QUIZ 6

Consider the system of differential equations

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \text { where } A=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)
$$

(1) Find the general solution of the system;

Solutions: The characteristic polynomial of A is $f(r)=r^{2}-$ $(1+1) r+(1-4)=r^{2}-2 r-3=(r-3)(r+1)$. So eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=-1$.

For $\lambda_{1}=3$. Solve $(A-3 I) X=\mathbf{0}$. Note that $A-3 I=$ $\left(\begin{array}{cc}-2 & 1 \\ 4 & -2\end{array}\right)$. So we get eigenvector $\vec{\eta}_{1}=\binom{1}{2}$.

For $\lambda_{2}=-1$. Solve $(A-(-1) I) X=\mathbf{0}$. Note that $A+I=$ $\left(\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right)$. So we get eigenvector $\vec{\eta}_{2}=\binom{1}{-2}$.
Hence the general solution

$$
\mathbf{x}=c_{1} e^{\lambda_{1} t} \vec{\eta}_{1}+c_{2} e^{\lambda_{2} t} \eta_{2}=c_{1} e^{3 t}\binom{1}{2}+c_{2} e^{-t}\binom{1}{-2} .
$$

(2) Sketch the phase plane;
(3) Determine the stability of the equilibrium solution $\mathbf{x}=\mathbf{0}$ (that is, is $\mathbf{x}=\mathbf{0}$ a saddle point, stable node, or unstable node?).

Solutions: Since $\lambda_{1}=3>0$ and $\lambda_{2}=-1<0, \mathbf{x}=\mathbf{0}$ a saddle point.

