QUIZ 3

Find the general solution of the following differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=t e^{t}+4
$$

Solutions:

The characteristic polynomial of the homogeneous equation

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

is

$$
f(r)=r^{2}-2 r+1=(r-1)^{2}
$$

Hence the general solution of the homogeneous equation is

$$
y=C_{1} e^{t}+C_{2} t e^{t} .
$$

Now we look for a particular solution by the undetermined coefficients. Consider two equations

$$
y^{\prime \prime}-2 y^{\prime}+y=t e^{t}
$$

and

$$
y^{\prime \prime}-2 y^{\prime}+y=4
$$

For the particular solution $Y_{1}(t)$ of the first equation, note that $r=1$ is the double root of $f(r)$. So we need to try $Y_{1}(t)=t^{2}\left(A_{1} t+A_{0}\right) e^{t}$. Then we solve that $Y_{1}(t)=\frac{1}{6} t^{3} e^{t}$.

For the second equation, we just try $Y_{2}(t)=B$ and it is easy to see that $B=4$.

So finally, we get the general solution is

$$
y(t)=C_{1} e^{t}+C_{2} t e^{t}+\frac{1}{6} t^{3} e^{t}+4
$$

You can also use the method of variation of parameters and the result will be the same. First the Wronskian of y_{1} and y_{2} is

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
e^{t} & t e^{t} \\
e^{t} & (t+1) e^{t}
\end{array}\right|=e^{2 t} .
$$

So the particular solution $Y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$ where
$u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W\left(y_{1}, y_{2}\right)} d t=-\int \frac{t e^{t}\left(t e^{t}+4\right)}{e^{2 t}} d t=-\int\left(t^{2}+4 t e^{-t}\right) d t=-\frac{1}{3} t^{3}+4(t+1) e^{-t}$
and
$u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W\left(y_{1}, y_{2}\right)} d t=\int \frac{e^{t}\left(t e^{t}+4\right)}{e^{2 t}} d t=\int t+4 e^{-t} d t=\frac{t^{2}}{2}-4 e^{-t}$
So $Y(t)=u_{1} y_{1}+u_{2} y_{2}=e^{t}\left(-\frac{1}{3} t^{3}+4(t+1) e^{-t}\right)+t e^{t}\left(\frac{t^{2}}{2}-4 e^{-t}\right)=\frac{t^{3}}{6}+4$.
Then the general solution is

$$
y(t)=C_{1} e^{t}+C_{2} t e^{t}+\frac{1}{6} t^{3} e^{t}+4 .
$$

