Math 353, Midterm 2

Name: _____

This exam consists of 8 pages including this front page.

Ground Rules

- 1. No calculator is allowed.
- 2. Show your work for every problem unless otherwise stated.

Score				
1	15			
2	20			
3	15			
4	15			
5	18			
6	17			
Total	100			

Notations: \mathbb{R} denotes the set of real number and \mathbb{C} denotes the set of complex numbers; F is always a field, for example, $F = \mathbb{R}$; $M_{m \times n}(F)$ denotes the set of $m \times n$ -matrices with entries in F; $F^n = M_{n \times 1}(F)$ denotes the set of n-column vectors; $P_n(F)$ denotes the set of polynomials with coefficients in F and the most degree n, that is,

$$P_n(F) = \{ f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \ a_i \in F, \ \forall i \}.$$

V is always a finite dimensional vector space over F and T is always a linear operator $T: V \to V$.

- 1. The following are true/false questions. You don't have to justify your answers. Just write down either T or F in the table below. (3 points each)
 - (a) If det(A) = 0 then rows of A are linearly dependent.
 - (b) Let v_1, \ldots, v_m be eigenvectors of A with eigenvalues $\lambda_1, \ldots, \lambda_m$. Suppose that $\lambda_1, \ldots, \lambda_m$ are distinct then v_1, \ldots, v_m are linearly independent.
 - (c) The sum of each row of a transition matrix is 1.
 - (d) There exists a unique inner product \langle , \rangle on \mathbb{C}^n .
 - (e) Let $T: V \to V$ be a linear operator. Suppose that W is a T-invariant subspace and $\dim_F W = 1$. Then each nonzero vector $v \in W$ is an eigenvector of T.

	(a)	(b)	(c)	(d)	(e)
Answer	Т	Т	F	F	Т

- 2. Multiple Choice. (5 points each)
 - (i) Consider the following linear system.

$$x + ay + z = a + 1$$

$$2x + by + z = b + 1$$

$$3x + cy + z = c + 1$$

Suppose the system only has unique solution. Then

(a) x = 1(b) y = 0(c) z = 1(d) x = 2(e) y = 2

The correct answer is (c).

(ii) Let

$$A = \begin{pmatrix} 0 & 7 & a & 1 \\ 0 & 2 & 0 & 0 \\ 3 & 4 & 5 & 6 \\ 0 & 8 & 9 & a \end{pmatrix}$$

Which of the following statement is correct?

- (a) $\det(A) = -6(a^2 9)$
- (b) $\det(A) = 6(a^2 9)$
- (c) $\det(A) = 0.$
- (d) A is always invertible.
- (e) A is invertible if and only if $a \neq 3$.

The correct answer is (a).

- (iii) Suppose $T: V \to V$ be a linear operator and $T^3 = T$. Which of the following statement is always correct?
 - (a) Eigenvalues of T are ± 1 .
 - (b) T must have eigenvalue 0.
 - (c) Eigenvalues of T are distinct.
 - (d) Such T is unique.
 - (e) If W_x is the *T*-cyclic subspace generated by $x \in V$ then $\dim_F W \leq 3$.

The correct answer is (e).

(iv) Let
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
. Which of the following statement is correct?

- (a) A is a transition matrix.
- (b) Eigenvalues of A are all distinct.
- (c) A is NOT diagonalizable.
- (d) All the eigenspaces of A have the same dimension.
- (e) $A^3 3A^2 = 0.$

The correct answer is (e).

3. Let
$$A = \begin{pmatrix} 0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \\ 0 & 0.5 & 0.5 \end{pmatrix}$$
.

(a) Check that A is a *regular* transition matrix. (7 points)

(b) Does
$$\lim_{m \to \infty} A^m$$
 exists? If so calculate $\lim_{m \to \infty} A^m$. (8 points)

Solutions:

a) It is easy to see that all entries of A is nonnegative and sum of each column is 1. Recall A is regular if A^k has all positive entries for some k. Indeed, A^2 has all positive entries. So A is a regular transition matrix.

b) Since A is a regular transition matrix, $L = \lim_{m \to \infty} A^m$ exists. And all columns of L are the same vector v so that v is an eigenvector of A with eigenvalue 1, and v is a probability vector. To find v, solve (A - I)X = 0and note that

$$A - I = \begin{pmatrix} -0.5 & 0 & 0.5\\ 0.5 & -0.5 & 0\\ 0 & 0.5 & -0.5 \end{pmatrix}$$

We see that $w = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ is an eigenvector with eigenvalue 1. To make a probability vector, we have $v = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. So

$$\lim_{m \to \infty} A^m = L = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

4. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear operator given by

$$T(f(x)) = f'(x) + 2f(x).$$

(a) Find all eigenvalues λ_i of T. (5 points)

(b) For each eigenvalue λ_i , find a basis of eigenspace

$$E_{\lambda_i} = \{ v \in P_2(\mathbb{R}) | T(v) = \lambda_i v \}.$$
(5 points)

(c) Is T diagonalizable? Why or why not? (5 points)

Solutions: a) Take the standard basis $\beta = \{1, x, x^2\}$ of $P_2(\mathbb{R})$, the matrix $A = [T]_{\beta}$ representing the operator T is determined by

$$T(1, x, x^{2}) = (0, 1, 2x) = (1, x, x^{2}) \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

It suffices to find eigenvalues of $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$.

We easily see the characteristic polynomial of A is $f_A(t) = (2 - t)^3$. So eigenvalues of A is 2 with algebraic multiplicity 3.

b) Now $\lambda_i = 2$, to find the eigenspace

$$E_2 = \{ v \in P_2(\mathbb{R}) | T(v) = \lambda_i v = 2v \}.$$

We first find the eigenspace E'_2 of A for eigenvalue 2. By solving $(A-2I)X = \vec{0}$, we easily find that E'_2 has dimension 1 and spanned by $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$. So E_2 also has dimension 1 and spanned by $f(x) = 1 + 0x + 0x^2 = 1$.

c) Since algebraic multiplicity of $\lambda = 2$ is 3 is larger than the geometric multiplicity dim_F $E_2 = 1$. So T is NOT diagonalizable.

- 5. Let A, B be $n \times n$ -matrices. Recall A is similar to B if there exists an invertible matrix S so that $A = SBS^{-1}$. Now suppose that A is similar to B.
 - (a) Show that v is an eigenvector of B if and only Sv is an eigenvector of A. (6 points)
 - (b) Show that A and B share the same eigenvalues. More precisely, λ is an eigenvalue of A if and only if λ is an eigenvalue of B. (6 points)
 - (c) Show that A is diagonalizable if and only if B is.(6 points)

Proof: (a) v is an eigenvector of B if and only if $v \neq \vec{0}$ and $Bv = \lambda v$ with λ being eigenvalue. So

$$ASv = (SBS^{-1})Sv = SB(S^{-1}S)v = SBv = S\lambda v = \lambda Sv.$$

Note that S is invertible. So $Sv \neq \vec{0}$. Hence Sv is an eigenvector of A with λ the eigenvalue.

Conversely, if Sv is an eigenvalue of A with eigenvalue λ . That is, $Sv \not {\vec{0}}$ and $ASv = \lambda Sv$. We have

$$ASv = (SBS^{-1})Sv = SBv = \lambda Sv.$$

Multiplying S^{-1} on the both sides, we get $Bv = \lambda v$. Note that $v \not \vec{0}$ as S is invertible. This shows that v is an eigenvector of B with eigenvalue λ .

This also proves (b) that λ is an eigenvalue of A if and only if λ is an eigenvalue of A.

Another proof, we see that characteristic polynomial

$$f_A(t) = |A - tI_n| = |SBS^{-1} - tSI_nS^{-1}| = |S||B - tI_n||S^{-1}| = |B - tI_n| = f_B(t).$$

So A and B share the same characteristic polynomial. Hence A and B share the same eigenvalues.

(c) *B* is diagonalizable if and only if *B* has eigenvectors v_1, \ldots, v_n to forms a basis of F^n . By (a), Sv_i are eigenvectors of *A*. Since *S* is invertible, Sv_1, \ldots, Sv_n also forms a basis of F^n . Therefore *A* is diagonalizable. Conversely, if *A* is diagonalizable, then we can use the same argument the above by replacing *S* with S^{-1} to show that *B* is also diagonalizable.

Another proof: B is diagonalizable if and only if there exists an invertible matrix Q so that $B = Q\Lambda Q^{-1}$ with Λ a diagonal matrix. Then

$$A = SBS^{-1} = SQ\Lambda S^{-1}Q^{-1} = (SQ)\Lambda(SQ)^{-1}.$$

Since SQ is invertible, A is diagonalizable. Similarly, if A is diagonalizable, that is, $A = Q\Lambda Q^{-1}$. Then $SBS^{-1} = Q\Lambda Q^{-1}$. Then $B = (S^{-1}Q)\Lambda(S^{-1}Q)^{-1}$. Then B is diagonalizable.

6. Let A be an $n \times n$ -matrix and $\lambda_1, \ldots, \lambda_n$ all its eigenvalues (λ_i may not be distinct). Let us show that

$$\det(A) = \lambda_1 \lambda_2 \cdots \lambda_n.$$

- (a) Show the above statement is true if A is diagonalizable. (6 points)
- (b) The proof for the general A is more challenging with following steps:
 - (i) Show that there exists an invertible matrix S so that $A = SBS^{-1}$ where B has the following shape:

$$B = \begin{pmatrix} \lambda_1 & * \\ \vec{0} & A' \end{pmatrix}$$

where $\vec{0}$ is an (n-1)-column zero vector and A' is an $(n-1) \times (n-1)$ -square matrix. Hint: Select first column of S to be an eigenvector with eigenvalue λ_1 . (4 points)

- (ii) Show that eigenvalues of A' are $\lambda_2, \ldots, \lambda_n$ and $\det(A) = \lambda_1 \det(A')$. (4 points)
- (iii) Use mathematical induction on *n* show that $det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$. (3 points)

Proof: a) Suppose that A is diagonalizable. Then there exists an invertible matrix S so that $A = S\Lambda S^{-1}$ with Λ being a diagonal matrix. $(\lambda_1 \quad 0 \quad \cdots \quad 0)$

Note that
$$\Lambda = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$
. We have
$$\det(A) = \det(S) \det(\Lambda) \det(S^{-1}) = \det(\Lambda) = \lambda_1 \lambda_2 \cdots \lambda_n.$$

b) i) Let v_1 be an eigenvector with eigenvalue λ_1 . Since $v_1 \neq \vec{0}$, one can extend v_1 to basis v_1, v_2, \ldots, v_n of F^n . Set $S = (v_1, v_2, \ldots, v_n)$. Since

$$AS = (Av_1, Av_2, \dots, Av_n) = (\lambda_1 v_1, Av_2, \dots, Av_n) = (v_1, \dots, v_n)B = SB$$

so that *B* has the form $B = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ 0 & a'_{22} & \cdots & a'_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & a'_{n2} & \cdots & a'_{nn} \end{pmatrix}$. Since columns of *S*

forms a basis, S is invertible. Hence $A = SBS^{-1}$ with $B = \begin{pmatrix} \lambda_1 & * \\ \vec{0} & A' \end{pmatrix}$.

ii) We have $\det(A) = \det(SBS^{-1}) = \det(S) \det(B) \det(S^{-1}) = \det(B)$. Using cofactor expansion on the first column of B, we get $\det(A) = \det(B) = \lambda_1 \det(A')$. Since similar matrices share the same characteristic polynomials, we have $f_A(t) = f_B(t)$. Note that

$$f_B(t) = |B - tI_n| = \begin{pmatrix} \lambda_1 - t & * \\ \vec{0} & A' - tI_{n-1} \end{pmatrix}$$

Using the cofactor expansion on the first column again, we have $f_A(t) = (\lambda_1 - t)|A' - tI_{n-1}| = (\lambda_1 - t)f_{A'}(t)$. So $f_{A'}(t) = 0$ has roots $\lambda_2, \ldots, \lambda_n$. That is, A' has eigenvalues $\lambda_2, \ldots, \lambda_n$.

iii) If n = 1, $A = (\lambda_1)$. The statement is clear. Suppose that for n = k the statement is valid. That is, the determinant is the product of all eigenvalues. Now consider n = k + 1, from i) and ii), we see that $\det(A) = \lambda_1 \det(A')$ and A' has eigenvalues $\lambda_2, \ldots, \lambda_n$. Since A is a $k \times k$ -matrix, by induction, we conclude that $\det(A') = \lambda_2 \cdots \lambda_n$. So

$$\det(A) = \lambda_1 \det(A') = \lambda_1 \lambda_2 \cdots \lambda_n.$$

This completes the induction.