## QUIZ 4

A mass weighting 32 lb stretches a spring 16 feet. The mass is attached to viscous damper with a damping constant $2 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$. The mass is pulled down an additional 3 in, and then released. Let $u=u(t)$ denote the displacement of the mass from the equilibrium. (The gravity constant is $g=32 \mathrm{ft} / \mathrm{sec}^{2}$. )
(1) Find the initial value problem that $u(t)$ satisfies.

Solution: We have $m g=32$ and $L=16$. Then $m=32 / 32=1$ and $k=m g / L=2$. Note that $u(0)=3$ in $=0.25$ foot, and $\gamma=2$. We have the initial value problem as the following

$$
u^{\prime \prime}(t)+2 u^{\prime}(t)+2 u(t)=0, \quad u(0)=0.25, u^{\prime}(0)=0 .
$$

(2) Find $u(t)$.

Solutions: The characteristic polynomial $f(r)=r^{2}+2 r+2=$ $(r+1)^{2}+1$. Hence $f(r)$ has root $r=-1 \pm i$. Then

$$
u(t)=c_{1} e^{-t} \cos t+c_{2} e^{-t} \sin t .
$$

Now $u^{\prime}(t)=-c_{1} e^{-t} \cos t-c_{1} e^{-t} \sin t-c_{2} e^{-t} \sin t+c_{2} e^{-t} \cos t$. Plug in the initial value $u(0)=0.25$ and $u^{\prime}(0)=0$. We have $c_{1}=0.25$ and $c_{2}=0.25$. So

$$
u(t)=0.25 e^{-t} \cos t+0.25 e^{-t} \sin t
$$

(3) What is the long run behavior of $u(t)$ ? Namely, what is

$$
\lim _{t \rightarrow+\infty} u(t) ?
$$

Solutions: Obviously $\lim _{t \rightarrow+\infty} u(t)=0$ from the above answer.

