Math 265, Midterm 1

October 2nd, 2015

Name: \qquad

This exam consists of 8 pages including this front page.

Ground Rules

1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.
3. You may use one 4-by-6 index card, both sides.

Score		
1	15	
2	15	
3	15	
4	15	
5	20	
6	10	
7	10	
Total	100	

1. The following are true/false questions. You don't have to justify your answers. Just write down either \mathbf{T} or \mathbf{F} in the table below. A, B, C, X, b are always matrices here.
(a) If A is symmetric then A is a square matrix.
(b) If $A B=A C$ and A is invertible then $B=C$.
(c) If a system of linear equations has 2 solutions then it has infinitely many solutions.
(d) Let L be a straight line in the plane \mathbb{R}^{2}. Then L is a subspace of \mathbb{R}^{2}.
(e) If $A^{2}=0$ then A^{-1} does not exist.

	(a)	(b)	(c)	(d)	(e)
Answer	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}

2. Quick Questions (no details of explanation needed), A, B, C, X, b are always matrices here:
(a) Suppose that $A^{2}=A \cdot \operatorname{det}(A)=$?

Solutions: We have $\operatorname{det}(A)^{2}=\operatorname{det}(A)$. So $\operatorname{det}(A)=0$ or $\operatorname{det}(A)=1$.
(b) Suppose A is a 3×3-matrix and $\operatorname{det}(A)=4$ then $\operatorname{det}(2 A)=$?

Solutions: $\operatorname{det}(2 A)=2^{n} \operatorname{det}(A)=2^{3} \cdot 4=32$.
(c) Let $V=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{R}\right.$ and $\left.a b c d=0\right\}$ be a subset of $\mathbb{R}^{2 \times 2}$ (the space of 2 by 2 matrices). Is V a subspace of $\mathbb{R}^{2 \times 2}$? Why?

Solutions: No, V is not a subspace of $\mathbb{R}^{2 \times 2}$ because it is not closed under addition. For example, let $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. It is obvious that A and B are in V. But $A+B=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ is not in V.
3. Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & -2 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
0 & -2 & 1 \\
1 & 3 & -2
\end{array}\right] .
$$

(a) Compute $2 I_{2}-A B^{T}$.

Solutions:

$$
2 I_{2}-A B^{T}=\left(\begin{array}{cc}
3 & -3 \\
-5 & 9
\end{array}\right)
$$

(b) Is $2 I_{2}-A B^{T}$ invertible? If it is then find the inverse.

Solutions: Yes, it is invertible because $\operatorname{det}\left(2 I_{2}-A B^{T}\right)=12 \neq 0$ and

$$
\left(2 I_{2}-A B^{T}\right)^{-1}=\frac{1}{12}\left(\begin{array}{ll}
9 & 3 \\
5 & 3
\end{array}\right)
$$

4. In the following linear system, determine all values of a for which the resulting linear system has
(a) no solution.
(b) a unique solution
(c) infinitely many solutions

$$
\begin{array}{r}
x+y+4 z=3 \\
x+2 y+z=3 \\
x+y+\left(a^{2}-5\right) z=a
\end{array}
$$

Solutions:

The augmented matrix of the above system is

$$
\left(\begin{array}{cccc}
1 & 1 & 4 & 3 \\
1 & 2 & 1 & 3 \\
1 & 1 & a^{2}-5 & a
\end{array}\right) .
$$

Then we get the echelon form:

$$
\left(\begin{array}{cccc}
1 & 1 & 4 & 3 \\
0 & 1 & -3 & 0 \\
0 & 0 & a^{2}-9 & a-3
\end{array}\right) .
$$

Then the system has no solution if and only if $a^{2}-9=0$ and $a-3 \neq 0$. So $a=-3$.

The system has unique solution if and only if $a^{2}-9 \neq 0$. That is $a \neq \pm 3$.

The system has infinitely many solutions if and only if $a^{2}-9=a-3=0$. So $a=3$.
5. (a) Compute

$$
\left|\begin{array}{cccc}
-2 & 7 & 6 & 8 \\
0 & 0 & 3 & 0 \\
0 & 3 & 2 & 1 \\
0 & 9 & 2 & 2
\end{array}\right| .
$$

Solutions:By cofactor's formula, we get

$$
\operatorname{det}(A)=-2\left|\begin{array}{lll}
0 & 3 & 0 \\
3 & 2 & 1 \\
9 & 2 & 2
\end{array}\right| .
$$

Use the cofactor formula again to the first row. We get

$$
\operatorname{det}=(-2)(-3)\left|\begin{array}{ll}
3 & 1 \\
9 & 2
\end{array}\right|=6 \cdot-3=-18
$$

(b) Compute A^{-1}, where

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
2 & 2 & 5
\end{array}\right]
$$

Solution:

$$
A^{-1}=\left[\begin{array}{ccc}
-3 & -4 & 2 \\
-2 & -1 & 1 \\
2 & 2 & -1
\end{array}\right]
$$

6. Solve the following linear system using Cramer's rule.

$$
\begin{array}{rll}
x_{1}+2 x_{2}+3 x_{3} & =1 \\
x_{1}+2 x_{3} & =0 \\
2 x_{1}+3 x_{2}-x_{3} & =-5
\end{array}
$$

Solutions: By Cramer's rule.

$$
\begin{aligned}
&|A|=\left|\begin{array}{ccc}
2 & 4 & 6 \\
1 & 0 & 2 \\
2 & 3 & -1
\end{array}\right|=26 \\
&\left|A_{1}\right|=\left|\begin{array}{ccc}
2 & 4 & 6 \\
0 & 0 & 2 \\
-5 & 3 & -1
\end{array}\right|=-52 \\
&\left|A_{2}\right|=\left|\begin{array}{ccc}
2 & 2 & 6 \\
1 & 0 & 2 \\
2 & -5 & -1
\end{array}\right|=0 \\
&\left|A_{3}\right|=\left|\begin{array}{ccc}
2 & 4 & 2 \\
1 & 0 & 0 \\
2 & 3 & -5
\end{array}\right|=26
\end{aligned}
$$

So

$$
x_{1}=\frac{\left|A_{1}\right|}{|A|}=-2, x_{2}=\frac{\left|A_{2}\right|}{|A|}=0, x_{3}=\frac{\left|A_{3}\right|}{|A|}=1 .
$$

7. Let V be the set of all positive real numbers. For any $u, v \in V$ and $c \in \mathbb{R}$, define $u \oplus v=u v$ (i.e., \oplus is ordinary multiplication) and define \odot by $c \odot u=$ u^{c}.
(a) Verify that V closed under addition and scalar multiplication.

Solutions: $\forall u, v \in V, u \oplus v=u v>0$. So $u \oplus v \in V$. That is, V is closed under addition.
$\forall c \in \mathbb{R}, \forall u \in V, c \odot u=u^{c}>0$. So $c \odot u \in V$. That is, V is closed under scalar multiplication.
(b) What is the zero vector in the set V ? explain.

Solutions: The zero vector is 1 , because $1 \oplus u=1 \cdot u=u$ for any $u \in V$.
(c) For any $u \in V$, find $-u$.

Solutions: $-u=\frac{1}{u}$, because $\frac{1}{u} \oplus u=\frac{1}{u} \cdot u=1$ and we know 1 is the zero vector as the above. .

