Math 265, Practice Midterm 1

Sept 23, 2015

Name: _____

This exam consists of 8 pages including this front page.

Ground Rules

- 1. No calculator is allowed.
- 2. Show your work for every problem unless otherwise stated.
- 3. You may use one 4-by-6 index card, both sides.

Score				
1	15			
2	15			
3	15			
4	15			
5	20			
6	10			
7	10			
Total	100			

- 1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. A, B, C, X, b are always matrices here.
 - (a) If A^2 makes sense then A is a square matrix.
 - (b) A system of linear equations can not have exactly 2 solutions.
 - (c) If AB = AC and $A \neq 0$ then B = C.
 - (d) Let W be a subspace of a vector space V. If $v \in W$ then $-v \in W$.
 - (e) $\det(2A) = 2 \det(A)$.

	(a)	(b)	(c)	(d)	(e)
Answer	Т	Т	F	Т	F

- 2. Quick Questions, A, B, C, X, b are always matrices here:
 - (a) Suppose that $det(A) = det(A^{-1})$. Find det(A).

Solutions: Since
$$det(A) = det(A)^{-1}$$
, $det(A)^2 = 1$. So $det(A) = \pm 1$.

- (b) Suppose AX = 2X and $A^3X = aX$. Then a =? Solutions: a = 8
- (c) Is the set $\left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 | x, y \text{ are integers} \right\}$ a subspace of \mathbb{R}^2 , why?

Solutions: Let c = 0.5 and $u = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Then $cu = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$ is not in the set. Hence the set is not closed under scalar multiplication and it is *not* a subspace of \mathbb{R}^2 .

3. Let

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -3 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & -2 & 1 \\ 1 & 2 & -2 \end{bmatrix}.$$

(a) Compute $2I_2 - AB^T$.

Solutions:

$$2I_2 - AB^T = \begin{bmatrix} 3 & -3 \\ -7 & 8 \end{bmatrix}$$

(b) Is $2I_2 - AB^T$ invertible? If it is then find the inverse.

Solutions:

$$(2I_2 - AB^T)^{-1} = \frac{1}{3} \begin{bmatrix} 8 & 3 \\ 7 & 3 \end{bmatrix}$$

4. Consider the following linear system

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & a^2 - 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 7 \\ a \end{pmatrix}$$

(a) Determine all values of a such that the system has no solution.

Solutions: The augmented matrix of the above system is

$$\begin{pmatrix} 1 & 1 & 0 & 2 \\ 1 & 2 & 1 & 7 \\ 1 & 1 & a^2 - 4 & a \end{pmatrix}.$$

Then we get the echelon form:

$$\begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & a^2 - 4 & a - 2 \end{pmatrix}$$

Then the system has no solution if and only if $a^2 - 4 = 0$ and $a - 2 \neq 0$. So a = -2

(b) Determine all values of a such that the system has infinitely many solutions.

Solutions: The system has infinitely many solutions if and only if $a^2 - 4 = a - 2 = 0$. So a = 2.

(c) Determine all values of a such that the system has a unique solution.

Solutions: The system has unique solution if and only if $a^2 - 4 \neq 0$. That is $a \neq \pm 2$. 5. (a) Compute

$$\begin{vmatrix} -2 & 0 & 0 & 0 \\ 5 & 3 & 5 & 7 \\ 3 & 0 & 2 & 1 \\ 8 & 0 & 2 & 2 \end{vmatrix} .$$

Solution: By cofactor's formula, we get

$$\det(A) = -2 \begin{vmatrix} 3 & 5 & 7 \\ 0 & 2 & 1 \\ 0 & 2 & 2 \end{vmatrix} = (-2)3 \begin{vmatrix} 2 & 1 \\ 2 & 2 \end{vmatrix} = -2 \cdot 3 \cdot 2 = -12.$$

(b) Compute A^{-1} , where

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 1 & 5 \end{bmatrix}$$

Solution:

$$A^{-1} = \begin{bmatrix} -3 & -2 & 2\\ -4 & -1 & 2\\ 2 & 1 & -1 \end{bmatrix}$$

6. Solve the following linear system using Cramer's rule.

$$\begin{array}{rcl} -2x_1 + 3x_2 - x_3 &= 1\\ x_1 + 2x_2 - x_3 &= 4\\ -2x_1 - x_2 + x_3 &= -3 \end{array}$$

Solutions: By Cramer's rule.

$$|A| = \begin{vmatrix} -2 & 3 & -1 \\ 1 & 2 & -1 \\ -2 & -1 & 1 \end{vmatrix} = -2$$
$$|A_1| = \begin{vmatrix} 1 & 3 & -1 \\ 4 & 2 & -1 \\ -3 & -1 & 1 \end{vmatrix} = -4$$
$$|A_2| = \begin{vmatrix} -2 & 1 & -1 \\ 1 & 4 & -1 \\ -2 & -3 & 1 \end{vmatrix} = -6$$
$$|A_3| = \begin{vmatrix} -2 & 3 & 1 \\ 1 & 2 & 4 \\ -2 & -1 & -3 \end{vmatrix} = -8$$

 So

$$x_1 = \frac{|A_1|}{|A|} = 2, \ x_2 = \frac{|A_2|}{|A|} = 3, \ x_3 = \frac{|A_3|}{|A|} = 4.$$

- 7. Let V be the set of all 2×2 matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that abcd = 0. Let operation \oplus be the standard addition of matrices and the operation \odot be the standard scalar multiplication of matrices.
 - (a) Is V closed under addition ?

Solution: No. Consider $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Both A and B are in V. But $A + B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ is not in V.

(b) Is V closed under scalar multiplication?

Solution: Yes. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in V. By definition abcd = 0. Then for any $x \in \mathbb{R}$, $xA = \begin{pmatrix} xa & ab \\ xc & xd \end{pmatrix}$. We get $xaxbxcxd = x^4abcd = 0$. So cA is in V.

(c) What is zero vector in the set V?

Solutions: It is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

- (d) Does every matrix A in V have a negative matrix that is in V? Explain. Solutions: Yes, If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then the negative vector $-A = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$ is still inside V because (-a)(-b)(-c)(-d) = adcd = 0.
- (e) Is V a vector space? Explain.

Solutions: No, it is not a vector space because it is not closed under addition.