Math 265 Midterm 2

Name: \qquad

Ground Rules

1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.
3. You may use one 4 -by- 6 index card, both sides.

Score		
1	15	
2	15	
3	15	
4	15	
5	20	
6	10	
7	10	
Total	100	

1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. A, B, C, X, b are always matrices here.
(a) Any 5 vectors $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ in \mathbb{R}^{4} are linearly dependent.
(b) Let A be an $m \times n$ matrix. If the rows of A are linear independent, so are the columns.
(c) Consider a system of linear equations $A X=b$ where A is an $n \times n$ matrix. If $\operatorname{rank}(A)=n$ then the system is consistent.
(d) Let V be an inner product space, $W \subset V$ a subspace spanned by w_{1}, \ldots, w_{m}. Then $v \in W^{\perp}$ if and only if v is orthogonal to w_{1}, \ldots, w_{m}.
(e) Let A be an $n \times n$-matrix. If $\operatorname{det}(A)=0$ then the dimension of the column space of A is less than n.

	(a)	(b)	(c)	(d)	(e)
Answer	T	F	T	T	T

2. Quick Questions, A, B, C, X, b are always matrices here:
(a) Suppose $u=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ and $v=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$. Let θ be the angle between u and v. Find $\cos (\theta)$.
Solution:

$$
\cos (\theta)=\frac{-1}{\sqrt{12}}
$$

(b) Assume that u, v are vectors in a inner product space with the inner product \langle,$\rangle . Suppose that \|u\|=1,\|v\|=2$ with $u \perp v$. Compute $\|u+v\|=\sqrt{\langle u+v, u+v\rangle}=$?
Solutions:

$$
\langle u+v, u+v\rangle=\langle u, u\rangle+2\langle u, v\rangle+\langle v, v\rangle=1+4=5 .
$$

So $\|u+v\|=\sqrt{5}$.
(c) Find a basis for the space of 3×3 real skew-symmetric matrices (recall that A is skew-symmetric if $A^{T}=-A$).

Solutions:

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

3. (a) For what values of c are the vectors $\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 0 \\ c\end{array}\right)$ in \mathbb{R}^{3} linearly independent?

Solutions:

$$
\left|\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 1 & 0 \\
0 & 2 & c
\end{array}\right|=3(c-2)
$$

Hence the vectors are linearly independent if and only if $3(c-2) \neq 0$, namely, $c \neq 2$.
(b) Suppose that W is the subspace of \mathbb{R}^{3} which is spanned by $u=\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$ and $v=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$. Find a basis of W^{\perp}.

Solutions: $W^{\perp}=\left\{X \in \mathbb{R}^{3} \mid X \perp u\right.$ and $\left.X \perp v\right\}$. Hence X satisfies the following system

$$
\left(\begin{array}{ccc}
-1 & 1 & 2 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{0}{0} .
$$

Solve this system, we find that $W^{\perp}=c\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$. So a basis of W^{\perp} can be $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.
4. Let $A=\left(\begin{array}{cccc}1 & 1 & -1 & 1 \\ 1 & 1 & 0 & -1 \\ 2 & 2 & -1 & 0\end{array}\right)$.

1. Find a basis for the row space of A.

Solutions: We compute the the reduced echelon form of A is

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & -1 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Hence the first two rows (110-1), (0 $01-2)$ forms a basis of the row space of A.
2. Find a basis for the column space of A.

Solutions: The first and third columns of the reduced echelon form have the leading ones. So the first column and 3rd column $\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ -1\end{array}\right)$ of A forms a basis of the column space of A.
3. Find a basis for the null space of A.

Solutions: From the reduced echelon form, we get equations $x_{1}+x_{2}-$ $x_{4}=0$ and $x_{3}-2 x_{4}=0$. Therefore, we have $x_{1}=-x_{2}+x_{4}$ and $x_{3}=2 x_{4}$. Hence, any vector in $N(A)$ can be written as

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-x_{2}+x_{4} \\
x_{2} \\
2 x_{4} \\
x_{4}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right)
$$

with x_{3}, x_{4} free parameters. So $\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 2 \\ 1\end{array}\right)$ forms a basis of the null space.
4. Verify the equality $\operatorname{rank}(A)+\operatorname{Nullity}(A)=n$.

Solutions: We find that $\operatorname{rank}(A)=2$ from (1) and $\operatorname{Nullity}(A)=2$ from (3). So

$$
\operatorname{rank}(A)+\operatorname{Nullity}(A)=2+2=4=n .
$$

5. Let $V \subset \mathbb{R}^{4}$ be a subspace spanned by $\left\{\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right)\right\}$.
6. Find an orthonormal basis of V.

Solutions: Let v_{1}, v_{2} and v_{3} denote the above vectors. By Gram-Shmidt process, we compute $w_{1}=v_{1}$ and

$$
w_{2}=v_{2}-\frac{\left\langle v_{2}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}=v_{2}
$$

as $\left\langle v_{2}, w_{1}\right\rangle=0$. Now

$$
w_{3}=v_{3}-\frac{\left\langle v_{3}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}-\frac{\left\langle v_{3}, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}=v_{3}-\frac{1}{2} v_{2}-\frac{1}{2} v_{1}=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2}
\end{array}\right)
$$

Now we get a orthonormal basis $u_{1}=\frac{w_{1}}{\left\|w_{1}\right\|}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right), u_{2}=\frac{w_{2}}{\left\|w_{2}\right\|}=$

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right), \text { and } u_{3}=\frac{w_{3}}{\left\|w_{3}\right\|}=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2}
\end{array}\right)
$$

2. Let $u=\left(\begin{array}{c}0 \\ -1 \\ 1 \\ 0\end{array}\right)$. Find $\operatorname{Proj}_{V} u$ and the distance from u to V.

Solutions: By the formula of projection, we have

$$
\operatorname{Proj}_{V} u=\frac{\left\langle u, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}+\frac{\left\langle u, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}+\frac{\left\langle u, w_{3}\right\rangle}{\left\langle w_{3}, w_{3}\right\rangle} w_{3}=-w_{3}=\left(\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right) .
$$

The distance from u to V is just

$$
\left\|u-\operatorname{Proj}_{V} u\right\|=1 .
$$

6. Consider the following system of linear equation

$$
\begin{array}{cc}
x_{1}+x_{2} & =1 \\
x_{1}-x_{2} & =-1 \\
x_{1}-2 x_{2} & =0
\end{array}
$$

1. Find the ranks of the coefficient matrix and the augmented matrix respectively.

Solutions: Using echelon forms, we see that the rank of coefficient matrix is 2 , which the rank of augmented matrix is 3 .
2. Is the system consistent? Why?

Solutions: Since the rank of coefficient matrix is 2 , not the rank of augmented matrix is 3 . Hence the system is not consistent.
3. If the system is inconsistent then compute the least squares solution.

Solutions: The least square solution satisfies that $A^{T} A \hat{X}=A^{T} b$. Hence we get the system of equations

$$
\left(\begin{array}{cc}
3 & -2 \\
-2 & 6
\end{array}\right)\binom{\hat{x}_{1}}{\hat{x}_{2}}=\binom{0}{2}
$$

So $\hat{x}_{1}=\frac{2}{7}$ and $\hat{x}_{2}=\frac{3}{7}$.
7. Let A be a 5×3-matrix.

1. What will be the maximal possible rank of A.

Solutions: Since $\operatorname{rank}(A) \leq m, n$, the maximal rank is 3 .
2. Show that rows of A are linearly dependent.

Proof: The dimension of the row space of A, which is the rank of A, is at most 3 by the above. Now we have 5 rows, 5 rows in a the row space which has the maximal dimension 3 must be linearly dependent.
3. Show that the system $A^{T} X=0$ always has a nontrivial solution.

Proof: A^{T} is a 3×5-matrix. Now that $\operatorname{nullity}\left(A^{T}\right)+\operatorname{rank}\left(A^{T}\right)=n=5$. So $\operatorname{nullity}(A)=5-\operatorname{rank}(A)$. We have seen that the maximal rank of A^{T} is at most 3 . Hence the nullity of A^{T} is at least $5-3=2$. Hence there are infinitely many X satisfies the equation $A^{T} X=0$. That is the system $A^{T} X=0$ has a nontrivial solution.

Another proof: As (2), we can see that the columns of A^{T} are linearly dependent. If we write $\alpha_{1}, \ldots, \alpha_{5}$ for columns of A^{T} then the definition of linearly dependence implies that $\alpha_{1}, \ldots, \alpha_{5}$ are linearly dependent if and only if the equation $x_{1} \alpha_{1}+\cdots+x_{5} \alpha_{5}=0$ has a nontrivial solution. But the equation $x_{1} \alpha_{1}+\cdots+x_{5} \alpha_{5}=0$ is equivalent to $A^{T} X=0$. So $A^{T} X=0$ has a nontrivial solution.

