Elliptic Curve, Fernart Lett Thun & modularity lifting.
P. & primes,
$$G_{12} = Gal(\overline{G}/G)$$
, $F_{12} = \frac{7}{2}kz$.
I proof of FLT via modularity lifting
FLT $a^{n} + b^{n} \pm C^{n}$, $V = a, b, c \in IN$, $n \ge 3$.
Thus (Transystem - Shinuma - Wilest) Any elliptic Curve (EC) / (R is modular.
If $a, b, c \in IN$ satisfies $a^{1} + b^{1} - c^{2}$, $b \ge 2$, then Frey curve
 $E : y^{2} = x (x - a^{2}) (x + b^{2})$ is NOT modular. contradiction?
I Elliptic Curve:
Def: An FC / (R is a projective Curve given by Weiestrass Equ
 $E : y^{2} = x^{2} + ax + b$, $a, b \in (Q)$
 $\Delta = 4a^{2} + 27b^{2} \pm 0$.
Face: $D = C(K)$ is an abelian group for K/G a field ext.
 $P = a$
 $P = a$

Set
$$ECP^{i}I := \{X \in ECC\} \mid P^{i}X = X + \dots + X = O^{i}\}$$

Then $ECP^{i}I \cong \mathbb{Z}_{P^{i}Z} \times \mathbb{Z}_{P^{i}Z}$
Note $G_{iQ} \ge ECP^{i}I$ as E is defined $/Q$.
Def: The p-adde Tarte module $T_{P}(E) := \lim_{k \to \infty} ECP^{i}I \cong \mathbb{Z}_{P} \times \mathbb{Z}_{P}$
Note $G_{iQ} \ge T_{P}(E)$ continuously $\longrightarrow P_{E} : G_{iQ} \rightarrow Ant_{iq}T_{P}(E) = Gl_{2}(\mathbb{Z}_{P})$
The p-adde Galois representation
Let K/Gip be a p-adde field with residue field K/\mathbb{F}_{P} .
Def: A p-adde Galois representation
 $Q \vee I = a$ finite dim $K - V.S$.
 $\bigotimes P^{i} : G_{iQ} \rightarrow GL(V) = a$ continuous group home.
Example 0 cycloconde charactor $A_{P} : G_{iQ} \rightarrow \mathbb{Z}_{P}^{X} \leq Gl_{i}(Q_{P})$ adoptional by
 $g(S_{P^{i}}) = S_{P^{i}}^{A/(2)} \mod S_{P^{i}}^{mod} p^{mod}$.
Example 0 cycloconde charactor $A_{P} : G_{iQ} \rightarrow \mathbb{Z}_{P}^{X} \leq Gl_{i}(Q_{P})$ adoptional by
 $g(S_{P^{i}}) = T_{P}(E) f_{i}^{2}I$.
Front : Given a p-adde hep (P, V) , $\exists o = O_{k}^{-1}$ factile $T \leq V$ so that
 $g(T) \leq T$, $Vg \in G_{iQ}$ so
 $P : G_{iQ} \rightarrow Ant_{iQ}(T) \simeq GL_{i}(O_{K}) = \pi$ conforming
 $P : G_{iQ} \rightarrow Ant_{iQ}(T) \simeq GL_{i}(O_{K}) = \pi$ conforming
 $f_{i} = P_{i} = P$ med π : $G_{iQ} \rightarrow GL_{i}(K)$ is called the reduction
of P .
Remedia \overline{P} may chosed on the choice of T . But its semi-simpletication
 \overline{P}^{i} is independent of T .

(c)
$$f(z)$$
 is "good" at cusps.

$$f(z) = \sum_{n=1}^{\infty} a_n(z) 2^n$$
with $2 = e^{2\pi i z}$

$$f(z) = \sum_{n=1}^{\infty} a_n(z) 2^n$$
with $2 = e^{2\pi i z}$

$$f(z) = \sum_{n=1}^{\infty} a_n(z) 2^n$$
with $2 = e^{2\pi i z}$

$$lec \quad S_{\alpha}(T; (N)) = f modular form of weight k, level N?$$

$$Conjecture (Taniyanue shimura) Gian an elliptic curve $E/(Q)$, E is needular
i.e., $\exists f \in S_{\alpha}(T; (N))$ so that $f_{\alpha}(z) > 0$

$$a_{\alpha}(f) = trace (f_{\alpha}(Frx)).$$
Remark: E is modular $\Leftrightarrow I$ moghizen $M/(T; (N)) \xrightarrow{\to} E$.
If Frog Curve is nodular $\Rightarrow N = 2$ when $a^n+b^n = c^n$.
But $M/(T; (n)$ has genus 0 while E has genus 1, Contradiction !
Conjecture (Fontaine - Mazur).
Let F be a π field, $f(z) = G_F \longrightarrow GL(V)$ a public kep.
Assume 0 f is unramified for almost all prime $g \in Spec(O_F)$
 \bigoplus For prime $g|p$, $f(G_F)$ is de Rhem.
Then p comes from an action morphite form of $Gtn(A_F)$.
VI wiles' strategy on modularity lefting.
1 Serve's conjecture
 $Suppose \tilde{p}: Gra \longrightarrow Gt_2(F_F)$ is irreducible rep. Then \exists modular
 $form f \in S_{\alpha}(T(W))$ so thes
 $a_{\alpha}(f)$ mod p = trace ($F(F_{\alpha})$) $fr l >> 0$
Remark: 0 the precise version, which predict "min:mal" κ , N implies that $E/(R)$ is modular.$$

2 Galois deformation:
Fix a residue wep:
$$\overline{P}: \overline{Ga} \rightarrow Gl_{2}(\overline{FF})$$
, $\overline{F}/\overline{F_{P}}$ finite.
 $\overline{P}: \overline{Ga} \rightarrow Gl_{2}(O_{K})$ is culled a deformation of \overline{P} if
 \overline{P} nod $\pi \simeq \overline{P}$ Then there exists a universal deformation ring
 $R_{\overline{P}}$, and p^{min} . $\overline{GGa} \rightarrow Gl_{2}(R_{\overline{P}})$ which "parametrize" all
deformation of \overline{P} .
The is known that all "medular deformation" line in the family
 p^{mod} . $\overline{Ga} \rightarrow \overline{Gl_{2}(T_{\overline{P}})}$ where \overline{T} is a certain Hecke algebra.
Now we have $\overline{Ga} \rightarrow \overline{Gl_{2}(T_{\overline{P}})}$ by input of known serve's
 $\overline{Gl_{2}(T_{\overline{P}})}$ by input of known serve's
 $\overline{Gl_{2}(T_{\overline{P}})}$
We need to show blue corrow exists. $\overline{Gl_{2}(Z_{\overline{P}})}$
Wiles introduces the idea "flat deformation" $R_{\overline{P}}^{\frac{1}{2}}$ and show that
 $R_{\overline{P}}^{\frac{1}{2}} \subset \overline{T_{\overline{P}}}$ ($R=T$ then) together with Taylor.
VI structure of $G_{\overline{E}} = Gal(\overline{M}/\overline{M_{e}})$
Recall $0 \rightarrow I_{\overline{E}} \rightarrow G_{\overline{E}} \longrightarrow Gal(\overline{F_{E}}/\overline{F_{e}}) \rightarrow 0$
 $I^{W} \to I_{\overline{E}} \rightarrow I_{\overline{E}} \rightarrow 0$
 I^{W} is will inertia which pro-p group. $I_{\overline{E}}^{\frac{1}{2}}$ is tone inertian

$$\begin{split} I_{L}^{\psi} &\simeq \prod_{P \in L} \mathbb{Z}_{p}(L) = \operatorname{Gal}\left(\bigcup_{P \in M} \mathbb{Q}_{p}(\prod_{P \in P})/\mathbb{Q}_{p}\right) \\ & \text{Howe (1) previous there of F \in I_{L} is a life of Fr_{L} \forall \tau \in \mathbb{Z}_{p}(1) when F \tau \tau' = \tau^{L} \\ & \text{We have filtration on } I_{L} to define conductor. But used so discuss in details. \\ & \text{VIII the bottomed Density} \\ & \text{Thm: Let } F/\mathrm{EL} is a Calori extension which is unranified over a finite set S of privas them $\bigcup_{p \in T} \mathbb{F}_{p}$ is alread in Call (F/\mathbb{Q}) .
 Howe first axially private the conductor is unranified over a finite set S of privas them $\bigcup_{p \in T} \mathbb{F}_{p}$ is alread in Call (F/\mathbb{Q}) .
 Howe first a conjugacy class of Fibbonia at p . \\ & \text{Applitation: If an inclusive p while Galais rep. p is unranified for all mode all prival l than p is uniquely determined by the states statements. \\ & \text{TIX Review class field Theory. } \\ & \text{Let } K \text{ be a p-adic field. Then I goed Arin map $D_{K}: K^{\times} \longrightarrow G_{K}^{A}$.
 $so theo 0 \quad O_{K}(T) = Frp. \\ & \text{O} \quad For L/K finite abdium then O_{K} induce an itermorphism $O_{L}: K^{\times} / \mathcal{O}_{K} \cap \mathcal{O}_{K} : \mathcal{O}_{L}^{2} \longrightarrow I_{P}^{A} \\ & \text{We have } U \otimes (S_{P}) \cup U \otimes (S_{P}) = O_{K}: \mathbb{Z}_{P}^{\times} \longrightarrow Cad(\mathbb{Q}(S_{P})/\mathbb{Q}) \\ & \text{We have } field theory. \\ & \text{Let } K = 0 \quad Free L/K finite abdium them O_{K} induces an itermorphism $O_{L}: K^{\times} / \mathbb{Q} \in \mathcal{O}_{K}^{2} \longrightarrow \mathbb{Q}_{K}^{2} \oplus \mathbb{Q}_{K}^{2} \longrightarrow \mathbb{Q}_{K}^{$$$$$

i)
$$O_F |_{FV} = O_{FV}$$
 in LCF.
ii) $O_F |_{F^{\times}} = 1$
iii) For any finite abolian ext L/F , O_F induces an isomorphism
 $I_F /_{F^{\times}} N_{V_F}(I_L) \xrightarrow{\sim} Gaul(L/F)$.

when
$$F = Q$$
, we have $G_{Q}^{ab} \simeq T \mathbb{Z}_{p}^{\times} \simeq Gal \left(\bigcup Q(S_{w}) / Q \right)$.
given by $T \times p$.