Math 353, Midterm 2

Name:

This exam consists of 8 pages including this front page.

Ground Rules

1. No calculator is allowed.
2. Show your work for every problem unless otherwise stated.

Score		
1	15	
2	20	
3	15	
4	15	
5	18	
6	17	
Total	100	

Notations: \mathbb{R} denotes the set of real number and \mathbb{C} denotes the set of complex numbers; F is always a field, for example, $F=\mathbb{R} ; M_{m \times n}(F)$ denotes the set of $m \times n$-matrices with entries in $F ; F^{n}=M_{n \times 1}(F)$ denotes the set of n-column vectors; $P_{n}(F)$ denotes the set of polynomials with coefficients in F and the most degree n, that is,

$$
P_{n}(F)=\left\{f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, \quad a_{i} \in F, \forall i\right\} .
$$

V is always a finite dimensional vector space over F and T is always a linear operator $T: V \rightarrow V$.

1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. (3 points each)
(a) If $\operatorname{det}(A)=0$ then rows of A are linearly dependent.
(b) Let v_{1}, \ldots, v_{m} be eigenvectors of A with eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$. Suppose that $\lambda_{1}, \ldots, \lambda_{m}$ are distinct then v_{1}, \ldots, v_{m} are linearly independent.
(c) The sum of each row of a transition matrix is 1 .
(d) There exists a unique inner product \langle,$\rangle on \mathbb{C}^{n}$.
(e) Let $T: V \rightarrow V$ be a linear operator. Suppose that W is a T-invariant subspace and $\operatorname{dim}_{F} W=1$. Then each nonzero vector $v \in W$ is an eigenvector of T.

	(a)	(b)	(c)	(d)	(e)
Answer	T	T	F	F	T

2. Multiple Choice. (5 points each)
(i) Consider the following linear system.

$$
\begin{aligned}
x+a y+z & =a+1 \\
2 x+b y+z & =b+1 \\
3 x+c y+z & =c+1
\end{aligned}
$$

Suppose the system only has unique solution. Then
(a) $x=1$
(b) $y=0$
(c) $z=1$
(d) $x=2$
(e) $y=2$

The correct answer is (c).
(ii) Let

$$
A=\left(\begin{array}{llll}
0 & 7 & a & 1 \\
0 & 2 & 0 & 0 \\
3 & 4 & 5 & 6 \\
0 & 8 & 9 & a
\end{array}\right)
$$

Which of the following statement is correct?
(a) $\operatorname{det}(A)=-6\left(a^{2}-9\right)$
(b) $\operatorname{det}(A)=6\left(a^{2}-9\right)$
(c) $\operatorname{det}(A)=0$.
(d) A is always invertible.
(e) A is invertible if and only if $a \neq 3$.

The correct answer is (a).
(iii) Suppose $T: V \rightarrow V$ be a linear operator and $T^{3}=T$. Which of the following statement is always correct?
(a) Eigenvalues of T are ± 1.
(b) T must have eigenvalue 0 .
(c) Eigenvalues of T are distinct.
(d) Such T is unique.
(e) If W_{x} is the T-cyclic subspace generated by $x \in V$ then $\operatorname{dim}_{F} W \leq$ 3.

The correct answer is (e).
(iv) Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$. Which of the following statement is correct?
(a) A is a transition matrix.
(b) Eigenvalues of A are all distinct.
(c) A is NOT diagonalizable.
(d) All the eigenspaces of A have the same dimension.
(e) $A^{3}-3 A^{2}=0$.

The correct answer is (e).
3. Let $A=\left(\begin{array}{ccc}0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \\ 0 & 0.5 & 0.5\end{array}\right)$.
(a) Check that A is a regular transition matrix. (7 points)
(b) Does $\lim _{m \rightarrow \infty} A^{m}$ exists? If so calculate $\lim _{m \rightarrow \infty} A^{m}$. (8 points)

Solutions:

a) It is easy to see that all entries of A is nonnegative and sum of each column is 1 . Recall A is regular if A^{k} has all positive entries for some k. Indeed, A^{2} has all positive entries. So A is a regular transition matrix.
b) Since A is a regular transition matrix, $L=\lim _{m \rightarrow \infty} A^{m}$ exists. And all columns of L are the same vector v so that v is an eigenvector of A with eigenvalue 1 , and v is a probability vector. To find v, solve $(A-I) X=0$ and note that

$$
A-I=\left(\begin{array}{ccc}
-0.5 & 0 & 0.5 \\
0.5 & -0.5 & 0 \\
0 & 0.5 & -0.5
\end{array}\right)
$$

We see that $w=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is an eigenvector with eigenvalue 1. To make a probability vector, we have $v=\frac{1}{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. So

$$
\lim _{m \rightarrow \infty} A^{m}=L=\frac{1}{3}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) .
$$

4. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be the linear operator given by

$$
T(f(x))=f^{\prime}(x)+2 f(x) .
$$

(a) Find all eigenvalues λ_{i} of T. (5 points)
(b) For each eigenvalue λ_{i}, find a basis of eigenspace

$$
E_{\lambda_{i}}=\left\{v \in P_{2}(\mathbb{R}) \mid T(v)=\lambda_{i} v\right\} . \text { (5 points) }
$$

(c) Is T diagonalizable? Why or why not? (5 points)

Solutions: a) Take the standard basis $\beta=\left\{1, x, x^{2}\right\}$ of $P_{2}(\mathbb{R})$, the matrix $A=[T]_{\beta}$ representing the operator T is determined by

$$
T\left(1, x, x^{2}\right)=(0,1,2 x)=\left(1, x, x^{2}\right)\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 2 \\
0 & 0 & 2
\end{array}\right)
$$

It suffices to find eigenvalues of $A=\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2\end{array}\right)$.
We easily see the characteristic polynomial of A is $f_{A}(t)=(2-t)^{3}$. So eigenvalues of A is 2 with algebraic multiplicity 3 .
b) Now $\lambda_{i}=2$, to find the eigenspace

$$
E_{2}=\left\{v \in P_{2}(\mathbb{R}) \mid T(v)=\lambda_{i} v=2 v\right\} .
$$

We first find the eigenspace E_{2}^{\prime} of A for eigenvalue 2. By solving $(A-2 I) X=$ $\overrightarrow{0}$, we easily find that E_{2}^{\prime} has dimension 1 and spanned by $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. So E_{2} also has dimension 1 and spanned by $f(x)=1+0 x+0 x^{2}=1$.
c) Since algebraic multiplicity of $\lambda=2$ is 3 is larger than the geometric multiplicity $\operatorname{dim}_{F} E_{2}=1$. So T is NOT diagonalizable.
5. Let A, B be $n \times n$-matrices. Recall A is similar to B if there exists an invertible matrix S so that $A=S B S^{-1}$. Now suppose that A is similar to B.
(a) Show that v is an eigenvector of B if and only $S v$ is an eigenvector of A. (6 points)
(b) Show that A and B share the same eigenvalues. More precisely, λ is an eigenvalue of A if and only if λ is an eigenvalue of B. (6 points)
(c) Show that A is diagonalizable if and only if B is.(6 points)

Proof: (a) v is an eigenvector of B if and only if $v \neq \overrightarrow{0}$ and $B v=\lambda v$ with λ being eigenvalue. So

$$
A S v=\left(S B S^{-1}\right) S v=S B\left(S^{-1} S\right) v=S B v=S \lambda v=\lambda S v
$$

Note that S is invertible. So $S v \neq \overrightarrow{0}$. Hence $S v$ is an eigenvector of A with λ the eigenvalue.
Conversely, if $S v$ is an eigenvalue of A with eigenvalue λ. That is, $S v \vec{\emptyset}$ and $A S v=\lambda S v$. We have

$$
A S v=\left(S B S^{-1}\right) S v=S B v=\lambda S v .
$$

Multiplying S^{-1} on the both sides, we get $B v=\lambda v$. Note that $v \overrightarrow{0}$ as S is invertible. This shows that v is an eigenvector of B with eigenvalue λ.
This also proves (b) that λ is an eigenvalue of A if and only if λ is an eigenvalue of A.
Another proof, we see that characteristic polynomial
$f_{A}(t)=\left|A-t I_{n}\right|=\left|S B S^{-1}-t S I_{n} S^{-1}\right|=|S|\left|B-t I_{n}\right|\left|S^{-1}\right|=\left|B-t I_{n}\right|=f_{B}(t)$.
So A and B share the same characteristic polynomial. Hence A and B share the same eigenvalues.
(c) B is diagonalizable if and only if B has eigenvectors v_{1}, \ldots, v_{n} to forms a basis of F^{n}. By (a), $S v_{i}$ are eigenvectors of A. Since S is invertible, $S v_{1}, \ldots, S v_{n}$ also forms a basis of F^{n}. Therefore A is diagonalizable. Conversely, if A is diagonalizable, then we can use the same argument the above by replacing S with S^{-1} to show that B is also diagonalizable.

Another proof: B is diagonalizable if and only if there exists an invertible matrix Q so that $B=Q \Lambda Q^{-1}$ with Λ a diagonal matrix. Then

$$
A=S B S^{-1}=S Q \Lambda S^{-1} Q^{-1}=(S Q) \Lambda(S Q)^{-1}
$$

Since $S Q$ is invertible, A is diagonalizable. Similarly, if A is diagonalizable, that is, $A=Q \Lambda Q^{-1}$. Then $S B S^{-1}=Q \Lambda Q^{-1}$. Then $B=\left(S^{-1} Q\right) \Lambda\left(S^{-1} Q\right)^{-1}$. Then B is diagonalizable.
6. Let A be an $n \times n$-matrix and $\lambda_{1}, \ldots, \lambda_{n}$ all its eigenvalues (λ_{i} may not be distinct). Let us show that

$$
\operatorname{det}(A)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}
$$

(a) Show the above statement is true if A is diagonalizable. (6 points)
(b) The proof for the general A is more challenging with following steps:
(i) Show that there exists an invertible matrix S so that $A=S B S^{-1}$ where B has the following shape:

$$
B=\left(\begin{array}{cc}
\lambda_{1} & * \\
\overrightarrow{0} & A^{\prime}
\end{array}\right)
$$

where $\overrightarrow{0}$ is an $(n-1)$-column zero vector and A^{\prime} is an $(n-1) \times(n-1)$ square matrix. Hint: Select first column of S to be an eigenvector with eigenvalue λ_{1}. (4 points)
(ii) Show that eigenvalues of A^{\prime} are $\lambda_{2}, \ldots, \lambda_{n}$ and $\operatorname{det}(A)=\lambda_{1} \operatorname{det}\left(A^{\prime}\right)$. (4 points)
(iii) Use mathematical induction on n show that $\operatorname{det}(A)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$. (3 points)
Proof: a) Suppose that A is diagonalizable. Then there exists an invertible matrix S so that $A=S \Lambda S^{-1}$ with Λ being a diagonal matrix.
Note that $\Lambda=\left(\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right)$. We have

$$
\operatorname{det}(A)=\operatorname{det}(S) \operatorname{det}(\Lambda) \operatorname{det}\left(S^{-1}\right)=\operatorname{det}(\Lambda)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}
$$

b) i) Let v_{1} be an eigenvector with eigenvalue λ_{1}. Since $v_{1} \neq \overrightarrow{0}$, one can extend v_{1} to basis $v_{1}, v_{2}, \ldots, v_{n}$ of F^{n}. Set $S=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Since
$A S=\left(A v_{1}, A v_{2}, \ldots, A v_{n}\right)=\left(\lambda_{1} v_{1}, A v_{2}, \ldots, A v_{n}\right)=\left(v_{1}, \ldots, v_{n}\right) B=S B$
so that B has the form $B=\left(\begin{array}{cccc}\lambda_{1} & * & \cdots & * \\ 0 & a_{22}^{\prime} & \cdots & a_{2 n}^{\prime} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & a_{n 2}^{\prime} & \cdots & a_{n n}^{\prime}\end{array}\right)$. Since columns of S
forms a basis, S is invertible. Hence $A=S B S^{-1}$ with $B=\left(\begin{array}{cc}\lambda_{1} & * \\ \overrightarrow{0} & A^{\prime}\end{array}\right)$.
ii) We have $\operatorname{det}(A)=\operatorname{det}\left(S B S^{-1}\right)=\operatorname{det}(S) \operatorname{det}(B) \operatorname{det}\left(S^{-1}\right)=\operatorname{det}(B)$. Using cofactor expansion on the first column of B, we get $\operatorname{det}(A)=$ $\operatorname{det}(B)=\lambda_{1} \operatorname{det}\left(A^{\prime}\right)$. Since similar matrices share the same characteristic polynomials, we have $f_{A}(t)=f_{B}(t)$. Note that

$$
f_{B}(t)=\left|B-t I_{n}\right|=\left(\begin{array}{cc}
\lambda_{1}-t & * \\
\overrightarrow{0} & A^{\prime}-t I_{n-1}
\end{array}\right) .
$$

Using the cofactor expansion on the first column again, we have $f_{A}(t)=$ $\left(\lambda_{1}-t\right)\left|A^{\prime}-t I_{n-1}\right|=\left(\lambda_{1}-t\right) f_{A^{\prime}}(t)$. So $f_{A^{\prime}}(t)=0$ has roots $\lambda_{2}, \ldots, \lambda_{n}$. That is, A^{\prime} has eigenvalues $\lambda_{2}, \ldots, \lambda_{n}$.
iii) If $n=1, A=\left(\lambda_{1}\right)$. The statement is clear. Suppose that for $n=k$ the statement is valid. That is, the determinant is the product of all eigenvalues. Now consider $n=k+1$, from i) and ii), we see that $\operatorname{det}(A)=\lambda_{1} \operatorname{det}\left(A^{\prime}\right)$ and A^{\prime} has eigenvalues $\lambda_{2}, \ldots, \lambda_{n}$. Since A is a $k \times k$-matrix, by induction, we conclude that $\operatorname{det}\left(A^{\prime}\right)=\lambda_{2} \cdots \lambda_{n}$. So

$$
\operatorname{det}(A)=\lambda_{1} \operatorname{det}\left(A^{\prime}\right)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}
$$

This completes the induction.

