MA 584 HW 1 DUE SEPTEMBER 4TH

- (1) Is $\frac{3+2\sqrt{6}}{1-\sqrt{6}}$ an algebraic integer?
- (2) Let $K = \mathbb{Q}(\sqrt{5})$.
 - (a) Show that $\mathbb{Z}[\sqrt{5}]$ is not integrally closed, it can not be a unique factorization domain.
 - (b) Give an example of an element of $\mathbb{Z}[\sqrt{5}]$ that has two distinct factorizations into irreducible elements.
- (3) Let $D \in \mathbb{Z}$ be a square free integer. Show that

$$\mathcal{O}_K = \{a + b\beta | a, b \in Z\}$$

where

$$\beta = \begin{cases} \sqrt{D} & \text{if } D \equiv 2,3 \mod 4; \\ \frac{1+\sqrt{D}}{2} & \text{if } D \equiv 1 \mod 4. \end{cases}$$

- (4) Let K be a number field, that is, an extension of \mathbb{Q} having degree $n = [K : \mathbb{Q}]$ as a \mathbb{Q} -vector space. We say that a subset $\mathcal{O} \subset K$ is an *order* if
 - (i) \mathcal{O} is a commutative ring containing 1;
 - (ii) \mathcal{O} is a finite generated \mathbb{Z} -module;
 - (iii) \mathcal{O} contains a \mathbb{Q} -basis $w_1, w_2, ..., w_n$ of K, i.e., K is the field of fractions of \mathcal{O} .

Show the following:

- (a) Show that $\mathcal{O} \subset \mathcal{O}_K$.
- (b) Find an example of \mathcal{O} so that $\mathcal{O} \neq \mathcal{O}_K$.
- (5) Let \mathfrak{p} be a prime ideal in an integral domain A. Show that $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ is the field of fractions of $A/\mathfrak{p}A$.