POOL OF FINAL QUESTIONS

- (1) What are definitions of number field, algebraic integers, class number?
- (2) Definition of Dedekind domain, examples of Dedekind domain nor Dedekind domain.
- (3) Give an example \mathcal{O}_K which is not UFD.
- (4) What elements of \mathbb{Q}_p , \mathbb{Z}_p looks like? Why $m \in \mathbb{Z}$ is an invertible element when $p \nmid m$?
- (5) Basic facts about quadratic fields $K = \mathbb{Q}(\sqrt{d})$. Describe \mathcal{O}_K , discriminant and decomposition of primes.
- (6) Let L/K be a finite Galois extension of number fields. What can say about the relationship of following groups: decomposition group, inertia group, Gal(L_w/K_v), Gal(L/K), and Gal(l/k). Here l is the residue field of L_w and k the residue field of K_v. And how they relate to e(w|v) and f(w|v)?
- (7) Definition of unramified extension and (totally)ramified extension? can you provide examples? Basic properties of unramified extension: namely composite of unramified extensions are still unramified. Is this true for totally ramified extension? why?
- (8) What is Hensel's Lemma (for \mathbb{Z}_p)? Give an application of it. E.g., How do we know \mathbb{Q}_p contains more elements than \mathbb{Q} ?
- (9) What is Frobenius? Example of nontrivial Frobenius.
- (10) What different, discriminant can tell us about ramifications? In case that $\mathcal{O}_K = \mathbb{Z}[\alpha]$, how should we explicit compute different and discriminant?
- (11) Let $E = \mathbb{Q}(\alpha)$ where α is a root of $X^3 + X + 1$. Show that $\mathcal{O}_E = \mathbb{Z}[\alpha]$.

- (12) Let $K = \mathbb{Q}(\alpha)$ with $\alpha^3 = 2$. Show that $\mathcal{O}_K = \mathbb{Z}[\alpha]$.
- (13) Decompose small primes p over the above K with the assumption that $\mathcal{O}_K = \mathbb{Z}[\alpha]$.
- (14) Recall Minkowski showed that any fractional \mathcal{O}_K -ideal \mathfrak{b} there exists an ideal \mathfrak{a} such that $\mathfrak{a} \sim \mathfrak{b}$ and

$$N(\mathfrak{a}) \leq \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{\Delta_K}.$$

Compute the class number for $\mathbb{Q}(\sqrt{D})$ with D small.

- (15) Show that $\mathbb{Q}(\zeta_p)$ is totally ramified over p, but unramified over other primes.
- (16) Let p be an odd prime. Then there exists a unique quadratic subfield $K \subset \mathbb{Q}(\zeta_p)$, which corresponds to the unique index 2 subgroup for $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$. Can you explicitly determine K? (Hint, study ramification of K).
- (17) State Dirichlet's unit theorem. Compute fundamental unit for $K = \mathbb{Q}(\sqrt{D})$ with small D.
- (18) What are (weak) approximation theorem and Chinese remainder theorem? why they are different? Why we couldn't have the following *super* approximation theorem?

Let S be a finite set of valuations containing all $v \mid \infty$. Given $y_v \in K_v$ for $v \in S$ and $\epsilon > 0$ there exists $x \in K$ so that $|x - y_v|_v < \epsilon, \forall v \in S$ and $|x|_v \leq 1, \forall v \notin S$.