Sm,cp,(;’) be a (go,é’)—module. In the following,
we often abuse the notations by letting M denote the ambient module R R, M
if no confusions arise. We always regard M="R ®p,e M as a G-module via the
projection G — G.

2.3. The main theorem. Let M = (M, », G) be a (¢, G)-module. We can asso-
ciate a Z,[G]-module:

(2.3.1) T(9M) := Homp (R @ye M, W(R)),

where G acts on T'(9M) via g(f)(x) = g(f(g~1(z))) for any g € G and f € T(M).

Now we can state our main theorem:

Theorem 2.3.1. (1) Let M := (M, ¢, G) be a (¢, G)-module. There is a nat-
ural isomorphism of Z, |G« ]-modules

(23.2) 0:Ts(M) = Home ,(9M, &) > T(M) = Homz (R @y e M, W(R)).

(2) T induces an anti-equivalence between the category of (@,G)-modules of
height v and the category of G-stable Z,-lattices in semi-stable representa-
tions with Hodge-Tate weights in {0,...,7}.

3. THE PROOF OF THE MAIN THEOREM

3.1. The connection to Kisin’s theory. In this subsection, we will prove The-
orem 2.3.1 (1) and that T is well-defined and fully faithful.

Let (M, ¢, G) be a (p, G)-module and M := R ®p,6 M. As in Definition 2.2.3,
we regard 9 as a (& )-submodule of M. Then for any f € T (9M), define 6(f) €
Homg (9, W(R)) by

0(f)(a® ) :=ap(f(z)), YaeR, VoM.

It is routine to check that 0(f) is well-defined and preserves Frobenius. Therefore,
the Z,-linear map 6 : Te (M) — T(M) is well-defined. Now we have reduced the
proof of Theorem 2.3.1 (1) to the following

Lemma 3.1.1. 0 : Ts (M) — T(9M) is an isomorphism of Zy[Goo]-modules.

Proof. Since ¢ : 6" — W(R) is injective, 6 is obviously an injection. To see that
0 is surjective, for any h € T(9M), consider f := hlgy. Since f is a (&)-linear
morphism from 9 to W(R) = (W (R)), there exists an f € Homg (9, W(R))
such that o(f) = f. Obviously, 8(f) = h and { preserves Frobenius. Now we have
f € Homeg , (9, W(R)). It suffices to show that § € Tg () = Home (MM, ™).
Note that f(9) C W(R) is an G-finite type ¢-stable submodule and of E(u)-
height r. By [Fon90], Proposition B 1.8.3, we have f(9t) C &"*. This completes
the proof of the bijectivity of #. Now it suffices to check that 6 is compatible
with the G-actions on both sides. For any g € G, a € 7/@, r € Mand f €
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Ts(M), g(0(f))(a® x) = g(0(f)(97 (a ® x))). Note that G acts on 9 trivially
by Definition 2.2.3 (4), and so we have

g(0(f)(g™ (a® 2))) = g(0(f) (97" (a) ® 2)) = ag(e(f(x))) = 0(g(f))(a @ 2).
That is, g(0(f)) = 0(9(f)) O

Now we need some preparations to show that Q, ®z, T(S)fﬁ) is semi-stable. Let
T be a finite free Z,-representation of G or G, and denote by T the Z,-dual of
T. Tt will be useful to recall the following technical results from [Liu07], §3.2. Let
M be a Kisin module of height . Using the definition of T (M), we can show (cf.
[Liu07], Proposition 3.2.1) there exists an G"-linear, Go,-compatible morphism®

ls : BV ®g M — G Sz, Té/(gﬂ)

Select a t € " such that t ¢ p&" and p(t) = calE(u)t where pcy is the constant
term of E(u). Such t is unique up to units of Z,, see Example 2.3.5 in [Liu07] for
details.

Lemma 3.1.2. s is an injection and t" (6" @z, T(M)) C 1s(6" ®e M).
Proof. Theorem 3.2.2 in [Liu07] proved the construction of ts (cf. the construction
of ¢ in [Liu07]), and that there exists an &"'-linear map

LG 1 6 @z, TE(M) — 6V ©s M

(cf. ¥ in [Liu07]) such that ¢ o tg = t"Id where Id is the identity map. Note
that both & ®z, TZ(M) and & @ M are finite free &**-modules, so we have
te o1l = t'Id. Since t is a non-zero divisor in ", we conclude that (g is an
injection and t" (6™ @z, TE(M)) C 1s(6™ @ M). O

Using the same idea as above, we have a similar result for 9.

Proposition 3.1.3. (1) T(9M) induces a natural W (R)-linear, G-compatible
morphism

(3.1.1) i1 W(R)®z M — W(R) @z, TV(9M),

where M =R Ry, M.
(2) i W(R) ®yp,euw ts. That is, the following diagram is commutative:

W(R) @6 M : W(R) @z, T ()

a®Idgn T ¢

W(R) ®¢76ur (6111" ®6 E)ﬁ)

a®(9v)_lTl

W(R)Qets
WEets W (R) @ e (6 @z, TL(M))

where two vertical arrows are isomorphisms, o : W(R) ®, guw 6" — W(R)
is the isomorphism given by o(> ", a; ® b;) = >, a;p(b;) with a; € W(R),
b; € 8" and W(R) ®, ts denotes W(R) @y gur L.

(3) © is an injection and (o(t))"(W(R) @z, TV (9M)) C i(W(R) ®n ).

6Here we use slightly different notations from those in [Liu07].
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Proof. (1) We use the same idea for the construction of tg in Proposition 3.2.1 in
[Liu07]. One first proves that

T(9M) ~ Homyy gy (W (R) @5 MM, W(R))

is an isomorphism of G-modules, where the G-action on the right side is given by

9(£)() = g(f(g7'()), for any g € G and f € Hom (r),(W(R) ®% M, W(R)).
Then we have a map

i: W(R)®z M — Homg, (T(M), W(R)) = W(R) @z, TV (M)

induced by x — (f — f(x), Vf € T(9M)) for any = € M. It is easy to check that i
is compatible with G-actions on both sides.

(2) By identifying W (R) ®z, V(M) with Homgz, (T'(9M), W(R)) and identifying
W(R) @y cu (6" @z, TZ(M)) with Homgz, (Ts (M), W(R) @y, eu &™), it suffices
to prove the following diagram is commutative:

i‘ A A

W(R) ®p,c M Homgz, (T'(ON), W (R))

a@ldgnTl (Q,Q)TZ

W(R)®ets ur
W (R) ®p.0m (6" @6 M) L9 Hom, (T (M), W(R) ©p.em &™)

where the right vertical arrow (6, ) is the isomorphism induced by =1 and «.
Identify W(R) ®4,6 MM with W(R) @y, cu (6" ®s M) via a @ Idgy. For any
y=>,0,0m; € W(R) ®p.c M with a; € W(R) and m; € M, we see that
(W(R) @, ts)(y) sends f € Te(M) to Y .a; ® f(m;). Then we have that
(0,0)(W(R) ®p,ew ts)(y)) sends 0(f) to Y. aip(f(m;)). On the other hand, we
have i(y) sends 6(f) to >, a;0(f)(m;) = >, aip(f(m;)). Hence W(R) @y guw L
i.

(3) Select an G-basis e1,...,eq of M and a Zy-basis f1,..., fq of TL(M). We
have ts(e1,...,eq) = (f1,--., fa)A with A a d X d-matrix and coefficients of A in
G, Since g is injective and (6" ®z, T (M)) C 1 (6" ®e M) by Lemma 3.1.2,
there exists a matrix B with coefficients in &"" such that AB = t"I. Since i ~
W(R)®q s te by (2), by identifying 9 as a ¢(&)-submodule of W(R)®,, &9 and
identifying TZ(9) with V(M) via (0¥) =1, we have i(eq, ..., eq) = (f1,..., fa)p(A).
Since p(A)p(B) = (¢(t))"I and ¢(t) is a nonzero divisor in W(R), we see that  is
an injection and (¢(t))"(W(R) ®z, TV (9M)) C i(W(R) Rz ). O

Remark 3.1.4. Let V be a representation of E(u)-height r, T' a G-stable Z,-lattice
in V, and M the Kisin module associated to T|g... We can always consider the
injection

U= W(R) ®¢,6llr Ll . W(R) ®Lp,6 M — W(R) ®ZP Té/(f)ﬁ)

There is a natural G-action on the right side because T' is G-stable. In general,
it is not clear whether the image of I is G-stable under this action (though it is
Go-stable), or equivalently, whether the G-orbit of M, G(M) C W(R) @, s M.
As we will see soon, in the case of (o, G)-modules we have G(9M) C R ®p,e M C
W (R)®,,e9. This is actually a key point to prove that QP®ZPT(95?) is semi-stable.
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Now we are ready to prove that Q, ®z, T (DJT) is semi-stable. Tensoring B, on
both sides of (3.1.1), noting that
Blss ®wm) W(R) @2 M= Bl @ M= Bl n, Ric, Oz M

and Rg, ®p M~ R, R, M, we have
(3.1.2) Bl ®w(r) i 0 Bl Onry, (R, ®p,e M) — Bl @z, TV (M).

cris

By a similar argument for ¢g, we also have

(3.1.3) Blis ®p.ev ts t Bahig @Ry, (Riy ®p,6 M) — Bly, @z, TE(M).

Since i ~ W(R) ®,,ew s by Proposition 3.1.3, we have the following commutative
diagram to identify (3.1.2) with (3.1.3):

(3.1.2)

B:;li ®RK0 (RKO ®<Pa6 S)'n) - B:;ls ®Zp T\/ (Efn)

Idl? l Bl ®z,0"

3.1.3
B DRk, (REo @p,6 M) LU Bl ®z, TE(M).

Cris

Thus when we equip T¢ (9) with G-action induced by 6, we see that R i, ®,, M
in (3.1.3) is G-stable and has the same G-action as that on R, ®, ¢ M in (3.1.2).
Now the proof of semi-stability of Q, ®z, T(9M) will be almost the same as in
§7 of [Liu07] carefully using the hypothesis in Definition 2.2.5 (5): G acts on the
W (k)-module M := 90/I,.9M trivially. In fact, the proof in §7 of [Liu07] has a gap
without verifying this hypothesis. Here we sketch the proof in §7 of [Liu07] here
and indicate where the gap is. While §7 in [Liu07] only deal with the case p > 2,
we will also discuss the case p = 2 here (and in §4.2).

In §7 in [Liu07], we also aim to prove that a certain representation V' of E(u)-
height r is semi-stable with Hodge-Tate weights in {0,...,r} (for p > 2). Other
than requiring that V is of finite E(u)-height such that we can establish (3.1.3), the
only other inputs that §7 needs are three conditions listed in the beginning of §7.1 on
the G-action on DRs Rk, ~ Ri, ®p,e M, where D := Sk, ®, e M, together with
an extra condition that will be explained below. But the first three conditions are
just conditions (2), (3), (4) required in Definition 2.2.3. Thus the same proof will
go through once we have explained how the extra condition is implied by Definition
2.2.3 (5), as well as how the proof must be modified when p = 2.

More precisely, let D := D/(I;Sk,)D (recall Sk, = S[%]) Then D is a finite
free Kg-module with a semi-linear Frobenius action ¢. One can prove there is a
unique g-equivariant section D — D (cf. Lemma 7.3.1 in [Liu07]). So we can
regard D as a Ky-submodule in D. Since D < D is p-equivariant, Lemma 7.1.3 in
[Liu07] showed that the structure of R, forces that G(D) C (Ko[t] " Rxk,) @5, D
(Rk, can be regarded as a subring of Ky[t,u] via Lemma 7.1.2 in [Liu07]). Note
that though Lemma 7.1.3 only proved that 7(D) C (Kot] N Rk,) ®k, D for a
(specially selected) T € Gpes, the proof actually works for any g € G. In particular,
we see that G(D) C (Ko[t] N Rx,) @k, D if p = 2.

To show that Q, ®z, T(Djt) is semi-stable, at this point the proofs for case p > 2
and case p = 2 become different, we address the case p > 2 now and deal with the
case p = 2 in §4.2.
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Suppose p > 2. By Lemma 5.1.2 in [Liu08b], we have Kpe N Ko = K, G =
Gpe X Hg and Gpe =~ Z,(1). As in the proof of Proposition 7.1.1 in [Liu07], let 7
be a topological generator of G, and select a basis ey, ...,eq of D and write

er, .o orea) = (er,. . ea)A, A= All ZAM

Now the facts that G(D) C (Ko[t]"Rk,) @, D and Hy acts on D trivially imply
(cf. the proof of Proposition 7.1.1 in [Liu07])

(3.1.4) Alx(9)t) = A9,

where x is the p-adic cyclotomic character. Since G acts on 95?/]#)5? trivially,
A(0) = Id. Thus log(A(t)) is well defined and log(A(x(g9)t)) = x(g)log(A(¢)).
Selecting a g € G such that x(g) # 1, we see that there exists a matrix N (hence

a linear map N : D — D) such that log(A(t)) = Nt, thus 7(z) = > v(t) ® Ni(x)
n=0

for any z € D. Now consider the Ky-vector space

{Z% ® Ni(z) € B ®s D|z € D}

where u = log(u) € B. Note that 7(u) = u+ log(e(7)). Since G =~ Gpoo x Hge and
T is a topological generator of Gpe, we see that e(7) = (¢,(7))i>0 € R with €(7) a
primitive p’-th root of unity. Hence we can select t = —log([¢(7)]) and then 7(u) =
u—t. Asin §7.2 in [Liu07], we can show that D C (B} ®sD)% (B;@Z TV (Mm))C.
But dimg,D = dimg,D = RankZpT(i)fR). Therefore Q, ®z, T(9M) is semi-stable
and the functor 1" is well-defined.

Remark 3.1.5. If we do not assume that G acts on 957/ I +D§T trivially, or equivalently

A(0) = Id, then log(A(t)) may not be well-defined and A(t) may not be > Ny, (t).
n=0

Consequently, Q, ®z, T(z)fn) may not be semi-stable; see Example 4.2.1. So this

is the gap in §7.1 of [Liu07], on the 3rd to last line of page 668 of the published
version. We will close this gap in the end of this note.

Now let us prove the full faithfulness of T (including the case p = 2). Suppose
that f : 7" — T is a morphism of G-stable Z,-lattices inside semi-stable representa-
tions, and there exist (¢, G)-modules M’ = (M, pon/, Gop) and M = (M, won, Gon)
such that T(9M') ~ T’ and T(M) ~ T. Note that Ts is fully faithful (Theo-
rem 2.1.1), so there exists a morphism of Kisin modules f : 9t — 9 such that
Ts(f) = fla..- So we obtain the following commutative diagram

G ®g M —=s & @7, TL(M)
iem% f

Gur ®6 ml i) Gur ®Zp Té/(gn/)

i S

By Lemma 3.1.1, it suffices to show that f = 7%(&07@ f is G-equivariant. To see this,

tensoring W (R) via G & W(R) to the commutative diagram and noting that
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i~ W(R) ®y,&uw ts by Proposition 3.1.3 (2), we have the following commutative
diagram

W(R) @5 M ——> W(R) ®z, TV (M)
J{W(R)@;ﬁ lW(R)cazpfv

W(R) @4 D ——> W(R) @z, TV(50).

Note that 7 is injective and G-equivariant by Proposition 3.1.3. Since f is G-
equivariant, f is G-equivariant.

3.2. The essential surjectiveness of T. Now assume that 7" is a G-stable ZLop-
lattice in a semi-stable representation V' with Hodge-Tate weights in {0,...,r}. By
Theorem 2.1.1, there exists a Kisin module 9t such that Te(9M) ~ T, . Theorem
5.4.2 in [Liu07] showed that the injection

Bl ®pew te : Bl ©p6 M — Bl @z, TE(M) = BE,, @z, TV

is compatible with the G-actions. More precisely, let D := Sk, ®, &M be the Breuil
module” associated to V, and let N be the monodromy operator on D. Then G
acts on B, sk, D= Bl ®,.6 M via (cf. equation (5.2.1) in [Liu07])

(3.2.1) gla® ) = Zg(a)%(*log([é(g)])) ® N'(2).

for any a € B, and x € D.

Set "M = 6 ®,,c M. Apparently ¢*IM is a finite free G-module and p*M C
D C Bl ®,.6 M. Now we are interested in the orbit G(¢*M) of ¢*M under G.

Proposition 3.2.1. G(¢p*M) C ﬁ@w,g m.
Proof. We have seen that G(¢*IM) C G(D) C Rk, ®yp,e M by formula (3.2.1).

Now consider the following commutative diagram

G W(R) @0 M —= W(R) @z, T

| |

*M—— BT R, M —— Bt ®z, v

cris cris

(3.2.2)

where the first row is obtained by W(R) ®,, sur ts. Obviously, the right column is
compatible with the G-actions. By Lemma 3.1.2, for any g € G, we have

(p(1)"(g(¢™M)) C W(R) ®@p,e M.

Now select a basis eq,...,eq of ¢*9 and write g(e1,...,eq) = (e1,...,eq)A with
A a d x d-matrix. Let a be an entry of A. It suffices to show that a € W(R). Now
we know that a € Rg, and (¢(t))"a € W(R). Then we can reduce the proof to
Lemma 3.2.2 below.

O

7A Breuil module is a finite free Sk,-module with structures of Frobenius, filtration and
monodromy. By [Bre97], the category of admissible Breuil modules is equivalent to the category
of semi-stable representations. Also see §3.2 in [LiuO8b] for the relation between Kisin modules
and Breuil modules.
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Lemma 3.2.2. Leta € BT, .

s If (0(8))"a € W(R) then a € W(R).
Proof. Wlthout loss of generality, we may assume that » = 1. Recall the map
0: Ais — O— 7 constructed in the beginning of §2.2. Define an ideal Fill!Bt. .=

cris

Ker(0) ®z, Q, C B, and set Fil'W(R) = Fil' BJ;,, nW(R). As in [Fon94a], §5.1,

deﬁne Tr1s r1s
TUW(R) = {a € W(R)|¢"(a) € Fil'W(R), for every n > 0}.

Write 2 = ¢(t)a. We claim that = € TMW(R). By Example 5.3.3 in [Liu07] or
Example 3.2.3 below, there exists a unit ¢ € Agis such that ¢ = cp(t). Since
([ — 1) = 0, we see that t € Fil' Bl and then z = ¢(t)a € Fil'W(R). Since

Crlb

o(t) = co 'E(u)t, we have ¢™(t) = (];[1 @ (cg ' E(u)))p(t) € Fil'W(R). Therefore

©"(z), " (p(t)) € Fil'W(R) and then x,o(t) € IMNW(R). By proposition 5.1.3
n [Fon94al, I[I]W(R) is a principal ideal and b € I ]W(R) is a generator if and
only if vR(E) = p 7, where b=>b modp € R. Write =t modp € R. Since
o(t) = cg'E(u)t and t ¢ p&™, we easily compute that vp(f) = E and then

vR(g;(vt)) = ;27. Thus ¢(t) is a generator of TMW(R). Soa=z/p(t) € W(R). O

Now Proposition 3.2.1 implies that M = 7/'\’\,®<p & M is stable under the G-action
induced from B}, ®, eM — B, @z TV, and obv1ously the G-action on 91 factors
through G. Tt suffices to check that G acts on sm/ IQ)JT trivially to show that M
is a (p, G)-module. Note that [e(g)] — 1 € I.W (R) and then log([e(g)]) € L4 Acris.
Thus by formula (2.2.1), we easily check that G acts on Ry, /I Rx, trivially. By
formula (3.2.1), we see that G acts on D/(I4Sk,)D = /I, I ®z, Qp trivially.
Hence M is a (p, G)-module.

Now it remains to check that 7'(9) ~ T. First, by Lemma 3.1.1, T'(9M)|q_ ~
T|c... Recall that i defined in (3.1.1) is compatible with the G-actions on both
sides, and { ~ W(R) ®,,& ts. Comparing ¢ with the top row of (3.2.2), we have
the following commutative diagram:

W(R) @3 M ———= W(R) @z, TV(M)

ZlW(R)@)ZpG\/
( )®<;>Lb

W(R) ®p,e M ——=W(R) ®z, TL(M) =——=W(R) &z, T",

where W(R) ®, te denotes W(R) ®yp,ew tg. By the construction of 95?, we see
that the left column is compatible with the G-actions. By Proposition 3.1.3,
(0(1)"(W(R) ®z, T(M)) C i(W(R) ®p,& M). So the right column is also compat-
ible with the G-actions. Therefore, T'(90) ~ T as G-modules. This completes the
proof of the main theorem.

Unlike Rg,, so far we do not have an explicit description of R. Recall € =
(Cpi)iz0 € R with (i a primitive p’-th root of unity. Put

w:=1[e] — 1 =exp(t) — 1.
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We see that w € R and W (k)[u,w] C R is stable under Frobenius and G-action.
Unfortunately, this 1nclu510n is strict. The following example shows that the struc-
ture of R may be very complicated.

Example 3.2.3. Assume that p > 2 and let 7 be a topological generator of Gpe
It is well known that ¢ is the period of the cyclotomic character x. On the other
hand, t is the period of the Kisin module for x, which is an &-free rank-1 module
G* := G- f and ¢(f) = ¢y 'E(u)f with f a basis. Example 5.3.3 in [Liu07]

showed that we may choose t such that ¢ = cp(t), where ¢ = H @ (M) €
=
AZHS Then 7(c)T(p(t)) = 7(t) = t = cp(t). Therefore T(go(t)) = get) =

H 7 (T(EE(EQ))> (t). Let ¢ = 5 H 7 (Té(& 7). Since ¢ is a unit in R,
n=1

¢ € Rk,. On the other hand, E(u) is a generator of Fil' W(R), so % is a unit
in W(R). Thus ¢ € R. Let 6* := (R®,6 6)-f =R - f be the (¢, G)-module
corresponding to x. Then the G-action on &* is given by 7(f) = ¢f.

4. WEAK (¢, G)-MODULES

A triple (M, ¢, G) is called a weak (¢, G)-module if it only satisfies axioms (1),
(2), (3) and (4) in Definition 2.2.3. We define morphisms of weak (i, G)-modules
and the functor 7' to be the same as those of (g, G‘)—modules. In this section, we
will discuss the relation between weak (¢, G’)—modules and potentially semi-stable
representations and complete the proof of Theorem 2.3.1 (for p = 2). First we need
some preparations for the case p = 2.

4.1. The structure of G when p = 2. Recall that Lemma 5.1.2 in [Liu08b]
showed that if p > 2 then K,~ N K, = K and consequently, G= Gpeo X Hp. This
statement fails in general when p = 2. Set K, = K(m,) for n > 1. We assume
p = 2 for the remainder of this subsection.

Example 4.1.1. Let F,, := Qq(a,) with o, = (an + gn,l and n > 3. We have
aZ = a, +2. So it is easy to check that a, is a uniformizer of F,. Assume that
K = F,, and select m = v, + 2. We see that K1 = K(/7) = Frqp1 C Qa(lont1).

Remark 4.1.2. From the above example, we see that Lemma 8.0.4 in [Liu07] is false.
Hence the whole proof in §8 in [Liu07] has to be fixed. We will fix the problem in
the end of this note (Errata for [Liu07]).

Lemma 4.1.3. Let F be a nontrivial K-subfield of K, that is, K C I C K, and
F # K. Then F = K; with i <n.

Proof. Let us write Ky = K only in the proof of this lemma and prove the lemma
by induction on n. It is trivial if n = 1. Assume that the statement is valid for
n = m. Let us consider the K-subfield F' of K,,,41. If F # K41 and F ¢ K,,,
then FK,,, = K,4+1. Since K,;, N F is a subfield of K,,,, by induction, K,,NF = K|
for I < m. We claim there exists a quadratic extension F5 over K; such that
F, C F. To see this, let L be the Galois closure of K,,;1. Note that F' C L and
Gal(L/K) has an order of power 2. Then the claim follows the fact that any proper
subgroup H of a group G with the order of power p admits a normal subgroup
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H’' of G such that H C H' and [G : H'] = p (see Theorem 5.7 in Chapter II in
[Hun80]). Since F, is quadratic and F» N K, = K;, we easily see that K, 1 =
K, and Gal(K 1/ Ky) ~ Gal(Fy/K;). Then Fy, = K;(y/a) with a € K; and
K1 = KBy = K (Va). Hence 711 = x/a + y with z,y € K,,,. Write o €
Gal(K,,+1/K,) such that o # Id. Note that Gal(K,,+1/Kn) ~ Gal(Fy/K;), we
have —m41 = 0(Tm41) = zo(yVa) +y = —z/a+y. Thus y = 0 and 7,41 = z/a.
Normalize the valuation v, such that v,(7) = 1. Then

1 1

st = Ul 1) = 0p(2) + 305(a).

Since € K, a € K; and | < m, the right-hand side is in 5 Z. Contradiction.
So Fy can not exist and consequently F' can not exist. Hence F = K,,41 or
F C K,,. So by induction, we have all nontrivial K-subfields of K, are K; with
1 <m-+1. O

Remark 4.1.4. The above Lemma is still valid if p > 2. Since Kp~NK = K, it suf-
fices to show that for any field F satisfying K ((pn) & F' C K((pn,mp), we have F' =
K((pn,m) for some | < n. This follows the fact that Gal(K ({pn,m,)/K((n)) =~
Z/p™Z.

Proposition 4.1.5. Let K/ := Kpos NKoo. If K' # K then K' = Ky and {4 ¢ K'.

Proof. We first prove that if ¢, € K then K’ = K. Let K = KN Q2,20c. Then
Gal(Kp=/K) ~ Gal(Qz,2 /K) C Gal(Q2,200 /Q2((a)) > Zs. So K = Qz({am) with
m > 2, and if F' is a quadratic extension of K and F' C Kpe then F' = K((om+1).
If K’ # K then by Lemma 4.1.3, we see that K’ = K, for some [ > 1. Hence
Ky, C Kp~ is a quadratic extension of K. So K7 = K((ym+:) and then m =
xloym+1 +y with z,y € K. Let o be the nontrivial element in Gal(K;/K). We
have —m = o(m1) = zo((om+1) + ¥y = —xlom+1 +y. So m1 = x(ym+1 and then
vp(m1) = vp(x). This is impossible because 7 is a uniformizer of K;. Hence this
forces K’ = K.

Now if K’ # K then {4 ¢ K. By Lemma 4.1.3, we see that K’ = K; with | > 1.
If I > 2 then Ky C Kp~ is an abelian extension of K with degree 4. Note that
Ky = K(m3), so there exists at least a g € Gal(K3/K) such that g(m) = (472
(otherwise, Gal(K3/K) can not have order 4). Hence (4 € K. Note that 4, € K,
we have F = K((4) C K5 is a quadratic extension of K. Hence by Lemma 4.1.3,
we have F' = K;. So m = 2(4y +y for =,y € K. Let o be the nontrivial element
in Gal(K;/K). We have —m = o(m1) = 20({) +y = —2C4 +y. So m1 = 24 and
then v, (m1) = vp(x). This is impossible because 77 is a uniformizer of Kj. So this
forces =1, K'=K; and {4 ¢ K'. O

In summary, the structure of G has two possible cases if p = 2. Case 1: K/ = K.
In this case, we have G ~ Gpe X Hy with Gpee >~ Z,, and Hg acts on Gpe via the
p-adic cyclotomic character y. In particular, we can select a topological generator
7 € Gy and log([e(7)]) = at with a € Z; Case 2: K’ = K;. In this case, write
Gy = Gal(k/Kl). We have Gy ~ Gpos ¥ Hyg with Gpee ~ Z,, and Hg acts on Gpeo
via the p-adic cyclotomic character x. Let 7 be a topological generator of Gpe,
note that log([e(71)]) = 26t with 8 € Z). Nevertheless there exists a 7 € G such
that 7 acts on K7 nontrivially. Then it is easy to see that log([e(7)]) = 't with
8 e Z,, but 7 can not be chosen to be in G in this case.
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4.2. Weak (y, G‘)—modules and potentially semi-stable representations. Now

we assume that p is an arbitrary prime again. Recall that a weak (¢, G)-module

is a triple (9, ¢, G) which only satisfies axioms (1), (2), (3) and (4) in Definition
2.2.3, and we define morphisms of weak (¢, G)-modules and the functor T to be the
same as those of (¢, G)-modules. The following is an example to show that there

exists a weak (o, G)-module which is not a (p, G)-module. Here we thank Xavier
Caruso for finding this example for us.

Example 4.2.1. Let K = Q,(¢,) with {, a p-th primitive root of unity and = =
¢p — 1. Then K1 = K(g/(, — 1) is Galois over K. Let T be the representation of
G induced by the G-action on the finite free Z,-module Ok, . It is easy to see that
the Goo-action on T is trivial. Let 9t be the Kisin module attached to T, . We
easily see that the action of G is stable over 9 — W(R) ®z, T" and the action of
G on M /uM is isomorphic to the dual of the G-action on Ok, . So it is non-trivial.
Therefore T is not semi-stable over K. This example also answers the question
raised in Remark 2.1.2 (2): in general, a representation of finite F(u)-height need
not be semi-stable.

Note that Q, ®z, T(9M) in the above is potentially semi-stable. In general, we
have the following result. Set m = Max{i|Ky((,:) C K} and recall K, = K(m,)
for n > 1.

Theorem 4.2.2. T induces a contravariant fully faithful functor from the cate-
gory of weak (p, G)-modules of height r to the category of G-stable Z,-lattices in
potentially semi-stable representations which are semi-stable over K,, and have

Hodge-Tate weights in {0,...,7}.

Proof. We first prove that 7" is well-defined. It suffices to check that @, ®z, T(m)
is semi-stable over K, with Hodge-Tate weights in {0,...,r}. First we show that
to prove that V := Q, ®z, T(Sﬁ) is semi-stable over K,,, it suffices to prove that
V' is semi-stable over K; with [ > m. In fact, if V' is semi-stable over K; then
Gal(K;(¢y)/K) acts on D := (By ®g, V)¢ with G := Gal(K/K;((,)). In par-
ticular, Gal(K;(¢,)/K;) acts on D trivially. Now we claim that there exists a
o € Gal(K;((,)/K) such that o(m) = m(,. The claim follows the fact that there
exists 7 € G such that e(1) = (&)i>0 € R with ¢; the primitive p’-th root of unity.
If p > 2 then this is clear because Kp~ N Koo = K. If p = 2 then the end of
§4.1 shows the existence of such a 7. Now we see that Gal(K;((,)/K(m(y)) =
o Gal(K;((p) /K)ot acts on D trivially. Set K := K; N K(m(y). We see that
Gal(K;(Cpr)/ K) acts on D trivially and thus V is semi-stable over K. Now we claim
that K C K,,. By Lemma 4.1.3 and Remark 4.1.4, we see that K= K, for some n.
Since o : K; K (mpt), there exists y € K; such that o(y) = m,. Consequently,
y =0 Y(m,) = (j;}wn € K;, and hence (,» € K;. Now it suffices to show that
(pn € K to conclude that V' is semi-stable over K,,. If p > 2 then K, N Ko = K
implies that (pn € K. If p =2 then (pn € K/ = K« NKo. If K’ = K then we have
the same conclusion as p > 2. If K’ = K then by Proposition 4.1.5, {; ¢ K' = K;.
So we have n < 1. But (o = —1 is always in K.
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Recall K := Ko p~. Set Gy = Gal(K/K;), G := Gal(K/K}), K p~ =
U Ki(¢pn) and Gy pee == Gal(K /K p~). Let us show that V is semi-stable over

n=1

K; with some [ large enough. We first deal with the case p > 2.

If p > 2 then recall that Lemma 5.1.2 in [Liu08b] showed that G' = Gpee % Hp,
Gpos >~ Zp(1) and Hy acts on Gpe via the p-adic cyclotomic character x. Let 7 be
a topological generator of Gpe. We easily see that Gy = Gy x Hy and G is
topologically generated by 7. Now using the same proof and notations in §3.1 up
to formula (3.1.4), we have A(0) = A(0)X(9) for any g € Hx. Choose g € Hy such
that x(g) = 1 + p' with I large enough. We see that A(O)pl = Id. Note 7 acts on
t trivially, Tpl(el, coeq) = (e, . .,ed)Apl. Since AP' (0) = 1d, log(Apl (t)) makes
sense. Using the same proof below (3.1.4), we conclude that there exists a Ky-linear
map N : D — D such that 7' (x) = § v:(t) ® Ni(z) for any = € D. Note that ¢
acts on D and 7 = 7. We see that?&N = Np. Since @ is an injection, it is not
hard to see that eigenvalues of N are all zeros. Thus N is nilpotent.

Now define

(4.2.1) D:= {i’yi(u/pl)Q@Ni’(x) € Bl ®s DmeD}
i=0

where u = log(u) € Bf. Since N is nilpotent, D is well-defined and we easily see
dimp, D = dimg, D = rankg, (T'(9)). It suffices to show g(y) = y for any y € D
and g € G). Since G4 acts on D trivially, it suffices to show that 77" acts on D
trivially. Note that 77 u = u + log([e(r?')]) = u — p't, we have

Py = <Z%(u/pl)®Ni(x)>

=0

= S viw/p - 1) (1) @ N ()

= > | D /' =yt | @ NHa)
k=0 \i+j=k

= > wwp)e N () =y
k=0

Hence D C (B ®z, TV(9M)), and Q, ®z, T(9M) is semi-stable over K;. Thus 7
is well-defined.

Now let us consider the case p = 2. Let K/ = Kpe N K. If K’ = K then
G = Gp~ X Hi and Gy~ ~ Z,. The proof in this case is the totally the same
as the case p > 2. By Proposition 4.1.5, we only need to deal with the case that
K' = Ky = K(y/). Let 71 be a topological generator of Gy pe. For any I > 1, we
claim that G; ~ Gy~ x Hg and G = is topologically generated by Tflil. In fact,
since Koo N Kpo = K, it is not hard to see that Kj ,~ N Ko = K; and then the
claim follows. Now as in the paragraph before (3.1.4), select a basis ey, ..., eq of D
and write 71(eq,...,eq) = (e1,...,eq)A(t). We still have formula (3.1.4) and then
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A(0) = A(0)X9) for any g € Hg. Select a g € Hg such that x(g) = 1+ 2! with an
I > 1. Then we see that A% (0) = Id. Now we can use almost the same proof as the
case p > 2 to prove V = Q,®z, T'(IM) is semi-stable over Kj 1, the only difference is

that one needs to define D = {Z 7i(u/241) @ Ni(z) € B ®s D|z € D} because
i=0

2(w) = u + log([e(7?)]) = u — 2'+1¢ (we can always select ¢ such that 2t =
—log([e(71)])). This finishes the proof that Q, ®z, T(9M) is semi-stable over K,,.
The proof of full faithfullness is exactly the same as the end of §3.1. Note the
proofs of Lemma 3.1.1 and Proposition 3.1.3 do not need the hypothesis that G
acts on 95?/ I +95? trivially. So the same proof works here. [

In general, the functor T here may not be essentially surjective. Here is an
example provided by Xavier Caruso.

Example 4.2.3. Assume p > 2. Let K = Q,((,), 7 = — 1, K1 = K({/¢, — 1),
m = {/(, — 1 and E(u) the Eisenstein polynomial of 7. Then E(u?) is the Eisen-
stein polynomial of 71. Let 91 be rank-2 finite free Kisin module of F(u?)-height
1 given by ¢(e1,e2) = (€1, ¢e2) ((1) E(Ijﬂ’))’ where {e;, ea} forms a basis of 9. By
Theorem (0.4) in [Kis06], there exists a unique crystalline representation V' over
K; such that Vg, = Ts,(9M), where &; = W(k)[u] is regarded as a subring
of W(R) via u +— [m;] and m; = (mp)n>1 € R. Now set W = InngV where
G1 = Gal(K/K;). Select 7 € G such that the image of 7 in Gal(K;/K) is a
generator. For any o € G, we denote by V, the Gi-action on V given by o 1go.

—1

Since Wi, ~ € V,:, W is crystalline over Ky. Now we claim that W is not of
i=0

finite F(u)-height. We prove the claim by contradiction. Assume that there exists

a Kisin module 91 such that Te (91) ~ W|a_, where & is regarded as a subring of

W(R) via v — [x]. Then & C &; C W(R) via [x] = [m;]P. It is easy to check that

N = NRes 67 is a Kisin module of &;-level and T, (N') = Ts(MN) as Z,[Gol-

p—1
modules. Now note that W|g_ = @ V,i|e., and the functor T, is fully faithful,
i=0

p—1 p—1
so we have W ~ @ M, with My ~ M. Let {e1,...,e2,} be a basis of G M; such
i=0 1=0

that

1 U

0 E(uP)
(422) 30(61,...,621,) = (61,...7621,) * *
Select an G-basis {f1,..., fop} of M and write ©(f1,..., fop) = (f1,-.., fop)A and
(e1,...,e2p) = (f1,-.., f2p)X, where A, X are matrices with coefficients in & and

S respectively. Now write A’ the matrix in (4.2.2). We have XA’ = Ap(X). Let
x;; denote (i, 7) entry of X. Note that all coefficients in Ap(X) are in W (k)[[z,]"].
For i = 1,...,2p, we have z;; € W(k)[[x,]?] and ux;1 + E(uP)z;0 € W(E)[[x,]7],
where u = [m;]. Since E(u?) = uP® mod p, we easily see that x;; = uy;; mod p
for y;1 € 61. But this contradicts that X mod p is invertible.
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4.3. The proof of Theorem 2.3.1 Awhen p = 2. Let us finish the proof of The-
orem 2.3.1 (2) by proving Q, ®z, T'(9) is semi-stable when p = 2. From the proof

of Theorem 4.2.2, we have seen that V := Q, ®z, T'(9M) is semi-stable over K;, and

D defined in (4.2.1) is just Dy (V) = (BS @z, TV(9M))C*. Thus G acts on D and

it suffices to show that the G-action on D is trivial. Let ey, ..., eq be a basis of D.
0o ) _

Then (1, ...,8q4) = (e1,...,eq) Y. vi(u) ® (N/p')? is a basis of D. For any g € G,
i=0

the fact that G acts on D implies that there exists a matrix B with coefficients

in Ky such that g(ey,...,eq) = (€1,...,€q)B = (e1,...,¢€q) Z vi(u) ® (N/p')'B

On the other hand, recall that log([e(g)]) = a(g)t for an a( ) € Zy. So g(u) =
g(log(u)) = u+ a(g)t. Write g(e1,...,eq) = (e1,...,eq)A(t). We have

g(er,...,eq) = gler,... e (Zv N/p)>

= (e, Z% u+a(g)t) ® (N/p')'

= (er,-. <§:% ® (N/p') )(Z% N/p)>-

Hence we have

(Z% N/P)) (Zv ® (N/p") ) (Zv ® (N/p')’ )

Note that u is not algebraic over B.,is. We can regard the elements on both sides

of the above equation as polynomials in B, [u]. Comparing the degree 0 terms, we

get A(t) (;)'yi(a(g)t) ® (N/pt )Z) = B. Hence A(0) = B. But g acts on 9/I,.0M

trivially so that g acts on D = D/([} Sk,)D trivially, and we see Id = A(0) = B.
Hence G acts on D trivially and V' is semi-stable over K.

We end this section by asking the following natural questions, inspired by The-
orem 4.2.2 and Example 4.2.1.

Question 4.3.1. (1) Notations as in Theorem 4.2.2. What is the essential
image of T7
(2) Let V be a representation of finite F(u)-height. Is V potentially semi-
stable?

ERRATA FOR [Liu07]

As indicated in Remark 3.1.5, there is a gap in §7.1 of [Liu07], on the 3rd to
last line of page 668 of the published version. To close this gap, we need to prove
that A(0) = Id. In this section, references are to [Liu07], unless explicitly stated
otherwise. We will freely use the notations of those sections of that paper to which
we refer. Recall the situation in the beginning of §7.1: we have a finite free Z,-
representation 7' such that for all n, T,, := T/p"T ~ L(,)/L{,, as Z[G]-modules,
where L(n) C L) are lattices in a semi-stable representation V() with Hodge-Tate

weights in {0,...,7}. We have proved that there exist 91, 2’(n) and £, € Mod;ér
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such that Te(M) ~ Tle,, and M, ~ £, /L) 8, where £(,) — £, is induced
by the injection L’(n) C L. Recall that M := S®, e M and R := Rk, N Acris-
Proposition 6.1.1 showed that p*°T7(M) C M ®s R, where sq is a constant only
depending on 7.

Recall the ideal I1 A constructed in §2.2 in this note for a subring A C B:;is.
Write 7 = p*or and 7, the action of 7 on M, ®s R. To show A(0) = Id, it suffices
to show that

for any fixed x € M, 7(x)—p*°z € (I R)M.
If M comes from a semi-stable representation, then we easily see the above is true

oo .
by the formula 7(z) = > N*(x) ® 7;(¢), where N is the monodromy operator on
i=0

i=
M@z, Q. Using this fact for L) and Li,,), we get 7}, (z) — p*°x € (I4 R)M,,. We
write 7/ here because it is not clear that 7,, and 7, are the same on M,, ®s R =
M, @p,6 R. On the other hand, as in diagram (6.2.1), consider the morphism
tn M @y, R — (T/p"T)Y @z, Acris- Note that ¢, is equivariant for both 7, and
Tn. Therefore ¢, (7] (x) — Tn(xz)) = 0. By Lemma 5.3.4, we have t" (7], (z) — Tn(2z)) =
0 (tn (T () —Tn(z))) = 0. Now considering M,,®sR as a submodule of M,,®g Acyis
(it is not hard to see that R,, injects into Acyis/p"™ Acris) and using Lemma 6.1.3, we
see that there exists a constant A such that 7, (z) =7, (z) € (p" * Acis)Mn+THUM,,
for n > X\. We claim that Il € I, A.. In fact, by Proposition 5.3.1 in [Fon94a],
any y € I can be written in the form Y°,-, a;t'"} with a; € W(R). Since ¥} €
I Aqyis, we have y € I Aqis and then I c I Agis. Now for all n > A, we have

7~-7’L(x) - psox = 7~-TL(-'I;) - %;L(.’L‘) + 7:7,7‘(-7;) - psol’ S (pn_)\Acris>Mn + (IJrAcris)Mn
on M,, ®s Aeis- Hence 7(z) — p*°x € (I Aeris) M and we are done.

As indicated by Remark 4.1.2 in this note, Lemma 8.0.4 is false. So one has
to fix the proof in §3. Now let K’ = K, N K. If K’ = K then we have the
same proof of semi-stability of V := Q) ®z, T as the case p > 3. Now suppose
that K’ # K. By Proposition 4.1.5 in this note, we see that K’ = K;. Write

Ky poo = |J Ki1(Can). Since K poo = Kpoo, we have K7 poo N Koo = K7. Hence V is
n=1

sgmi—stalole over K. Now consider K = K(C4~). By Proposition 4.1.5 in this note,
Kpe N Ko = K. So V is semi-stable over K. By Proposition 4.1.5 in this note
again, (4 & K1. So K1 # K. Then V is semi-stable over K = K; N K.
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