Math 265, Practice Midterm 1

Sept 23, 2015

Name: \qquad

This exam consists of 8 pages including this front page.

Ground Rules

1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.
3. You may use one 4-by-6 index card, both sides.

Score		
1	15	
2	15	
3	15	
4	15	
5	20	
6	10	
7	10	
Total	100	

1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. A, B, C, X, b are always matrices here.
(a) If A^{2} makes sense then A is a square matrix.
(b) A system of linear equations can not have exactly 2 solutions.
(c) If $A B=A C$ and $A \neq 0$ then $B=C$.
(d) Let W be a subspace of a vector space V. If $v \in W$ then $-v \in W$.
(e) $\operatorname{det}(2 A)=2 \operatorname{det}(A)$.

	(a)	(b)	(c)	(d)	(e)
Answer	T	T	F	T	F

2. Quick Questions, A, B, C, X, b are always matrices here:
(a) Suppose that $\operatorname{det}(A)=\operatorname{det}\left(A^{-1}\right)$. Find $\operatorname{det}(A)$.

Solutions: Since $\operatorname{det}(A)=\operatorname{det}(A)^{-1}, \operatorname{det}(A)^{2}=1$. So $\operatorname{det}(A)= \pm 1$.
(b) Suppose $A X=2 X$ and $A^{3} X=a X$. Then $a=$?

Solutions: $a=8$
(c) Is the set $\left\{\left.\binom{x}{y} \in \mathbb{R}^{2} \right\rvert\, x, y\right.$ are integers $\}$ a subspace of \mathbb{R}^{2}, why?

Solutions: Let $c=0.5$ and $u=\binom{1}{1}$. Then $c u=\binom{0.5}{0.5}$ is not in the set. Hence the set is not closed under scalar multiplication and it is not a subspace of \mathbb{R}^{2}.
3. Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & -3 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
0 & -2 & 1 \\
1 & 2 & -2
\end{array}\right] .
$$

(a) Compute $2 I_{2}-A B^{T}$.

Solutions:

$$
2 I_{2}-A B^{T}=\left[\begin{array}{cc}
3 & -3 \\
-7 & 8
\end{array}\right]
$$

(b) Is $2 I_{2}-A B^{T}$ invertible? If it is then find the inverse.

Solutions:

$$
\left(2 I_{2}-A B^{T}\right)^{-1}=\frac{1}{3}\left[\begin{array}{ll}
8 & 3 \\
7 & 3
\end{array}\right]
$$

4. Consider the following linear system

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 2 & 1 \\
1 & 1 & a^{2}-4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
2 \\
7 \\
a
\end{array}\right)
$$

(a) Determine all values of a such that the system has no solution.

Solutions: The augmented matrix of the above system is

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & 2 \\
1 & 2 & 1 & 7 \\
1 & 1 & a^{2}-4 & a
\end{array}\right) .
$$

Then we get the echelon form:

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & 2 \\
0 & 1 & 0 & 5 \\
0 & 0 & a^{2}-4 & a-2
\end{array}\right)
$$

Then the system has no solution if and only if $a^{2}-4=0$ and $a-2 \neq 0$. So $a=-2$
(b) Determine all values of a such that the system has infinitely many solutions.

Solutions: The system has infinitely many solutions if and only if $a^{2}-$ $4=a-2=0$. So $a=2$.
(c) Determine all values of a such that the system has a unique solution.

Solutions: The system has unique solution if and only if $a^{2}-4 \neq 0$. That is $a \neq \pm 2$.
5. (a) Compute

$$
\left|\begin{array}{cccc}
-2 & 0 & 0 & 0 \\
5 & 3 & 5 & 7 \\
3 & 0 & 2 & 1 \\
8 & 0 & 2 & 2
\end{array}\right| .
$$

Solution: By cofactor's formula, we get

$$
\operatorname{det}(A)=-2\left|\begin{array}{lll}
3 & 5 & 7 \\
0 & 2 & 1 \\
0 & 2 & 2
\end{array}\right|=(-2) 3\left|\begin{array}{ll}
2 & 1 \\
2 & 2
\end{array}\right|=-2 \cdot 3 \cdot 2=-12
$$

(b) Compute A^{-1}, where

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
2 & 1 & 5
\end{array}\right]
$$

Solution:

$$
A^{-1}=\left[\begin{array}{ccc}
-3 & -2 & 2 \\
-4 & -1 & 2 \\
2 & 1 & -1
\end{array}\right]
$$

6. Solve the following linear system using Cramer's rule.

$$
\begin{array}{rc}
-2 x_{1}+3 x_{2}-x_{3} & =1 \\
x_{1}+2 x_{2}-x_{3} & =4 \\
-2 x_{1}-x_{2}+x_{3} & =-3
\end{array}
$$

Solutions: By Cramer's rule.

$$
\begin{aligned}
& |A|=\left|\begin{array}{ccc}
-2 & 3 & -1 \\
1 & 2 & -1 \\
-2 & -1 & 1
\end{array}\right|=-2 \\
& \left|A_{1}\right|=\left|\begin{array}{ccc}
1 & 3 & -1 \\
4 & 2 & -1 \\
-3 & -1 & 1
\end{array}\right|=-4 \\
& \left|A_{2}\right|=\left|\begin{array}{ccc}
-2 & 1 & -1 \\
1 & 4 & -1 \\
-2 & -3 & 1
\end{array}\right|=-6 \\
& \left|A_{3}\right|=\left|\begin{array}{ccc}
-2 & 3 & 1 \\
1 & 2 & 4 \\
-2 & -1 & -3
\end{array}\right|=-8
\end{aligned}
$$

So

$$
x_{1}=\frac{\left|A_{1}\right|}{|A|}=2, x_{2}=\frac{\left|A_{2}\right|}{|A|}=3, x_{3}=\frac{\left|A_{3}\right|}{|A|}=4 .
$$

7. Let V be the set of all 2×2 matrices $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $a b c d=0$. Let operation \oplus be the standard addition of matrices and the operation \odot be the standard scalar multiplication of matrices.
(a) Is V closed under addition?

Solution: No. Consider $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Both A and B are in V. But $A+B=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$ is not in V.
(b) Is V closed under scalar multiplication?

Solution: Yes. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in V. By definition $a b c d=0$. Then for any $x \in \mathbb{R}, x A=\left(\begin{array}{ll}x a & a b \\ x c & x d\end{array}\right)$. We get $x a x b x c x d=x^{4} a b c d=0$. So $c A$ is in V.
(c) What is zero vector in the set V ?

Solutions: It is $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
(d) Does every matrix A in V have a negative matrix that is in V ? Explain. Solutions: Yes, If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then the negative vector $-A=$ $\left(\begin{array}{ll}-a & -b \\ -c & -d\end{array}\right)$ is still inside V because $(-a)(-b)(-c)(-d)=a d c d=0$.
(e) Is V a vector space? Explain.

Solutions: No, it is not a vector space because it is not closed under addition.

