Math 353, Practice Midterm 2

Name: \qquad

This exam consists of 8 pages including this front page.

Ground Rules

1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.

Score		
1	10	
2	12	
3	15	
4	20	
5	20	
6	23	
Total	100	

1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. A, B, C, X, b are always matrices here.
(a) $\operatorname{det}(k A)=k \operatorname{det}(A)$.
(b) If A is a transition matrix then $\lim _{m \rightarrow \infty} A^{m}$ always exists.
(c) If A is diagonalizable then all eigenvalues of A are distinct.
(d) Let $T: V \rightarrow V$ be an linear operator and W_{1}, W_{2} two T-invariant subspaces. Then $W_{1} \cap W_{2}$ is also a T-invariant subspace.
(e) Let V be an inner product space with inner product \langle,$\rangle . If \langle w, v\rangle=0$ then either $w=0$ or $v=0$.

	(a)	(b)	(c)	(d)	(e)
Answer	F	F	F	T	F

2. Multiple Choice:
(i) Which of the following is NOT equivalent to the statement that A is invertible.
(a) A is diagonalizable.
(b) $\operatorname{det}(A) \neq 0$.
(c) A only has nonzero eigenvalues.
(d) $\operatorname{rank}(A)=n$.
(e) If the characteristic polynomial $f_{A}(t)=(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\cdots+$ $a_{t}+a_{0}$ then $a_{0} \neq 0$.

The correct answer is (a).
(ii) Suppose $A^{3}=A$. Then which of the following is correct.
(a) A is invertible.
(b) $\operatorname{det}(A)=0,1$.
(c) Eigenvalues of A are a subset of $\{0, \pm 1\}$.
(d) $\lim _{m \rightarrow \infty} A^{m}$ exists.
(e) The dimension of each eigenspace is 1

The correct answer is (C).
(iii) Which of the following properties implies that the $n \times n$ matrix A can be diagonalized?
(a) A is a transition matrix.
(b) A is an invertible matrix.
(c) All eigenvalues of A are same.
(d) The dimension of all eigenspaces is 1 .
(e) The algebraic multiplicity of eigenvalue $k_{i}=1$ for all i.

The correct answer is (e).
(iv) Consider the following linear system.

$$
\begin{aligned}
x+a y+z & =b+c \\
2 x+b y+z & =a+c \\
3 x+c y+z & =a+b
\end{aligned}
$$

Suppose the system only has unique solution. Then
(a) $x=0$
(b) $y=0$
(c) $z=1$
(d) $x=1$
(e) $y=1$

The correct answer is (A).
3. Let

$$
A=\left(\begin{array}{ccc}
1 & s & -1 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

(a) Find the value of s such that A is diagonalizable.

Solutions: The characteristic polynomial is

$$
P_{A}(\lambda)=\left|\begin{array}{ccc}
\lambda-1 & -s & 1 \\
0 & \lambda-1 & 0 \\
0 & 0 & \lambda-2
\end{array}\right|=(\lambda-1)^{2}(\lambda-2)
$$

Hence the eigenvalues of A are $\lambda_{1}=\lambda_{2}=1$ and $\lambda_{3}=2$. Since the eigenvalue $\lambda_{1}=1$ has multiplicity $2, A$ is diagonalizable if and only if the dimension of the 1-eigenspace E_{1} is 2 . Note that the E_{1} is given by the solutions of $\left(1 I_{3}-A\right) X=0$, namely,

$$
\left(\begin{array}{ccc}
0 & -s & 1 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

We easily see that $z=0$. So if $s \neq 0$ then $y=0$ and then E_{1} is just spanned by $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. In this case, the dimension of E_{1} is 1 , which is less
than the multiplicity 2 . Hence E_{1} has dimension 2 if and only if $s=0$, in which case, E_{1} has a basis $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.
(b) For value s that A is diagonalizable, diagonalize A. Namely, find an invertible matrix S and a diagonal matrix Λ such that $A=S \Lambda S^{-1}$.

Solutions:

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

We easily get a basis $\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$. So we obtain $P=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ and $\Lambda=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$.
4. Suppose one region has the city and the suburbs. Each year 50% population of the city stay in the city and 50% of them move to the suburbs; 40% population of suburb stays in the suburbs and 60% of them move to the city. Suppose that in 2000 , population in the city are 10,000 and population in the suburbs are 20,000 .
(a) What is the population in the city and the suburbs in 2002 ?

Solutions: Let $A=\left(\begin{array}{cc}0.5 & 0.6 \\ 0.5 & 0.4\end{array}\right)$ and $X_{n}=\binom{x_{n}}{y_{n}}$ be the vector of population of the city x_{n} and the suburbs y_{n} at $2000+n$ year. It is clear that $X_{n}=A X_{n-1}$ and hence $X_{n}=A^{n} X_{0}$. So
$X_{2}=A^{2} X_{0}=\left(\begin{array}{ll}0.55 & 0.54 \\ 0.45 & 0.46\end{array}\right)\binom{10,000}{20,000}=\binom{16,300}{13,700}$
(b) What is predicted population in the city and suburbs in long run?

Solutions: We need compute that $\lim _{m \rightarrow \infty} A^{m} X_{0}$. Since A is regular transition matrix. We know $\lim _{m \rightarrow \infty} A^{m} L$ exists and L has identical column v, which is a unique eigenvector with eigenvalue 1 . Solve $(A-I) X=0$, that is

$$
\left(\begin{array}{cc}
-0.5 & 0.6 \\
0.5 & -0.6
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

We get $v=k\binom{6}{5}$. Since v has to be probability vector, $v=\binom{\frac{6}{11}}{\frac{5}{11}}$
Hence $\lim _{m \rightarrow \infty} A^{m} X_{0}=30,000 \times v=\binom{\frac{180,000}{51,000}}{\frac{11}{11}}$.
5. Show that the characteristic polynomial of

$$
A=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & -a_{1} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right]
$$

is

$$
f_{A}(t)=(-1)^{n}\left(t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}\right) .
$$

Hint: Use cofactor expansion along the first row and then use mathematical induction on n.
proof: We use mathematical induction on n. If $n=1$ then $f_{A}(t)=\left|\begin{array}{cc}-t & -a_{0} \\ 1 & -t-a_{1}\end{array}\right|=$ $t^{2}+a_{1} t+a_{0}$. Suppose $n=k$ the statement is true then for $n=k+1$, we have

$$
f_{A}(t)=\left|\begin{array}{ccccc}
-t & 0 & \cdots & 0 & -a_{0} \\
1 & -t & \cdots & 0 & -a_{1} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -t-a_{k}
\end{array}\right| .
$$

Using cofactor expansion along the first row, we have
$f_{A}(t)=-t\left|\begin{array}{ccccc}-t & 0 & \cdots & 0 & -a_{1} \\ 1 & -t & \cdots & 0 & -a_{2} \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -t-a_{k}\end{array}\right|+(-1)^{k+2}\left(-a_{0}\right)\left|\begin{array}{ccccc}1 & -t & \cdots & 0 & -a_{1} \\ 0 & 1 & -t & \cdots & -a_{2} \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & & 1\end{array}\right|$.
By induction on $n=k$, we have

$$
\begin{aligned}
f_{A}(t) & =-t\left((-1)^{k}\left(t^{k}+a_{k} t^{k-1}+\cdots+a_{2} t+a_{1}\right)\right)+(-1)^{k+1} a_{0} \\
& =(-1)^{k+1}\left(t^{k+1}+a_{k} t^{k}+\cdots+a_{1} t+a_{0}\right)
\end{aligned}
$$

This proves the case $n=k+1$ and hence complete the induction.
6. Let A be an $n \times n$-matrix.
(a) Show that A is invertible if and only if none of eigenvalues of A is zero.
(b) Suppose A is invertible. Show that if λ is an eigenvalue of A then λ^{-1} is an eigenvalue of A.
(c) Show that A is diagonalizable if and only if A^{-1} is.
proof:
(a) A has an eigenvalue $\lambda=0$ if and only if there is an eigenvector $v \neq 0$ such that $A v=\lambda v=0$. So this is equivalent to that the homogeneous equation $A X=0$ has nontrivial solution, which is equivalent to that A is NOT invertible. So A is invertible if and only if A has no eigenvalue 0.
(b) For the above, we see that $\lambda \neq 0$ and $A v=\lambda v$ with v being eigenvector. Timing A^{-1} on the both side of $A v=\lambda v$, we have $A^{-1} A v=\lambda A^{-1} v$. That is $v=\lambda A^{-1} v$, or equivalently $A^{-1} v=\lambda^{-1} v$. So λ^{-1} is an eigenvalue of A^{-1}.
(c) A is diagonalizable if and only if there exists an diagonal matrix Λ so that A is similar to Λ. Or equivalently there exists an invertible matrix S so that $A=S \Lambda S^{-1}$. If A is invertible then all eigenvalues $\lambda_{i} \neq 0$. So Λ is invertible because the diagonal of Λ are λ_{i}. So we have $A^{-1}=\left(S \Lambda S^{-1}\right)^{-1}=S \Lambda^{-1} S^{-1}$ with Λ^{-1} being diagonal matrix. That is, A^{-1} is also diagonalizable. Since $A=\left(A^{-1}\right)^{-1}, A^{-1}$ is diagonalizable implies that A is diagonalizable.

