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Abstract. Let ρ : Gal(Q/Q) → GO4(Qp) be a continuous representation.

We prove (potential) automorphy theorems for certain types of ρ. Our results

include several cases in which the Hodge-Tate weights are irregular. Finally,
we prove (potential) automorphy for certain compatible systems of represen-

tations of GO4-type, which includes certain compatible systems constructed

from Scholl motives.
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1. Introduction

Let L be a number field and GL denote the Galois group Gal(Q/L). For any
place v of L, we denote Lv the v-completion of L and denote GLv a decomposition
subgroup of GL, which is isomorphic to Gal(Lv/Lv). We fix an isomorphism ιv :
Lv ' C for each v throughout this paper.

The aim of this note is to prove several automorphy theorems of certain p-adic
Galois representations ρ : GQ → GO4(Qp). Recall that

GOn(Qp) := {X ∈ GLn(Qp)|XXT = r(X)In, r(X) ∈ Q×p }.
It is obvious that r : GOn → Gm is a character and it is called the multiplier of
GOn. Let SGO4 be the neutral component of In in GO4, which can be characterized
by SGO4(Qp) = {X ∈ GO4(Qp)|(det ·r−2)(X) = 1}. See §2.1 for more details for

GO4 and SGO4. Let ρ : GQ → GLn(Qp) be a continuous representation. We denote
by HT(ρ) for the set of Hodge-Tate weights.

Theorem 1.0.1. Let ρ : GQ → GL4(Qp) be an irreducible continuous representa-
tion. Assume the following

(1) ρ(GQ) ⊂ SGO4(Qp);
(2) ρ is unramified almost everywhere;
(3) The eigenvalues of the complex conjugation c on ρ are −1,−1, 1, 1 and

r(c) = 1;
(4) ρ|GQp

is crystalline and HT(ρ) = {0,m, n,m+ n} with 0 < m,n < p
2 ;

Then ρ is automorphic, that is, ρ arises from an automorphic representation of
GL4(AQ).

Note that by duality if ρ(G) ⊂ GO4(Qp) and ρ|GQp
is Hodge-Tate then after

twisting by a power of the cyclotomic character, HT(ρ) = {0,m, n,m + n} for
non-negative integers m and n.

Applying the above theorem to a compatible system {E,S, {Ql(X)}, {ρλ},v}
in the sense of weakly compatible system (with minor modifications, see §4.2)
in [BLGGT11, §5.1], we obtain the following result which also includes the case
HT(ρ) = {0, 0,m,m} for m > 0 (this case needs special treatment).

Theorem 1.0.2. Let R := {E,S, {Ql(X)}, {ρλ},v = {0,m, n,m + n}} be a com-
patible system of Galois representations of GQ. Assume the following:

(1) ρλ is absolutely irreducible for each prime λ over OE;
(2) ρλ(GQ) ⊂ SGO4(Qp) for each λ;
(3) The multipliers {r(ρλ)} forms a compatible system, r(ρλ)(c) = 1and the

eigenvalues of the complex conjugation c on ρλ are −1,−1, 1, 1 for a prime
λ (hence for all λ);

(4) max{m,n} > 0.

Then R is automorphic.

Let us state one of our applications of the above theorem. In [Sch85] and
[Sch96], Scholl constructed a compatible system of 2d-dimensional p-adic Galois
representations {ρp} of GL attached to the space of cusp forms Sk(Γ,C), where
d = dimC Sk(Γ,C), Γ ⊂ SL2(Z) is a noncongruence subgroup and L is the field
of definition for the curve defined by H/Γ with H ⊂ C the upper half plane. It
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has been proved by Scholl that the family {ρp} is motivic with Hodge-Tate weights

{0, 0, k − 1, k − 1}. Furthermore, if k ≥ 3 is odd then ρp(GL) ⊂ GO2d(Qp).

Corollary 1.0.3. Let {ρp : GQ → GL4(Qp)} be the compatible system of Galois
representations attached to a Scholl motive. Assume that k ≥ 3 is odd and

(1) ρp is absolutely irreducible for each p;

(2) ρp(GQ) ⊂ SGO4(Qp) (via a conjugation)

Then ρ is automorphic.

In general, some conditions are needed to guarantee ρp(GQ) ⊂ SGO4(Qp). The
following is an example.

Corollary 1.0.4. Assume that k ≥ 3 is odd and ρp is absolutely irreducible for
each p. If the Scholl motive admits a real multiplication of a real quadratic field
then ρp is automorphic.

If we only assume that ρ(GQ) ⊂ GO4(Qp) instead of SGO4(Qp) then we can
only prove potential automorphy for certain ρ. It is easy to check that the Galois
character (det r−2) ◦ ρ only takes value ±1. Let F be the (necessarily real under
the hypotheses of the following theorem, see §3.2) quadratic extension determined
by this character.

Theorem 1.0.5. Let ρ : GQ → GO4(Qp) be an irreducible continuous representa-
tion. Assume the following

(1) p ≥ 6 and p is unramified over F ;
(2) ρ is unramified almost everywhere;
(3) The eigenvalues of the complex conjugation c on ρ are −1,−1, 1, 1 and

r(c) = 1;
(4) ρ|GQp

is crystalline and HT(ρ) = {0,m, n,m + n} with 0 < m,n < p − 1
and m ≡ n mod 2;

(5) The reduction ρ̄|GF (ζp)
is irreducible.

Then ρ is potentially automorphic, that is, there exists a totally real field F ′ such
that ρ|GF ′ arises from an automorphic representation of GL4(AF ′).

We remark that our theorem is (basically) covered by Theorem C in [BLGGT11],
except the case that HT(ρ) = {0,m,m, 2m} with m ≥ 1. The Hodge-Tate weights
in this case are irregular, namely, Hodge-Tate weights of ρ are not distinct. Note
that [BLGGT11] only (essentially) discussed the regular cases. Also we are able to
prove the potential automorphy of compatible systems in this case.

Theorem 1.0.6. Let R = {E,S, {Ql(X)}, {ρλ},v = {0,m,m, 2m}} be a compati-
ble system of Galois representations of GQ. Assume the following:

(1) ρλ is absolutely irreducible for each prime λ over OE;
(2) ρλ(GQ) ⊂ GO4(Qp) for each λ;
(3) The multipliers {r(ρλ)} forms a compatible system, r(ρλ)(c) = 1 and the

eigenvalues of the complex conjugation c on ρλ are −1,−1, 1, 1 for a prime
λ (hence for all λ);

(4) m ≥ 1.

Then the system R is potentially automorphic.
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Now let us discuss the strategy and plan in this paper. We use very similar
strategy as that used in [Ram02]. As the structure of SGO4 is very close to GL2 ×
GL2, by Tate’s theorem, we are able to show in §2 that there exist 2-dimensional
Galois representations ρi : GF → GL2(Qp) for i = 0, 1 such that ρ|GF ' ρ0⊗ρ1. §3
is devoted to proving that each ρi satisfies the hypothesis of an automrphy theorem
for GL2 (see Theorem 4.2.1). That is, ρi is unramifed all most everywhere, odd and
crystalline at primes over p. It turns out that the most technical part is the local
properties of ρi at primes over p. Note that ρi is constructed purely abstractly (the
existence guaranteed by the vanishing of group cohomology), so it is not known a
priori that ρi is even Hodge-Tate, though ρ0 ⊗ ρ1 is crystalline. Luckily, in §3.3 we
can modify Di Matteo’s theorem in [DM13] (also see Liang Xiao’s new approach in
the appendix) to show that there exists a character χ such that ρ0⊗χ and ρ1⊗χ−1
are crystalline at primes above p, under the condition m ≡ n mod 2. But this
covers the most interesting case (the irregular weight case). Then in §4, we are able
to use modularity or potential automorphy lifting theorems for GL2 to prove each
ρi is modular or potentially automorphic. Hence the (potential) automorphy of ρ
follows the main theorem of [Ram00]. In the end, we treat Theorem 1.0.2 in the
case that HT(ρλ) = {0, 0,m,m} and discuss its application to certain compatible
systems of representations coming from Scholl motives.

When this paper was nearly complete, we found that our parer has some overlap
with the preprints [Cal], [Con] and [Pat13]. More precisely, the trick that the
automorphy of representation ρ of GO4-type can be reduced to the automorphy
of 2-dimensional representations via tensor product and Ramakrishnan’s theorem
was also known and used in [Cal] and [Pat13]. Questions 3.3.1 in §3.3 is formulated
differently (see Question 3.3.2) and in a general setting in [Con], [Pat13], [Pat14]
and some answers to these questions are provided. These answers almost cover
results obtained in §3.3 (see Remark 3.3.3 for details). Here we remarks that our
method in §3.3 is totally elementary and self-contained. Also our paper focuses on
the automorphy of certain Galois representation with irregular weights (e.g., Galois
representations arising from Shcoll motives) and these have not been discussed by
these papers.

Acknowledgement: It is a pleasure to thank Laurent Berger, Brian Conrad,
Frank Calegari, Stefan Patrikis, Richard Taylor and Liang Xiao for very useful
conversations and correspondence. We are grateful to the anonymous referee for
lots of useful comments, which have greatly improved the exposition of this paper.
The first author would like to thank IAS for support to complete this paper. He is
partially supported by NSF grant DMS-0901360 and Sloan Fellowship.

2. Representation to GO4 and tensor product

2.1. Preliminary on GO4. We recall some basic definitions and properties of GO4

and refer readers to §1 in [Ram02] for more details. Let E be an algebraically closed
field and V a 2n-dimensional E-vector space with a quadratic form Q. Then the
associated orthogonal similitude group is GO(V,Q) :=

{g ∈ GL(V ) | ∃r(g) ∈ E× such that Q(gv) = r(g)Q(v), ∀v ∈ V }.
The character r : GO(V,Q)→ E× is the similitude multiplier or simply multiplier.
When Q is non-degenerate, it is easy to see that the character ν := det · r−n :
GO(V,Q) → E× maps surjectively onto µ2(E). The kernel of ν, denoted by
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SGO(V,Q)(E), is called the special orthogonal similitude group. It is exactly the
neutral component group of GO(V,Q). It is clear that if Q,Q′ are non-degenerate
then GO(V,Q) is conjugate to GO(V,Q′) in GL(V ). Therefore, we sometimes sup-
press V and Q and denote GO(V,Q) by GO2n(E), SGO(V,Q) by SGO2n(E).

Let W = E2 be the space on which GL2(E) acts. Then V ' W ⊗ W ∗ and
β′(A,B) is simply A⊗(B−1)∗. It follows that if we put β(A,B) = A⊗B, then there
is a non-degenrate quadratic form Q on V := W ⊗W , unique up to a multiplicative
scalar, such that the following is a short exact sequence

1→ E× → GL2(E)×GL2(E)
β−→ SGO(V,Q)→ 1,

where the first map is c 7→ (cI2, c
−1I2). We have r(β(A,B)) = det(A) det(B).

2.2. Lifting projective representations. The following theorem has been proved
in [Con, §5] (in more general situations). Here we reproduce the proof for being
self-contained.

Theorem 2.2.1. Let H be a connected reductive group over Qp and let S be a

torus contained in the center of H. Let ρ̃ : GF → H(Qp)/S(Qp) be a continuous

homomorphism. Then there exists a continuous homomorphism ρ : GF → H(Qp)
lifting ρ̃, that is, the composition GF

ρ−→ H(Qp)→ H(Qp)/S(Qp) is ρ̃.

Proof. We remark that here H(Qp) is endowed with the p-adic topology. It is well-
known that the theorem is also true when the discrete topology is used instead.
In that case, the obstruction to lift lies in H2(GF , S(Qp)disc) = 0 by a theorem of

Tate [Ser77, §6.5], where S(Qp)disc is S(Qp) endowed with the discrete topology.
The case here with p-adic topology is probably well-known too. It is based on the
following variant of the above argument, which was explained to us by C.S. Rajan
when H = GLn.

Let Z◦ be the neutral component of the center of H, and let H ′ be the derived
group of H. Then Z◦ is a torus and there exists a subtorus S′ of Z◦ such that
Z◦ = S × S′. Put J = H ′S′. Then A = J ∩ S is a finite group such that
J/A ' H/S.

The key claim is that for any 2-cocyle c of GF with values in A(Qp), there exists a

finite subgroup A′ of S containing A such that c becomes trivial in H2(GF , A
′(Qp)).

Indeed, write T := S(Qp)disc and consider the exact sequence

H1(GF , T )→ H1(GF , T/A(Qp))→ H2(GF , A(Qp))→ H2(GF , T )

induced by the short exact sequence 0→ A(Qp)→ T → T/A(Qp)→ 0. Since c be-

comes trivial in H2(GF , T ) by Tate’s theorem, c can be lift to c̃ ∈ H1(GF , T/A(Qp)) =

Hom(GF , T/A(Qp)). As GF is profinite, c̃ has finite image: it takes values in A′

for some A′ containing A. The claim follows immediately.

The obstruction to lifting ρ̃ to a continuous homomorphism GF → J(Qp) is an

element in H2(GF , A(Qp)). Let c be a 2-cocycle representing this element and let

A′ be a finite subgroup of S containing A. Then the image of c in H2(GF , A
′(Qp)) is

exactly the obstruction to lift ρ̃ to a continuous homomorphism from GF to J ′(Qp),
where J ′ is the subgroup generated by J and A′ (notice that J ′/A′ ' J/A ' H/S).
By the key claim, we can choose A′ to make the obstruction vanish. The theorem
follows immediately. �
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Corollary 2.2.2. For any n ≥ 1, every continuous projective representation ρ̃ :
GF → PGLn(Qp) lifts to a continuous linear representation ρ : GF → GLn(Qp).

Corollary 2.2.3. For every continuous homomorphism ρ̃ : GF → SGO4(Qp),
there exists a continuous homomorphism ρ : GF → GL2(Qp)×GL2(Qp) such that
β ◦ ρ = ρ̃.

3. Properties of tensor factors

In this section, we consider a tensor product ρF = ρ0 ⊗ ρ1 of finite-dimensional
Qp-representations of GF , where F is a number field. Let di be the degree of ρi. In
this section, we study how ρi (or rather a suitable twist of ρi by a character) inherits
properties of ρF required in the Fontaine-Mazur conjecture. We will soon specialize
to the following situation. Start with ρ : GQ → GL4(Qp) with ρ(GQ) ⊂ GO4(Qp).
Let GF = ρ−1(SGO4(Qp)) so that [F : Q] ≤ 2. Then Corollary 2.2.3 implies that
ρF := ρ|GF is the tensor product of two 2-dimensional representations ρ0, ρ1 of GF .

3.1. The unramified almost everywhere property. The following proposition
has been proved in [Con]. Here we include the proof of proposition for the conve-
nience of readers.

Proposition 3.1.1. If ρF = ρ0 ⊗ ρ1 is unramified almost everywhere then ρi is
unramified almost everywhere for i = 0, 1.

Proof. By §2 in [Ski09], we may assume that ρi(GF ) ⊂ GLdi(OE) with E a finite
extension of Qp. Choose an open subgroup J of GLdi(OE) small enough such that
J is a torsion-free pro-p-group. Let L/F be a finite Galois extension such that
ρi(GL) ⊂ J . It suffices to show that ρi|GL is unramified almost everywhere. Indeed
we claim that ρi|GLv is unramified for all v - p such that ρF |GLv is unramified.

Let l 6= p be the residue characteristic of v and lm be the cardinality of the the
residue field of v. The image under ρi of the wild inertia subgroup Pv of Dv := GLv ,
being both pro-l and pro-p, is necessarily trivial. Thus ρi|Dv factors through the
quotient Dv/Pv. It is well-known that Dv/Pv is topologically generated by two
elements F and T satisfying FTF−1 = T l

m

, and T (topologically) generates the
inertia subgroup modulo Pv. By assumption, ρ(T ) = 1 and hence ρi(T ) is in the
center of GLdi(E). This forces ρi(T ) to be of finite order dividing lm − 1. Since
ρi(T ) lies in the torsion-free group J , we must have ρi(T ) = 1. This proves that
ρi|Dv is unramified. �

3.2. Properties at the archimedean places. Suppose that ρF := ρ|GF = ρ0⊗ρ1
comes from ρ : GQ → GO4(Qp). Let c ∈ GQ be a complex conjugation. We further
assume that ρ(c) has eigenvalues 1, 1,−1,−1 and r ◦ ρ(c) = 1, i.e. r ◦ ρ is even.

Since (det ·r−2)(ρ(c)) = 1, we conclude that c lies in GF and F is totally real.
From det(ρ0)(c) det(ρ1)(c) = r ◦ ρ(c) = 1 we deduce det ρ0(c) = det ρ1(c). If
det ρ0(c) = det ρ1(c) = 1, the eigenvalues of ρ(c) would be the same sign repeated
4 times. Therefore, we must have det ρ0(c) = det ρ1(c) = −1. Since this holds for
any complex conjugation in GF , we conclude that ρ0 and ρ1 are both totally odd.
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3.3. p-adic Hodge theoretical properties. We refer to [Ber04] for the defini-
tions and basic properties of Hodge-Tate, de Rham, crystalline, ..., representations
and constructions of period rings like Bst. Let K be a finite extension of Qp and V

a finite dimensional Qp-vector space with continuous Qp-linear Gal(Qp/K)-action.

We always denote (Bst ⊗Qp V )Gal(Qp/K) by Dst(V ).

If ρF = ρ0 ⊗ ρ1 is assumed to be crystalline, ρi may not be crystalline. In fact,
we have that ρF = (ρ0 ⊗ χ) ⊗ (ρ1 ⊗ χ−1) for any character χ of GF . As χ can
be non-Hodge-Tate, ρi can be non-Hodge-Tate. This leads the following natural
question:

Question 3.3.1. Let F be a number field. Assume that ρi : GF → GLdi(Qp), i =
0, 1 are continuous Galois representations such that ρ0 ⊗ ρ1 is unramified almost
everywhere and is semi-stable (resp. crystalline) at GFv for each prime v | p.

When does there exist a character χ : GF → Q×p such that ρ0 ⊗ χ and ρ1 ⊗ χ−1
are unramified almost everywhere and are semi-stable (resp. crystalline) at GFv for
each prime v | p?

Indeed it is not hard to see the above question is equivalent to the following:

Question 3.3.2. Suppose that ρ : GF → PGLn(Qp) is a continuous representation
such that ρ is unramifed almost everywhere and ρ|GFv is semi-stable (resp. crys-

talline) for each prime v | p. Is there a lift ρ̃ : GF → GLn(Qp) of ρ so that ρ̃ is
unramifed almost everywhere and ρ̃|GFv is semi-stable (resp. crystalline) for each
prime v | p?

Remark 3.3.3. As explained in the end of the introduction, Question 3.3.2 (formu-
lated in a more general setting) is studied in [Con], [Pat13] and [Pat14] and some
answers have been provided (see Proposition 5.3, 6.5 in [Con], Theorem 3.2.10,
Corollary 3.2.12 in [Pat13], Proposition 5.5 in [Pat14]). The aim of this section is
to provide answers to Question 3.3.1 via an elementary and self-contained argu-
ment, though many of our results here have been covered by Conrad and Patrikis’s
results in a more general settings (Proposition 3.3.4 is in [Con], Corollary 3.3.8 and
Theorem 3.3.9 are proved in [Pat14]).

The following proposition reduces the question to the existence of a character χ
such that ρ0 ⊗ χ is Hodge-Tate at each v|p.

Proposition 3.3.4. The character χ in Question 3.3.1 exists if and only if there

exists a character χ′ : GF → Q×p such that ρ0 ⊗ χ′ is Hodge-Tate at GFv for each
prime v | p.

Proof of Proposition 3.3.4. After replacing ρ0 and ρ1 by ρ⊗χ′ and ρ1⊗ (χ′)−1, we
can assume that ρ0 and ρ1 are Hogde-Tate at each primes v|p. By Theorem A.0.1 in
the appendix, for each prime v|p, ρ0 and ρ1 are De Rham at v. By the well-known
fact that being De Rham implies that potential semi-stability, we see that ρ0 and ρ1
are potentially semi-stable at each prime v|p. By Lemma 3.3.5 and Corollary 3.3.6
below, for each prime v|p there exists a local character χv of finite image such that
ρ0|GFv ⊗ χv and ρ1|GFv ⊗ χ

−1
v are semi-stable. Applying Lemma 4.1.1 in [CHT08],

there exists a finite character χ : GF → Q×p such that χ|GFv = χv for all primes
v|p, and then χ is the desired character. If ρ0 ⊗ ρ1 is further crystalline at each
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v then the monodromy operator N on Dst((ρ0 ⊗ ρ1)|GFv ) is 0. As N = N0 ⊗ N1

where Ni is the monodromy operator on Dst((ρ0⊗χ)|GFv ) and Dst((ρ1⊗χ−1)|GFv )

respectively, we conclude that Ni = 0 for i = 0, 1 and hence ρ0 ⊗ χ and ρ1 ⊗ χ−1
are crystalline at each v|p. �

Let K,E be finite extensions of Qp and GK := Gal(Qp/K). Assume that V
is a finite dimensional E-vector space with an E-linear action of GK such that V
is a potentially semi-stable representation. We may assume that V is semi-stable
over K ′, which is Galois over K. Then the Galois group Γ = Gal(K ′/K) acts on

Dst(V ) := (V ⊗Qp Bst)
Gal(Qp/K′) semi-linearly. Since V is an E-representations,

Dst(V ) is an E ⊗Qp K
′
0-module where K ′0 = W (k′)[1/p] and k′ is the residue field

of OK′ . Luckily, one can show that Dst(V ) is finite E ⊗Qp K
′
0-free (see Lemma 2.1

in [Sav05]). Note there is a Frobenius action ϕ on Dst(V ) such that

• ϕ and Γ acts on the EK′
0
-module Dst(V ) E-linearly and K ′0-semi-linearly,

where EK′
0

:= E ⊗Qp K
′
0;

• ϕ and the action of Γ commute.

Now assume that Vi are representations of GK satisfying the assumptions on V
in the above paragraph. Let ΓI be the inertia subgroup of Γ.

Lemma 3.3.5. If V1⊗E V2 are semi-stable then there exists a finite abelian exten-
sion K ′ of K such that both Vi are semi-stable on K ′.

Proof. Without loss of generality, we can assume that Γ acts on Dst(Vi) faithfully.
Let γ ∈ ΓI and γ1, γ2 denote the matrices of γ acting on Dst(V1), Dst(V2) respec-
tively, which are finite free EK′

0
-modules. Since γ1⊗γ2 is the identity matrix, there

exists a c(γ) ∈ E×K′
0

such that γ1 = c(γ)Id1 and γ2 = c(γ)−1Id2 where di = dimE(Vi)

for i = 1, 2. Since ϕ and the action of Γ commutes, writing A for the matrix of ϕ,
the fact that ϕγ = γϕ implies Aϕ(γ1) = γ1A. As γ1 is a scalar matrix and A is
invertible, we see that ϕ(c(γ)) = c(γ). Hence c(γ) ∈ E×. Now for any g in Γ and
γ ∈ ΓI , we claim that gγ = γg. In fact, let g1 and γ1 denote the matrices of g and
γ for a fixed basis e1, . . . , ed. Note that γ1 = c(γ)Id with c(γ) ∈ E×. We get

γg(e1, . . . , ed) = (e1, . . . , ed)γ1g1 = (e1, . . . , ed)g1γ1 = gγ(e1, . . . , ed).

Therefore ΓI is contained in the center of Γ and Γ/ΓI is cyclic. So Γ must be
abelian. �

Corollary 3.3.6. There exists a character χ : GK → E× such that V1 ⊗ χ and
V2 ⊗ χ−1 are semi-stable.

Proof. Notations as in the above lemma. Since Γ is abelian, there exists a totally
ramified abelian extension K1 and a unramified extension K2 such that K1K2 = K ′.
In particular, Gal(K1/K) ' ΓI . The above lemma shows that ΓI acts on Dst(V1)
via a character c : ΓI → E×. So the isomorphism Gal(K1/K) ' ΓI induces a
character χ̃ : Gal(K1/K) → E×. It is easy to check that χ = χ̃−1 is just what we
want. �

Now we return to the Question 3.3.1 of when such a character χ exists. Note
that one can easily formulate the analogue of Question 3.3.1 for local Galois repre-
sentations. The answer to this analogy is indeed affirmative which is proved by Di
Matteo [DM13].
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Theorem 3.3.7 ([DM13]). Let K be a finite extension of Qp and denote GK :=

Gal(Qp/K). Assume that Vi : GK → GLd(Qp), i = 0, 1, are two Galois repre-
sentations such that V0 ⊗ V1 are semi-stable (resp. crystalline). Then there exists

a character χ : GK → Q×p such that V0 ⊗ χ and V1 ⊗ χ−1 are semi-stable (resp.
crystalline).

Just as Question 3.3.1 and Question 3.3.2, the above theorem can be formulated
in more general settings and has been proved in [Con] and [Pat13].

While one can directly to use Di Matteo’s theorem give a quick proof of Proposi-
tion 3.3.4, our proof of the proposition gives another proof to Di Matteo’s theorem
(but the essential difference is only the proof of Theorem A.0.1 in the appendix),
provided there exists a character χ so that V0 ⊗ χ and V1 ⊗ χ−1 are Hodge-Tate.
And the proof of the existence of such a χ will be contained in the proof of Theorem
3.3.9.

Since any character of GQp can be extended to a character of GQ. We obtain
the following result:

Corollary 3.3.8. If F = Q then the answer to Question 3.3.1 is affirmative.

If F 6= Q then the situation is much more complicated.

For the rest of this subsection, we specialize to the situation mentioned at the
beginning of the section: ρF := ρ|GF = ρ0 ⊗ ρ1 with ρ : GQ → GO4(Qp).

Let εp denote the p-adic cyclotomic character. After replacing ρ by ρ ⊗ εkp for
some integer k, we may assume that the Hodge-Tate weights of ρ are of the form
0,m, n, l with l ≥ m,n ≥ 0. It is easy to see by the self-duality that l = m+ n.

Theorem 3.3.9. Assumption as the above. If m ≡ n mod 2, then the answer to
Question 3.3.1 is affirmative.

To proceed with the proof, we modify the idea of Di Matteo to deal with the
Hodge-Tate weights of global representations. We first briefly recall Sen’s operator
Θ defined in [Sen81]1. Let K be a finite extension of Qp, ζpn a primitive pn-th

root of unity, K∞ :=
⋃
n≥1K(ζpn), H := Gal(Qp/K∞) and Γ := Gal(K∞/K). Let

W be a d-dimensional Cp-vector space with a continuous Cp-semi-linear action of

GK := Gal(Qp/K). Then one can show that D̂(W ) := WH is a finite K̂∞-vector

space of dimension d, where K̂∞ is the closure of K∞ in Cp. There exists a unique

K∞-subspace of D(W ) such that D(W )⊗K∞ K̂∞ = D̂(W ) and Γ stabilizes D(W )
(see Theorem 3 in [Sen81]). From the construction of D(W ), one can easily prove
that D(W1 ⊕W2) = D(W1) ⊕D(W2) and D(W1 ⊗Cp W2) = D(W1) ⊗K∞ D(W2).
By Theorem 4 in [Sen81], there exists a K∞-linear operator ΘD(W ) on D(W ) such
that for any w ∈ D(W ) there exists an open subgroup Γw ⊂ Γ such that

σ(w) = [exp(ΘD(W ) log(εp(σ)))](w), for any σ ∈ Γw.

If V is a finite dimensional Qp-vector space with a continuous Qp-linear GK-action,
then we consider the operator ΘD(VCp )

on D(VCp) where VCp := Cp⊗Qp V . It turns

out that Θ enjoys the following properties:

Proposition 3.3.10 ([Sen81]). (1) There exists a basis in D(W ) such that the
coefficients of the matrix of ΘD(W ) are in K.

1Sen use ϕ to denote Θ in the original paper.
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(2) V is Hodge-Tate if and only if ΘD(VCp )
on D(VCp) is semi-simple with

eigenvalues in Z.
(3) ΘD(W1⊗CpW2) = ΘD(W1) ⊗ 1 + 1⊗ΘD(W2).

In particular, if Θ on D(W1 ⊗Cp W2) is semi-simple then Θ on D(W1) and
D(W2) are semi-simple. Let E ⊂ Cp be a finite Galois extension over Qp such that
K ⊂ E. Set J ′ = Gal(E/Qp). Let V be a finite dimensional E-vector space with
a continuous E-linear GK-action. Note that VCp = V ⊗Qp Cp =

⊕
σ∈J′ V ⊗E,σ Cp.

Write VCp,σ := V ⊗E,σ Cp. We see that VCp,σ has a semi-linear GE := Gal(Qp/E)-
action. So one can still consider Θ on D(VCp,σ). For each τ ∈ Gal(E/K), one
can check that τ induces an isomorphism between D(VCp,σ) to D(VCp,τσ) and the
isomorphism commutes with Θ on D(VCp,σ) and D(VCp,τσ). Therefore, if we write
HTσ(V ) for the set of eigenvalues of Θ on D(VCp,σ) then HTσ(V ) only depends on
the set of cosets J ′/Gal(E/K), which is also the set J of all embeddings σ : K →
Qp.

Let L be a number field and V a finite dimensional E-vector space with a con-
tinuous E-linear GL-action. Assume that E contains all embeddings of L to Qp.
For each prime v|p and τ ∈ Gal(E/Qp), we can consider Θ on D(VCp,τ ) restricted

to GLv . One easily prove that Θ only depends on the embeddings σ : L → Qp as

the above. We write J for the set of all embeddings σ : L → Qp and HTσ(V ) the
set of eigenvalues of Θ for each σ ∈ J .

Now consider that U and U ′ are finite dimensional E-vector spaces with contin-
uous E-linear GK-actions such that V := U ⊗E U ′ is Hodge-Tate. Note that

VCp = (U⊗EU ′)⊗QpCp =
⊕
σ∈J′

U⊗E(U ′⊗E,σCp) =
⊕
σ∈J′

(U⊗E,σCp)⊗Cp(U ′⊗E,σCp).

So Θ on D(UCp,σ) and D(U ′Cp,σ) is semisimple and if HTσ(U) = {sσ1 , . . . , sσa},
HTσ(U ′) = {tσ1 , . . . , tσb } then HTσ(V ) = {sσi + tσj , i = 1, . . . , a, j = 1, . . . , b}.
Hence sσi + tσj ∈ Z as V is Hodge-Tate. Then sσi − sσ1 ∈ Z for i = 1, . . . a and

bsσ1 +
∑b
j=1 t

σ
j ∈ Z. By Proposition 3.3.10 (1), we see that sσ1 ∈ K. Let L be a

number field and J the set of all embeddings of L to Qp. Then the above statement
is still valid for each σ ∈ J if U and U ′ are finite dimensional E-vector spaces with
continuous E-linear GL-action such that V := U ⊗E U ′ are Hodge-Tate at each
prime v|p.

Suppose that U and U ′ are E-representations of GK with K a finite extension
of Qp. For any x ∈ K, there always exists a character χσ : GK → E′

×
for a finite

extension E′ over K such that HTσ(χσ) = {x} and HTτ (χσ) = {0} for any τ 6= σ
(see Lemma 2.1.3 in [DM13]). Hence by enlarging E if necessary, there exists a
character χ such that U ⊗E χ and U ′ ⊗E χ−1 are Hodge-Tate 2.

If U and U ′ are E-representations of GL with L a number field. Then the
existence of the above character χ is much more complicated (unless L = Q as
a character of GQp can be always extended to a character of GQ, c.f. Corollary
3.3.8). Now let us return the situation of ρ0 and ρ1 in Theorem 3.3.9. Let J be
the set of embeddings of F to Qp. Now assume that HTσ(ρ0) = {aσ, aσ + sσ} and
HTσ(ρ1) = {bσ, bσ + tσ} for each σ ∈ J . As the discussion above, we can assume
that sσ, tσ are integers.

2This is the exactly missing ingredient if we want to reprove Theorem 3.3.7.
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Lemma 3.3.11. There exists a character χ : GF → Q×p such that for each σ ∈ J ,
we have HTσ(χ) = {aσ + sσ

2 }.

Proof. Let χ′′ := det(ρ1). Then we see that HTσ(χ′′) = {2aσ + sσ}. Select E
big enough such that χ′′(GF ) ⊂ O×E . Modulo the group of torsion points of O×E ,
we get a character χ′ such that χ′(GF ) ⊂ 1 + πOE with π a uniformizer of E. If
p 6= 2 then χ := (χ′)1/2 is the required character. For p = 2, there exists finite
Galois extension F ′/F so that (χ′)1/2 makes sense (when χ′(GF ′) ⊂ 1+4OE). It is
elementary to extend this square root to a character χ : GF → O×E′ for some finite
extension E′/E. �

Now after twisting χ−1 to ρ0, HTσ(ρ0) = {− sσ2 ,
sσ
2 } for each σ ∈ J . As the above

lemma, there exists a character α : GQ → Z×p such that HT(α) = 1
2 . Now fix a

τ ∈ J and twisting ρ0 by αsτ , we get HTσ(ρ0) = { sσ−sτ2 , sσ+sτ2 }. Now as ρ0⊗ρ1 has
weight 0,m, n, and m+n, we can assume that sτ = m and HTτ (ρ1) = {0, n = tτ}.
So HTσ(ρ1) = {− sτ−sσ2 ,m + n − sτ+sσ

2 }. Now there are two possibilities for sσ:
Either sσ = m or sσ = n. By the hypothesis m ≡ n mod 2, we see both HTσ(ρi)
are set of integers for any σ ∈ J and i = 0, 1. Hence both ρi are Hodge-Tate. By
Proposition 3.3.4, this completes the proof of Theorem 3.3.9.

If m 6≡ n mod 2 then the answer to Question 3.3.1 is not always positive. See
examples constructed from mixed-parity Hilbert modular forms in §8 and §9 of
[Pat13].

3.4. Irreducibility. In this subsection, we again assume that ρF := ρ|GF = ρ0⊗ρ1
comes from ρ : GQ → GO4(Qp). We obviously have

Lemma 3.4.1. If ρF is irreducible, then so are ρ0 and ρ1.

Next, we will assume that ρ is irreducible as a 4-dimensional representation and
consider the irreducibility of ρF . This is only interesting when F 6= Q, which we

assume from now on. We will further assume that ρ 6' ind
GQ
GL

χ for any character
χ of GL such that [L : Q] = 4 and L contains a quadratic extension of Q (for if

ρ ' ind
GQ
GL

χ, the automorphy of ρ can be easily proved by automorphic induction
in [AC89]). Finally we assume that ρp := ρ|GQp

is Hodge-Tate and HT(ρ) =

{0,m, n,m+ n} with m+ n > 0.

Proposition 3.4.2. With the above assumptions, ρ|GM is irreducible for any real
quadratic field M .

Proof. Denote by W the representation ρ|GM and assume that W is not irreducible.
By Clifford theory in [Cli37], W is the direct sum of two irreducible subrepresenta-
tions V1, V2 and V2 = V τ1 , where τ is the non-trivial element of Gal(M/Q). Obvi-
ously, for i = 1, 2, the image of GM → GL(Vi) lies in GO(Vi, Q|Vi). We claim that
Q|Vi is either 0 or non-degenerate. Otherwise, the kernel of Q|Vi is a 1-dimensional
subspace invariant under GM , contradicting irreducibility.

Consider the case Q|Vi is non-degenerate. It is well-known that this implies that
Vi is induced from a character of a subgroup GL of index 2 in GM , contradicting
our assumptions.
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Therefore, we must have Q|Vi = 0 for both i = 1, 2. This implies V2 = V ∗1 ⊗(r◦ρ)
as GM -modules, where V ∗1 denotes the dual of V1. Hence V2 = V1 ⊗ χ with χ =
(r ◦ ρ) det(V1)−1.

Let V = V1 and V τ = V2. Let us discuss the Hodge-Tate weights of V and V τ .
Let J := {σ, σ′ : M → Qp} be the set of all embeddings from M to Qp. For each
α ∈ J , we have

HTα(V ) ∪HTα(V τ ) = HT(ρ) = {0,m, n,m+ n},

and HTσ(V ) = HTσ′(V τ ). By Lemma 3.4.3, we get HTσ(det(V )) = HTσ′(det(V ))
and HTσ(det(V τ )) = HTσ′(det(V τ )). These conditions force that HTσ(V ) =
{0,m + n}, HTσ′(V ) = {m,n}, HTσ(V τ ) = {m,n} and HTσ′(V τ ) = {0,m + n}.
Note that V τ ' V ⊗ χ implies that either m = 0 or n = 0 (note that χ has only
one weight), and the weight of χ has to be 0. So χ is a finite character. Then
there exists a finite extension L of M , V ' V τ when restricted to L. We have two
situations here. Case 1: V restricted to L is reducible; Case 2: V restricted to L is
irreducible.

Let us first deal with the first case. We first claim that L can be chosen to be
a quadratic extension of M . If so then ρ is induced from a character of GL with
[L : Q] = 4. To see the claim, write V |GL = U ⊕ U ′. Note that U and U ′ can
not be isomorphic as HTσ(V ) = {0,m + n} and m + n > 0 for any embedding
σ : L→ Qp. Set H := {g ∈ GM |Ug = U}. Since V is irreducible and U and U ′ are
not isomorphic, H is an index 2-subgroup of GM . Then the fixed field of H is just
what we want.

Now consider the case that V is irreducible over L. Note in this case, we have all
irreducible components of ρ are isomorphic. By Theorem 3 in [Cli37] and Theorem
2.2.1, there exist two representations W1 and W2 of GQ such that W1 ⊗W2 ' ρ.

Hence ρ(GQ) ⊂ SGO4(Qp). But this contradicts the hypothesis that F 6= Q.
Finally, we have treated all the possibilities and proven Proposition 3.4.2. �

Lemma 3.4.3. Let χ be a Hodge-Tate character of GM → Q×p with M a totally
real field. Then HTσ(χ) is a unique integer independent on σ.

Proof. See the discussion above Lemma 4.1.3 in [CHT08] or [Ser89]. �

4. Proof of the main results

4.1. Definition of Automorphy. Let L be a number field and ρ : GL → GLn(Qp)
a continuous representation. We call ρ automorphic if there exists an automor-
phic representation π ' ⊗′vπv of GLn(AL) such that for almost all primes v the
(Frobenius-semi-simplification of the) Weil-Deligne representation of ρ|GLv is iso-
morphic to the Weil-Deligne representation associated to πv via the local Langlands
correspondence. In particular, we call ρ modular if π is obtained from a modular
form. By definition, ρ is called potentially automorphic if there exists a finite ex-
tension L′ of L such that ρ|GL′ is automorphic.

Let ri : GL → GL2(Qp) for i = 0, 1 be continuous representations. By the main
theorem of [Ram00], if both ri are automorphic then r1 ⊗ r2 is automorphic. So in
the following, we use potential automorphy theorems of GL2 to prove the theorems
in §1.
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4.2. Potential automorphy theorem of GL2. We first summarize the known
(potential) automorphy theorems of GL2 from [BLGGT11], [DFG04] and [Die08].

Theorem 4.2.1. Let F be a totally real field and σ : GF → GL2(Qp) a continuous
representation. Assume the following:

(1) σ is irreducible and unramified almost everywhere;
(2) σ is totally odd, i.e., for each complex conjugation c, det(ρ)(c) = −1;
(3) F is unramifed at p; for each prime v|p, σ|GFv is crystalline and for each

embedding τ : F → Qp, HTτ (σ) = {aτ , aτ + bτ} with 0 < bτ < p− 1;
(4) σ̄|GF (ζp)

is irreducible, where σ̄ denotes the reduction of σ;

(5) p ≥ 6.

Then there exists a finite Galois totally real extension F ′/F such that σ|GF ′ is
automorphic.

If F = Q we only need to assume (1), (2), (3), (4) and then σ is modular. If
F = Q and we assume (1), (2), (3) and p+ 1 - 2bτ then σ is modular.

Proof. The first part of the theorem is the special case of Theorem C in [BLGGT11]
for n = 2. If F = Q and we assume (1), (2), (3) and (4) then the main result in
[DFG04] implies that σ is modular with the input of Serre’s conjecture. Finally
if we assume that (1), (2), (3) and that p + 1 - 2bτ then [Die08] proved that σ is
modular. �

Remark 4.2.2. If F = Q then by the recent work of Calegari, Emerton and Kisin,
conditions (2) and (3) can be relaxed significantly. See [Cal12], [Eme11] and [Kis09]
for more details. Unfortunately, when relaxing the conditions (2) (3), they need
to impose some conditions on residual representations, which is not easy to check
in applications. So here we select an easy version of automorphy theorem without
hypothesis for residual representations. We remark that (2) (3) always holds for
enough big prime p if we consider the regular compatible systems coming from
geometry.

Proof of Theorem 1.0.1 and Theorem 1.0.5. Now using the above theorem and the
main theorem in [Ram00], combined with the discussion in §3, we prove Theorem
1.0.1 and Theorem 1.0.5. �

Remark 4.2.3. There is another way to prove potentially automorphy for ρ pointed
out by Calegari: Since ρ|GF ' ρ0 ⊗ ρ1, we have

2∧
ρ|GF ' sym2(ρ0) det(ρ1)⊕ sym2(ρ1) det(ρ0).

Hence sym2(ρ0) det(ρ1) and sym2(ρ1) det(ρ0) are crystalline. After twisting by a
character, we can assume that det(ρi) are Hodge-Tate, hence potentially crystalline
at each v|p. Then one can apply potential automorphy theorem for GO3 from
[BLGGT11] to sym2(ρ0) det(ρ1) and sym2(ρ1) det(ρ0), and then prove potential
automorphy of sym2(ρ0) det(ρ1) and sym2(ρ1) det(ρ0). Hence both sym2(ρi) are
potentially automorphic. Finally, by [Ram], we conclude that ρi are potentially
automorphic and then ρ are potentially automorphic. This strategy skips the steps
showing that ρi are crystalline (one still needs to show that the det(ρi) are Hodge-
Tate after twisting by a character) and does not need the restriction that m ≡
n mod 2. On the other hand, this strategy cannot prove automorphy of ρ even
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assuming that ρ(GQ) ⊂ SGO4(Qp), and one has to impose stronger conditions
on Hodge-Tate weights and residual representations in order to use the potential
automorphy theorem of GO3.

Now let us discuss the situation of compatible system of Galois representations.
Let L be a number field. For each prime v of OL, we use rch(v) to denote the
residue characteristic of v. Following [BLGGT11], we define a rank n compatible
system of p-adic Galois representations R of GL defined over E to be a 5-tuple

{E,S, {Ql[X]}, {ρλ}, {vτ}}
where

• E is a number field;
• S is a finite set of primes of L;
• for each prime l 6∈ S of L, Ql[X] is a monic degree n polynomial in E[X];
• for each prime λ of E with rch(λ) = p

ρλ : GQ −→ GLn(Eλ)

is a continuous, semi-simple, representation such that
(1) if l 6∈ S and rch (l) 6= p then ρλ is unramified at l and ρλ(Frobl) has

characteristic polynomial Ql(X);
(2) if l|p then ρλ|GLl is de Rham and in the case l 6∈ S crystalline;

• for τ : L→ Qp, vτ is a fixed multi-set of integers such that HTτ (ρλ) = vτ .

If L = Q then we simply drop the trivial embedding τ from subscripts of v and
HT. Note that our definition of compatible system is weakly compatible system
in the sense of [BLGGT11, §5.1] with one slightly difference: We require that
ρλ(GQ) ⊂ GLd(Eλ) instead of ρλ(GQ) ⊂ GLd(Eλ) defined in §5.1 in [BLGGT11].
Since we only concern about the representations of GO4-type or GL2-type, we
further assume that

• n = 4 or n = 2, and ρλ is absolutely irreducible for each λ;
• If n = 4 then ρλ(GQ) ⊂ GO4(Qp) for each λ;
• If n = 4 then the multiplier {r(ρλ)} also forms a compatible system;
• If n = 4 then the eigenvalues of complex conjugation c on ρλ are −1,−1, 1, 1

and r(ρλ(c)) = 1 for some λ (hence for all λ).

Now we are ready to prove Theorem 1.0.6. By Theorem 4.2.1 and the definition of
compatible system, we only need to show that there exists a prime p large enough
such that ρ̄λ|GF (ζp)

is irreducible. For this, we modify the proof of [BLGGT11,

Prop. 5.3.2] to the following lemma to deal with ρλ which is not regular. Recall
that regularity means that vτ = HTτ (ρλ) consists of distinct integers. Note that
[BLGGT11, Prop. 5.3.2] only treats regular compatible systems.

Lemma 4.2.4. Suppose that {E,S, {Ql[X]}, {rλ}, {vτ}} is a rank 4 compatible
system of GF with vτ = {0,m,m, 2m} and m > 1. Assume that rλ is absolutely
irreducible for each λ. Then there is a set of rational primes L of Dirichlet density
1 such that if p = rch(λ) ∈ L then r̄λ|GF (ζp)

is absolutely irreducible .

Proof. The proof of [BLGGT11, Prop. 5.3.2] still works if we can reproduce Lemma
5.3.1 (loc. cit.) in our situation. First Lemma 5.3.1 (1) (which is a result of Serre) is
always valid without the assumption of regularity. So it suffices to reprove Lemma
5.3.1 (2) (3), that is,
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(1) If H is an open subgroup of GF then any irreducible H-subrepresentation
s of Qp ⊗Eλ rλ has multiplicity one.

(2) After replacing E by a finite extension, we may assume that for any open
subgroup H ⊂ GF and any λ and any H-subrepresentation s of Qp⊗Eλ rλ,
the representation s is defined over OEλ .

Since rλ has been assumed to be absolutely irreducible, Theorem 2 in [Cli37]
implies that any other irreducible H-subrepresentation of rλ is sγ with γ ∈ GF . In
particular, there exists a γ0 ∈ GF such that 0 ∈ HTσ(sγ0). Hence sγ0 must has
multiplicity one because 0 has multiplicity one in HTτ (rλ). Therefore, s has mul-
tiplicity one. To show that s is defined over OEλ , we may assume that 0 ∈ HTσ(s)
as the above argument. For any g ∈ Gal(Qp/Eλ), write g(s) = Qp⊗g,Qp s. Since rλ

has been assumed to be defined over Eλ (note that here our assumption is slightly
different from that in [BLGGT11], where they only assume that characteristic poly-
nomial of ρλ(Frobl) is defined over E, and then showed (by using regularity) that
rλ is defined over Eλ after replacing E by a finite extension), g(s) is a subrepre-
sentation of Qp ⊗Eλ rλ. It suffices to show that g(s) = s (Here we thank Richard
Taylor for teaching us this trick). By Lemma 5.3.1 (1) of [BLGGT11] (this part of
Lemma is due to Serre), there exists a finite Galois number field F 1 so that if s is
an irreducible GF1-subrepresentation of Qp ⊗Eλ rλ then s|GF ′ remains irreducible

for any finite extension F ′/F 1. So without loss of generality and enlarging E, we
may assume that F 1 ⊂ E and GF 1 ⊂ H. By the discussion after Proposition 3.3.10
of HTσ(V ) and note that F 1 ⊂ E, we see that HTσ(g(s)) = HTσ(s) (this trick has
been used in [Pat13]). Then this forces g(s) = s as 0 ∈ HTτ (rλ) has multiplicity
one. Therefore s is defined over Eλ. �

Now since ρλ are absolutely irreducible by assumption, Proposition 3.4.2 shows
that ρλ|GF are absolutely irreducible (unless ρλ is an induction of a character).
Then the above lemma shows that there exists a prime p large enough such that
ρ̄λ|GF (ζp)

is irreducible. This completes the proof of Theorem 1.0.6.

4.3. The special case when v = {0, 0,m,m}. In this subsection, we consider a
compatible system R satisfying the following extra conditions:

• ρλ(GQ) ⊂ SGO4(Qp) for each λ;
• Eigenvalues of c on ρλ are −1,−1, 1, 1 and r(ρλ) forms a compatible system

with r(ρλ(c)) = 1 for a λ (hence for all λ);
• v = {0, 0,m,m} with m > 0.

We want to show that the above system is automorphic. So far we have shown
that for each λ, there exist ρi,λ : GQ → GL2(Qp) for i = 0, 1 such that Qp⊗Eλ ρλ '
ρ0,λ ⊗ ρ1,λ, ρi,λ|GQp

are crystalline if ρλ|GQp
are crystalline and HT(ρ0,λ) = {0, 0},

HT(ρ1,λ) = {0,m} with m > 0. It is not hard to see that we can arrange ρi,λ so that
ρi,λ are unramifed over l 6∈ S∪{rch(λ)} (here we crucially use the fact that the base
field is Q). We have already shown that ρ1,λ is modular by Theorem 4.2.1 if rch(λ)
is big enough. If {ρ0,λ} forms a weakly compatible system then we can use Kisin
and Serre’s strategy in the proof of Theorem (1.3.1) (Artin conjecture) in [Kis07]
to show {ρ0,λ} is modular. Unfortunately it is not clear that {ρ0,λ} forms a weakly
compatible system though {ρλ} forms a weakly compatible system. Fortunately, we
can still modify Kisin and Serre’s method to prove that ρλ is modular by 3 steps.
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First step: we show there exists a positive integer N and a set Σ of infinitely
many primes λ ∈ Spec(OE) such that

cond(ρ0,λ), cond(ρ1,λ)|N

where cond(V ) denotes the swan conductor of a Galois representation of V . It turns
out this is the most technical part, which we prove in the end of this subsection.

Second step: We denote {ρf,λ} the weakly compatible system of 2-dimensional
Galois representations of GQ associated to the modular form f . Let V (resp. V ′) be
a finite dimensional L (resp. L′)-vector space with continuous L (resp. L′)-linear
GQ-action. We write V ∼ V ′ if L and L′ have the same algebraic closure L and

L⊗L V ' L⊗L′ V ′ as GQ-representations.

Note that ρ1,λ ∼ ρfλ,λ for a modular form fλ if p = rch(λ) is large enough (more
precisely, if p > 2m and p 6∈ S). Without loss of generality, we may assume that if
λ ∈ Σ then ρ1,λ is modular. By the first step all modular forms corresponding to
ρ1,λ are in the space Sm+1(N,C), which is the space of cusp forms with level N and
weight m+ 1. Hence there are only finitely many normalized eigenforms. So there
are infinitely many λ such that ρ1,λ attaches to one eigenform f . Without loss of
generality, we may assume that ρ1,λ comes from one eigenform f for all λ ∈ Σ. Note
that there exists a number field Ef such that for any λ ∈ Σ there exists a prime

λ′ ∈ Spec(OEf ) with the same residue characteristic such that ρ1,λ ' Qp⊗Ef,λ′ ρf,λ′ .

So by enlarging E, we may assume that ρ1,λ(GQ) ⊂ GL2(Eλ). It is not clear that
ρ0,λ(GQ) ⊂ GL2(Eλ) (here we thank for the referee pointing this out). Luckily we
do not need this in the following proof.

Last step: Now we can follow the similar idea of Kisin and Serre (see, for example,
the proof of Theorem (1.2.1) and Theorem (1.3.1) in [Kis07]). First, we prove there
exists infinitely many primes λ ∈ Σ′ ⊂ Σ such that the residue representation of
ρ0,λ is absolutely irreducible. The proof is almost the same as the last part of the
proof in Theorem (1.2.1) in [Kis07]. Let us sketch the proof here. Let V̄ denote
the semi-simplification of the residual representation of Galois representation V .
Assume that there are infinitely many primes λ ∈ Σ such that ρ̄0,λ are reducible.

Then ρ̄0,λ = ε1,λ ⊕ ε2,λ with εi,λ : GQ → F× characters. We lift εi,λ to characters

ε̂i,λ : GQ → Z× for i = 1, 2. Since the conductors of ρ0,λ are bounded, we see that
the conductors of ε̂i,λ are bounded (note that εi,λ are unramified at p). Therefore
there are only finitely many such characters. Without loss of generality, we may
assume that ε̂i,λ = χi for each λ ∈ Σ′′ and i = 1, 2, where Σ′′ ⊂ Σ is a subset

of infinitely many primes and χi : GQ → Z× for i = 1, 2 are Dirichlet characters.
Enlarge E such that E is Galois and contains χi(GQ) for i = 1, 2. Let mλ denote
the maximal ideal of OEλ . Then there exist infinitely many primes λ of OE such

that tr(χ1 ⊕ χ2) ≡ tr(ρ0,λ) mod mλ where tr stands for trace. In particular, for
a fixed such λ0 and any fixed rational prime l 6= rch(λ0) such that l 6∈ S, by the
compatibility of ρλ, we get

tr(((χ1 ⊕ χ2)⊗ ρf,λ0
)(Frobl)) = tr(((χ1 ⊕ χ2)⊗ ρf,λ)(Frobl))

≡ tr((ρ0,λ ⊗ ρ1,λ)(Frobl)) mod mλ

≡ tr((ρ0,λ0
⊗ ρ1,λ0

)(Frobl)) mod λ,

for infinitely many λ. Note that the last congruence is mod λ in stead of mod mλ
because both (χ1⊕χ2)⊗ρf,λ0

and ρλ0
' ρ0,λ0

⊗ρ1,λ0
have coefficients in E. Hence
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the semi-simplification of ρ0,λ0 ⊗ ρ1,λ0 is (χ1⊕χ2)⊗ ρ1,λ0 . But this contradicts the
assumption that ρλ ' ρ0,λ ⊗ ρ1,λ is absolutely irreducible.

Finally, we may assume that the residual representation of ρ0,λ is absolutely
irreducible for each λ ∈ Σ′. We apply Serre’s conjecture (the strong form) for each
ρ̄0,λ with λ ∈ Σ′. Then there exists gλ ∈ Sp(N,C) such that ρ̄gλ,λ′ ∼ ρ̄0,λ with
p = rch(λ) = rch(λ′). As indicated by Kisin in the proof of Theorem (1.3.1) and
Remarks (1.1.3) in [Kis07] (in particular, we use [CV92] for λ - 2), after deleting
finitely many primes from Σ′, there indeed exists a cusp form fλ ∈ S1(N,C) such
that ρ̄fλ,λ′′ ∼ ρ̄gλ,λ′ ∼ ρ̄0,λ. Now we can play the same game as before: As S1(N,C)
has only finitely many normalized eigenforms, by enlarging E, we may assume that
there exists an eigenform f ′ such that ρ̄0,λ ∼ ρ̄f ′,λ for each λ ∈ Σ′. For each fixed
λ0 ∈ Σ′ and a rational prime l 6= rch(λ) such that l 6∈ S, by compatibility of ρλ, we
show

tr((ρ0,λ0 ⊗ ρ1,λ0)(Frobl)) = tr((ρ0,λ ⊗ ρ1,λ)(Frobl))

≡ tr((ρf ′,λ ⊗ ρf,λ)(Frobl)) mod mλ

= tr((ρf ′,λ0 ⊗ ρf,λ0)(Frobl)) mod λ

for λ ∈ Σ′. Note that the last congruence is mod λ instead of mod mλ because
both ρλ0

' ρ0,λ0
⊗ ρ1,λ0

and ρf ′,λ0
⊗ ρf,λ0

have coefficients in E. So ρ0,λ0
⊗ ρ1,λ0

∼
ρf ′,λ0

⊗ ρf,λ0
and then ρλ0

is modular by the main theorem of [Ram00]. Therefore
ρλ is modular for all λ.

Now it suffices to prove the statement of Step 1. For each (rational) prime l ∈ S
and a prime λ ∈ Spec(OE) with p = rch(λ) 6= l, we obtain a local representation
ρλ : GQl → GL4(Eλ). We denote Il, I

w
l and kλ the inertia subgroup, wild inertia

subgroup of GQl and the residue field of Eλ respectively. Set H̃l := ρλ(Iwl ) and
assume that p ≥ 3. Consider the reduction map ρ̄λ : ρλ(GQl) ↪→ GL4(OEλ) �
GL4(kλ). Since l 6= p, we easily see that ρ̄λ restricted to H̃l is injective. Hence |H̃l|
divides |GL4(kλ)| = q6

∏4
i=1(qi − 1), where q := pf with f := [kλ : Z/pZ]. Letting

g = [E : Q], we conclude that |H̃l| divides
∏4
i=1(pig − 1). Pick a positive integer al

such that there exists a class yl ∈ (Z/lalZ)× satisfying
∏4
i=1(yigl − 1) 6≡ 0 mod lal .

Now set

Σ := {λ ∈ Spec(OE)|rch(λ) 6∈ {2} ∪ S and rch(λ) ≡ yl mod lal ,∀l ∈ S}.

Hence Σ is a set of infinitely many primes and for each prime λ ∈ Σ, we have

logl(|H̃l|) ≤ al − 1 for each l ∈ S.

From the above proof, we see that if there exists a number field E′ such that
ρi,λ(GQ) ⊂ GL2(E′λ′) for each λ ∈ Spec(OE) then one can easily bound the size of
image of Iwl , and then bound the conductor as in §4.9 in [Ser87]. Unfortunately,
we do not know the existence of E′ in priori as ρi,λ is constructed abstractly in
Theorem 2.2.1. In the following, we show that there exists a character χλ such that
after replacing ρi,λ by ρ0,λ⊗χλ and ρ1,λ⊗χ−1λ respectively, we can directly bound

ρi,λ(Iwl ) in terms of H̃l.

More precisely, Set K̃l := Ker(ρλ) ∩ Iwl , Kl := Ker(ρ0,λ) ∩ K̃l and K ′l :=

Ker(ρ1,λ)∩ K̃l. All representations in the following proposition are representations
restricted to GQl .
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Proposition 4.3.1. There exists a character χλ,l : GQl → Q×p of finite image

such that after replacing ρ0,λ and ρ1,λ by ρ0,λ ⊗ χλ,l and ρ1,λ ⊗ χ−1λ,l respectively,

K̃l = Kl = K ′l .

Proof. Let L̃ and L be the fixed fields of K̃l and Kl respectively. We have seen
that [L : L̃] must be finite as before: Select a finite extension E′ over Eλ such that
ρ0,λ(GQl) ⊂ GL2(E′). As p = rch(λ) 6= l and p ≥ 3, we easily check ρ0,λ(Iwl ) and
ρλ(Iwl ) inject into GL2(k′) and GL4(k′) respectively where k′ is the residue field of

OE′ . So Γ := Gal(L/L̃) is finite. For any g ∈ Γ, ρλ(g) = ρ0,λ(g)⊗ ρ1,λ(g) is trivial,
so we conclude that ρ0,λ(g) = η(g)I2 and ρ1,λ(g) = η−1(g)I2 with η a character

Γ → Q×p . Note that Γ is a subgroup of Iwl /Kl. We easily extend η to a character

of Iwl /Kl, and obtain a character χλ,l : GQl → Q×p so that χλ,l(Kl) = {1} and

χλ,l(g) = η−1(g) for any g ∈ Iwl . So by replacing ρ0,λ and ρ1,λ by ρ0,λ ⊗ χλ,l and

ρ1,λ ⊗ χ−1λ,l , L might have changed but L̃ does not change, we get [L : L̃] = 1 and
prove the proposition. �

Now by class field theory, there exists a character χλ : GQ → Q×p such that
χλ|Il = χλ,l|Il for each l ∈ S and χλ is unramified at l 6∈ S. Now replace ρ0,λ and

ρ1,λ by ρ0,λ ⊗ χλ and ρ1,λ ⊗ χ−1λ respectively. For each l ∈ S and λ ∈ Σ, both

|ρ0,λ(Iwl )| and |ρ1,λ(Iwl )| divide |H̃l|, and hence divide lal−1. Hence the statement
in Step 1 follows Proposition 9 in [Ser87].

4.4. Applications to Scholl representations. Suppose we are given a compat-
ible system of p-adic Galois representations R = {Q, S, {Ql[X]}, {ρp, r(ρp)},v =
{0, 0,m,m}}, where ρp(GQ) ⊂ GO4(Qp) for each p. For example, the compatible
system comes from a Scholl motive in the introduction. Let M/Q be a quadratic
extension and Vp denote the underlying space of ρp. We say R admits a multipli-
cation by M if for each p there is an injection ιp : M ↪→ EndQpVp of Q-algebras
and g(ιp(m)v) = ιp(m)g(v) for g ∈ GM , m ∈ M and v ∈ Vp. For examples of
such compatible system, see §5 in [ALLL13]. Note many systems in [ALLL13] have
quaternion multiplications.

We claim that Qp ⊗Qp ρp restricting to GM is reducible. In fact, if M = Q(
√
d)

then Qp ⊗Qp Vp ' V +
p ⊕ V −p where V +

p and V −p are eigenspaces of ιp(
√
d). It is

easy to check that V +
p and V −p are GM -stable. Proposition 3.4.2 implies that either

ρp is induced by a character or F = Q, equivalently ρp(GQ) ⊂ SGO4(Qp). Then
Corollary 1.0.4 follows Corollary 1.0.3.
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Appendix A. Tensor being crystalline implies each factor being
crystalline up to twist

LIANG XIAO

Let p be a prime number and K a finite extension of Qp. Fix an algebraic closure

Qp of K and let GK := Gal(Qp/K) denote the absolute Galois group. For E a
finite extension of Qp, we use RepE(GK) to denote the category of continuous
representations of GK on a finite dimensional E-vector space.

Let Cp denote the p-adic completion of Qp. We do not recall the definition
of Fontaine rings BdR, Bcris, etc, for which one may consult [1]. The aim of this
appendix is to give a simpler proof of Theorem A.0.1 below, which is proved by Di
Matteo in [4]. We hope that the proof presented here is more accessible to readers
who are less familiar with p-adic Hodge theory, and hence makes Theorem A.0.5 at
the end of the appendix less mysterious.

Theorem A.0.1. Let V,W ∈ RepE(GK) be two p-adic representations of GK
which are Hodge-Tate. If W ⊗E V is de Rham, then so are V and W themselves.

Proof. We warn the readers that one has to be very careful when dealing with
the coefficient fields. We start by some simple reductions dealing with coefficients.
Since being de Rham or Hodge-Tate is preserved when replacing K and E by finite
extensions, we may assume that K = E is a Galois extension of Qp.

For σ ∈ Gal(K/Qp) and U ∈ RepK(GK), set DdR,σ(U) := (U ⊗K,σ BdR)GK ,

where ⊗K,σ means that the tensor is taken along the homomorphism K
σ→ K →

BdR. We say U is σ-de Rham if dimK DdR,σ(U) = dimK U . Then U is de Rham
if and only if it is σ-de Rham for all σ ∈ Gal(K/Qp). Theorem A.0.1 then follows
Proposition A.0.4, which requires a few lemmas first. �

Lemma A.0.2. Assume that K is Galois over Qp. Let V ∈ RepK(GK) be a
Hodge-Tate representation. Then DdR,σ(V ) 6= 0 for any σ ∈ Gal(K/Qp).

Proof. We fix σ ∈ Gal(K/Qp). Since V is Hodge-Tate, we have V ⊗K,σ Cp =
Cp(n1) ⊕ · · · ⊕ Cp(nd), for integers n1 ≤ · · · ≤ nd. We first note that the basic
properties of continuous cohomology of Cp(n) tell us

Hi(GK , V ⊗K,σ tnB+
dR) = 0 for i = 0, 1 and n� 0.

Consider the long exact sequence

0→ H0(GK , V ⊗K,σ tn+1B+
dR)→ H0(GK , V ⊗K,σ tnB+

dR)→ H0(GK , V ⊗K,σ Cp(n))

→ H1(GK , V ⊗K,σ tn+1B+
dR)→ H1(GK , V ⊗K,σ tnB+

dR)→ H1(GK , V ⊗K,σ Cp(n)).

By an easy induction, we know that Hi(GK , V ⊗K,σ tnB+
dR) = 0 for i = 0, 1 and

n > −n1. When n = −n1, the first several terms of the long exact sequence above
becomes

0→ 0→ H0(GK , V ⊗K,σ t−n1BdR)→ H0(GK ,Cp(n+ n1)⊕ · · · ⊕Cp(n+ nd))→ 0.
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Here, the relevant H1-term vanishes because n + 1 > −n1. We see this forces
H0(GK , V ⊗K,σ t−n1BdR) 6= 0 and therefore DdR,σ(V ) 6= 0. �

Lemma A.0.3. If D is a BdR-vector space of finite dimension d, with a semi-linear
action of GK . Then the natural map DGK ⊗K BdR → D is always injective. In
particular, dimK(DGK ) ≤ d.

Proof. This is a standard B-admissibility argument; for completeness, we reproduce
it here. We need only to show that a K-linearly independent subset of DGK is
also BdR-linearly independent. Suppose not, we pick a counterexample of minimal
number of (K-linearly independent) elements in DGK ; in other words, e1, . . . , er ∈
DGK are K-linearly independent but α1e1 + · · ·+αrer = 0 for αi ∈ BdR\{0}. Since
BdR is a field, we may moreover assume that α1 = 1. Applying g ∈ GK to this
equality, we have

e1 + g(α2)e2 + · · ·+ g(αr)er = 0 ⇒ (gα2 − α2)e2 + · · ·+ (gαr − αr)er = 0.

By the minimality of the linear relation, we conclude that gαi = αi for i = 2, . . . , d.
Hence each αi ∈ BGKdR = K. But e1, . . . , er were assumed to be K-linearly indepen-
dent. We arrive at a contradiction. This proves the lemma. �

Proposition A.0.4. Assume that K is Galois over Qp. Fix σ ∈ Gal(K/Qp). Let
V,W ∈ RepK(GK) be Hodge-Tate representations. If W ⊗K V is σ-de Rham, then
so are V and W .

Proof. Denote n = dimK V and m = dimKW . By Lemma A.0.2, we know that
DdR,σ(V ) = (V ⊗K,σ BdR)GK 6= 0. Let r denote the dimension of this K-vector
space. Consider the quotient Q of the injective map (by Lemma A.0.3)

DdR,σ(V )⊗K BdR ↪→ V ⊗K,σ BdR;

it is a vector space over BdR of dimension n−r with continuous action of GK . Now,
taking the GK-invariants of the following exact sequence

0→W ⊗K,σ DdR,σ(V )⊗K BdR → (W ⊗K V )⊗K,σ BdR →W ⊗K,σ Q→ 0,

we obtain

0→ DdR,σ(W )⊗K DdR,σ(V )→ DdR,σ(W ⊗K V )→
(
W ⊗K,σ Q

)GK
.

By Lemma A.0.3, we know that the dimensions of the first and third terms are at
most rm and (n−r)m respectively; whereas the dimension of the middle term is nm
because W ⊗K V is σ-de Rham. Therefore, dimK DdR,σ(W ) ⊗K DdR,σ(V ) = rm,
yielding W being σ-de Rham. A symmetric argument proves that V is also σ-de
Rham. �

As a corollary of Theorem A.0.1, together with the well-known “black box”: de
Rham implies potentially semistable, it is not hard to deduce Theorem A.0.5 below.

Theorem A.0.5. Let V,W ∈ RepE(GK) be two p-adic representations of GK . If
W ⊗E V is crystalline, then there exists a finite extension F of E and a continuous
character η : GK → F× such that V ⊗F F (η) and W⊗F F (η−1) are both crystalline,
where F (η) and F (η−1) are 1-dimensional p-adic representations over F associated
to η and η−1 respectively.
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Proof. The reduction to Theorem A.0.1 is carried out in [4]. For the convenience
of the readers, we sketch the idea.

(As shown in [4, Section 2],) one can twist V and W by a character (coming
from Lubin-Tate module of OK to change the generalized Hodge-Tate weights (see
[3]) to be integers; this is essentially because those Hodge-Tate weights from V and
from W pairwise adds up to integers. One also easily see that the actions of the
Tate-Sen operator on V and W are semisimple because their tensor product is.
Hence, V and W are Hodge-Tate up to twists.

Now, by Theorem A.0.1, one concludes that, up to the same twist, V and W
are de Rham. By the main theorem of [2], they are (up to twist) potentially
semi-stable. Consider the associated Deligne-Weil representation. This question
essentially reduces to representation question over C-vector spaces, and is discussed
in [4, Theorem 1.4]. �
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icae 148 (2002), 219–284.

[3] Laurent Berger and Pierre Colmez, Familles de représentations de de Rham et monodromie p-

adique, in p-adic representations of p-adic groups I: Galois representations and (ϕ,Γ)-modules,
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