EXTRA CREDIT QUESTION 3

Prove the spectral decomposition: Suppose that $A \in \mathbb{R}^{n \times n}$ is a real symmetric matrix. Then there exists an orthogonal matrix Q such that $A=Q^{T} \Lambda Q$ with Λ a diagonal matrix.

Hint: We can proceed with the following steps:
(1) Show that there exists an orthogonal matrix Q_{1} such that

$$
Q_{1} A Q_{1}^{T}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & B
\end{array}\right)
$$

where B is an $(n-1) \times(n-1)$-matrix. To find Q_{1}, one need to put the first column of Q_{1} to be the unit eigenvector X_{1} of the eigenvalue λ_{1} (note we have prove in class that λ_{1} and X_{1} must have real entries). Then we get

$$
A=Q_{1}^{-1}\left(\begin{array}{cc}
\lambda_{1} & * \\
0 & B
\end{array}\right) Q_{1} .
$$

Since Q_{1} is orthogonal, we can conclude that $\left(\begin{array}{cc}\lambda_{1} & * \\ 0 & B\end{array}\right)$ must be also symmetric and then $*=0$.
(2) Show that B is symmetric.
(3) By induction, $B=Q_{2}^{T} \Lambda^{\prime} Q_{2}$ with Q_{2} an orthogonal matrix and Λ^{\prime} a diagonal matrix.
(4) Show that $Q=\left(\begin{array}{cc}1 & 0 \\ 0 & Q_{2}\end{array}\right) Q_{1}$ is the required matrix and finish the induction.

